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Reduced differential current: A conserved quantity in short-scale transport
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An electronic transport invariant, the reduced differential current (RDC), is introduced. The
RDC is approximately conserved over short distances typical for modern semiconductor devices.
In a steady-state transport, the divergence of the RDC vanishes if the only source of inelastic col-
lisions is due to the interaction with monochromatic optical phonons. Rates of the violation of the
RDC invariance due to the inelastic acoustic-phonon scattering and to the dispersion of optical
phonons are calculated for exemplary nonequilibrium electron distributions.

I. INTRODUCTION tial density of particles per unit energy interval in a given
ladder,

In this paper we discuss a quantity G(r, E ) that is ap-
proximately conserved in a short-scale electronic trans-
port. It is a vector field and a function of the electron en-
ergy, defined by the following expression:
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The useful property of the RDC concept is that it is in-
variant in a steady-state transport, divG(r, E)=0, for any
scattering model in which inelastic collisions result only
from dispersionless optical phonons. This property
refIects the fact that the combined action of an electric
field and scattering by monochromatic phonons con-
serves the total number of particles that extend over a
ladder of total-energy levels separated by Aco0. The spa-

where J(r, E ) is the contribution to the total current den-
sity J(r) from electrons traveling at the point r with a to-
tal energy E=E„;„+U(r), where E„;„is the kinetic and
U(r) the potential electron energy. The summation in
Eq. (1) is carried over all integer values of
v=0, +1,+2, . . . consistent with the condition of positive
kinetic energy Ek;„=E—U+vhco0&0, where Aco0 is the
optical-phonon energy. We shall call G(r, E) the reduced
differential current, or RDC. The argument E in Eq. (1)
is an independent variable, not a function of r; on the
other hand, the range of the summation over v depends
on r through the condition Ek;„&0.

It is clear from the definition (1) that G is a periodic
function of E. The total current density can be expressed
in terms of the RDC as follows:

E —U( r ) +vficoo )0, (3)

where n (r, E ) is the density of electrons of energy E,
must, therefore, satisfy a continuity equation of the form

eBN,„,(r, E)
+divG(r, E)=0 .

at
(4)

It is not hard to see that the generalized current G in (4)
coincides with the RDC. In what follows this fact will be
formally proven from the Boltzmann equation. This ap-
proach will also enable us to assess the rate at which the
continuity equation (4) is violated by inelastic acoustic-
phonon scattering and by a non-negligible optical-phonon
dispersion.

II. DERIVATION OF THE RDC CONTINUITY
EQUATION

+ [S i+'fk(r) S i 'fk(r)], —

where S k+' and S k
' are the collision operators describ-

ing, respectively, the scattering into and from a point k of
the momentum space. The differential current density
due to particles whose total energy equals E is given by

3 f fk(r)5[E Ei, —U(r)]d k . —aJ 2e
A(2n-)'

(6)

Taking the divergence of (6), we find

Let fk(r) be the electron distribution function, satisfy-
ing the kinetic equation in its general form:

Bfi,(r) 1 BEk Bfi,(r) 1 gU Bf„(r)
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(8) The r'ght-hand side R(E) of the resultant equation
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and that the electron distribution is nondegener ate,
f(Ek) «1.

It is clear that functions defined by the summation over
v, such as those in Eqs. (1), (3), and (12), are periodic in
energy. We shall characterize the degradation of RDC
by calculating the ratio R 'i'(E)/N, „,(E) as a function of
the energy in the interval 0«E «Atop. This ratio deter-
mines the rate of change of N,„,(E) by collisions and is a
functional of the distribution function f(E ).

With the distribution function (13), the differential
number of particles N, „,(E) in the extended set (3) is
given by
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Figure 1 plots Eq. (14) for several values of T, and the
%cop of GaAs. For a semiconductor with a different opti-
cal phonon energy %cop, these plots describe the N„, at a
different set of temperatures ( T,' = T, iiroco/iiroco).

For inelastic interactions with acoustic phonons at an
equilibrium temperature T, and an electronic ensemble
distributed according to Eq. (13), it is possible to derive
from (12) an analytic expression for R "(E) in a closed
form:
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FIG. 2. Degradation parameter R "(E)/X„,(E) calculated
according to Eqs. (14) and (15) for the nonequilibrium electron
distribution described by Eq. (12) with T, =300 and 1000 K and
the lattice temperature T=77 K.

m E„/3(T, —T)f(E) 2(&b —I+Ng) —P[(4—I+Np) +Ni3(Np 1)]-
+ pA 1 —exp( —/3)

(15)

where 0 &4:E /Sicko & 1, P=—Acro/T„and N&
=[I—exp( —p)] '. Derivation of Eq. (15) relies on the
smallness of the acoustic-phonon energy relative to the
electron energy' and is valid only provided T, T, 10 K.
The calculated energy dependences of the ratio R "/N„,
are plotted in Fig. 2 for two values of T, in Si and in
GaAs. The lattice temperature is assumed low (T=77
K) to emphasize the behavior away from equilibrium.
However, for T, =1000 K, the curves at T=300 K are
practically indistinguishable from those at T=77 K. The
ratio of 3X10 between the curves corresponding to
GaAs and Si is mainly owing to the difference in the
effective electron mass. If all other parameters were
equal (including ficuo), then the ratio R "/N, „, would
scale in proportion to m / (the relevant value for silicon
being' m,'m, ' ").

The energy dependence of R "/N„, is of qualitatively
expected shape. Because of the small phonon energy, the
gain and/or loss of energy is determined by derivatives of
the distribution function. For T, & T, the number of par-
ticles decreases in the range E )T„which corresponds to
the direction toward equilibrium. The decrease of R" in
the range E & T, is due to the depletion of the distribu-
tion at energies E+Acop, E+2ficop, etc. , which
overwhelms the enhancement at E. In the intermediate
range of energies R" is positive, corresponding to an in-
creasing RDC. It is clear that R" must change sign in
different energy ranges, since the integral over E vanishes

exactly in light of the current continuity.
As seen from Fig. 2, the degradation of RDC is a rath-

er slow process. The spatial scale of the variation of Cs

due to the acoustic-phonon scattering is of the order
N,„,R 'u„, =0. 1 cm for GaAs and =30 pm for Si (here

u„,—10 cm/s is the scattering-limited electron velocity).
Another possible mechanism for the degradation of the

RDC is associated with the fact that optical phonons are
not exactly monochromatic. The dispersion of optical
phonons can be described by an expression of the form
fico' ' —

flop
—yq =ficop —yE, where E =—A q /2m.

The dimensionless parameter y approximately equals
10 "in GaAs and 6X10 in Si. We have carried out
estimates based on Eq.(12), taking
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for polar (GaAs) and nonpolar (Si) optical phonons, re-
spectively, where ep and e are the static and the
optical-frequency dielectric permittivities of the semicon-
ductor. Typically, the estimated rate R ' of the RDC de-
gradation due to the optical-phonon dispersion turns out
to be higher than R" given by Eq. (15). Indeed, the
width of the optical-phonon band is only an order of
magnitude smaller than the characteristic energy of
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acoustic phonons that interact with electrons while the
optical-phonon scattering rate is much higher. It should
be noted, however, that optical phonons can appreciably
degrade the RDC only after multiple emission and/or ab-
sorption processes, upon the accumulation of small
differences in energy. In order that an electron belonging
to the ladder E + vAcoo could end up in the ladder
E' +vh'co

0, one needs at least 2(E E'—)lyE emission
and absorption processes. For a scatter in energy
(E E)—in typical electron distributions of interest, this
number is very large. Therefore the inclusion of optical
phonons can be of importance in the degradation of RDC
only for an unusually narrow electron distribution peaked
at a high energy. Another situation, when the optical-
phonon dispersion may be important, corresponds to
sufficiently high temperatures and multiple emission and
reabsorption of Ace . This situation is more relevant for
GaAs, where the optical-phonon energy is relatively low.
However, in this case the degradation of RDC is further
suppressed by the q dependence of Wq that favors
small momentum transfers.

IV. CONCLUSION

We have introduced the concept of RDC, which
should be useful in the studies of transport in short-scale
semiconductor devices. So long as the RDC is conserved,
the Boltzmann transport equation can be split into in-
dependent equations for electrons belonging to different

energy ladders, E+vhcoo. Another situation where the
RDC can be extremely helpful corresponds to a coex-
istence of a region of high electric field, where electronic
transport is fast, with a low-field region, where both the
RDC and X,„, rapidly collapse into the usual differential
current density BJ/BE and the differential concentration
BN/BE —&Ef(E). The power of this approach was re-
cently demonstrated by applying it to the problem of
current oscillations in GaAs/Al Ga

&
As

heterostructure-tunneling diodes. It was found that the
RDC was responsible for transporting the tunnel-injected
structure in the electron energy distribution over
micrometer-length distances; this allowed us to obtain a
satisfactory explanation of a long-standing puzzle.

The conservation of RDC has been rigorously demon-
strated in the limit of low carrier concentration, which is
the case where the theory was applied. In this limit, the
electronic system can be expected to exhibit unusual
transport and thermodynamic properties. Such a situa-
tion can arise both in a nonuniform system with a
steady-state electron Row, and in a spatially uniform
nonstationary system on a short temporary scale. Equa-
tion (11) describes the general case. It should be noted,
however, that electron-electron collisions make an impor-
tant contribution to the right-hand side of (11). Prelimi-
nary Monte Carlo estimates show that in bulk GaAs this
contribution becomes dominant already for electron con-
centrations of order 10' cm . Analysis of the degrada-
tion of RDC by interelectronic scattering will be present-
ed in a separate publication.
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