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The first sharp diffraction peak (FSDP), a signature of medium-range order in molten and vitre-
ous chalcogenides, is investigated using the integral-equation method. A variety of interatomic po-
tentials, including uncharged and charged hard spheres, and realistic two-body interactions, are
used in this study. The two-body potential consists of steric repulsions, Coulomb interactions due
to charge-transfer effects, and the effects of electronic polarizability of ions. GeSe2 is treated as a
specific example. The FSDP is observed in both the charged-hard-sphere and the realistic two-body
interaction models. In both models steric and charge-transfer effects are found to give rise to
Ge(Se&&2)4 tetrahedra whose packing determines the medium-range order and the attendant FSDP.
From the charge-charge structure factor it is found that the FSDP arises from spatial correlations
where charge neutrality prevails. The nature of the medium-range correlation is elucidated through
the temperature and density dependence of the FSDP and the thermal expansion determined from
the shifts of the peaks in the static structure factor. We have also studied the effects of the potential
parameters on the position of the FSDP. The results of the hypernetted-chain theory are compared
with the molecular-dynamics results.

I. INTRODUCTION

A number of x-ray' and neutron diffraction mea-
surements on molten and glassy GeSe2 have been carried
out over the past several years. These scattering experi-
ments clearly show the first sharp diffraction peak
(FSDP) around q

= I A ', which reAects the existence of
medium-range correlations extending beyond the
nearest-neighbor distances. Many other oxide and chal-
cogenide glasses such as Si02, GeOz, SiSe2, GeS2 and
As&Se3 also exhibit the medium-range order signified by
the FSDP. ' In addition, the FSDP of the vitreous
GeSe2 behaves anomalously with temperature: the peak
grows as the temperature is increased in a totally reversi-
ble manner.

Phillips has proposed a raft model to describe the
atomistic-scale structure of amorphous GeSe2. In his
model the interlayer correlations, similar to those in the
crystalline GeSez, are responsible for the FSDP. To ob-
tain a unified point of view for the medium-range order,
Moss and Price have proposed a random packing model
of structural units in the context of the continuous ran-
dom network model; the building unit in GeSe2 is a
Ge(Se&&2)& tetrahedron. It has not been possible, howev-
er, to determine experimentally the partial correlations
and the corresponding length scales which give rise to the
FSDP. The recent x-ray measurement by Fuoss and
Fischer-Colbrie on thin films of amorphous GeSe2 gave
no evidence for low-dimensional correlations; i.e., the x-
ray pattern did not change with sample thickness.

A recent molecular-dynamics (MD) study of molten
and glassy GeSe2 by Vashishta et al. ' '" has shed light
on the structural and dynamical properties of chal-
cogenide glasses. The MD results manifest the formation

of a network structure composed of Ge(Se, &2)~ tetrahe-
dra. The effective potential in the MD study consists of
(i) the steric repulsion described by a power-law interac-
tion, (ii) the long-ranged Coulomb interaction stemming
from charge transfer between Ge and Se, (iii) the charge-
dipole interaction due to the large electronic polarizabili-
ty of seleniums, and (iv) three-body forces accounting for
the covalent nature of the bonding.

The MD calculation indicates that the constrained
space-filling of atoms, subject to the excluded-volume
effect and local charge neutrality, can give rise to
medium-range order associated with the FSDP. In this
paper we therefore study the steric and charge-transfer
effects systematically and elucidate the physical nature of
the intermediate-range correlation at the level of intera-
tomic potentials.

The following models for GeSe2 are considered: (a) the
mixture of neutral hard spheres, (b) the mixture of
charged hard spheres, and (c) a system with the effective
potential due to Vashishta et al. ' " The essential
features of the excluded-volume effect and the local
charge neutrality are incorporated in model (b). In the
present study with model (c) we take into account only
the two-body contributions, although three-body and
higher-order interactions may be important in reproduc-
ing certain kinds of structural correlations in covalent
materials. The MD study' of AX2-type systems demon-
strates that all the properties of these glasses can be ac-
counted for by two-body interactions in a semiquantita-
tive manner. This is partly because tetrahedral coordina-
tion in AX&-type systems is possible in the context of
only pairwise interactions. The discrepancies between
the two-body and experimental results, such as the
disagreement in the position of the FSDP in GeSe2, are a
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manifestation of three-body forces which cannot be re-
normalized entirely in a two-body form. " For monatom-
ic systems the situation is quite different. Three-bod
forces have to be explicitly incorporated for a satisfactory

ee-o y

description of pure elemental semiconductors such as Si
and Ge. No reasonable two-body potential indeed stabi-
liizes the diamond structure in these systems against
close-packed structures. ' '

To calculate the structural correlation functions we
take advantage of the integral-equation method instead of
the MD approach. The simplicity of the method enables
us to study these systems extensively. Since the experi-
mental results do not show a qualitative difT'erence be-
tween the static structure factors of the molten and vitre-
ous GeSez, it is expected that the applicability of the
integral-equation scheme can be carried over to the glassy
states. The theoretical schemes used here are the
Percus-Yevick (PY) scheme' for model (a) and the
hypernetted-chain (HNC) scheme' '' for models (b) and
(c). The HNC scheme accurately accounts for the long-
range Coulombic interaction. '

Thehe anomalous temperature dependence of the FSDP
is then studied by taking into account the increase in the
number density on cooling. The actual temperature
dependence is divided into two contributions: the
temperature-induced change at constant density and the
density-induced change at constant temperature. The
analysis of thermal expansion through the shifts of the
peaks in the static structure factor provides additional in-
sight into the properties of intermediate-range correla-
tions. A detailed comparison of the theoretical and ex-
perimental values for the position of the FSDP assesses
the importance of three-body covalent forces. We also
examine the accuracy of the HNC approximation in pre-
dicting the thermodynamic quantities by comparing it
with the MD results. This is important for future studies
of structural properties of more complicated ternary sys-
tems such as Ag/Ge/Se. ' Brief and preliminary ac-
counts of the present study have been reported else-
where. ""

In Sec. II we first define the three models considered
here by specifying the interaction potentials. A brief ac-
count of the integral-equation schemes for the correlation
functions is given in Sec. III. Section IV is devoted to
discussion of the results. The main conclusions are sum-
marized in Sec. V.

AGe 0& 0!Se 7 0& 7 4s 4 43

HG, o, = 1. 114, Ho, s, = 146. 1, Hs, s
=284. 1, (2)

1Ge-Ge ~ 9Ge-Se ~ )Se-Se

where the length and energy are measured in units of A
and e /A (=14.40 eV), respectively. The interaction po-
tential, Eq. (1), with the constants given in Eq. (2) defines
model (c).

The potential for the charged-hard-sphere mixture,
model (b), is defined as

oc for r &o +o.
P„(r)= '

vv Z„Z /r for r &o.„+o. ,

where the effective charges Z„were taken to be the same
as those in the effective potential, Eq. (1). The ionic radii
o„were determined from the bond lengths of Ge-Se (2.35
A) and Se-Se (3.75 A) in the glassy ' and crystalline '

states: o Ge=0. 47~ A and o-se=1. 875 A. The potential
for the neutral hard-sphere system, model (a), is given by
neglecting the Coulomb interaction in Eq. (3), i.e., Z„=O.
The pair potentials P„,(r) in the three models for GeSez
are shown in Fig. 1.

III. INTEGRAL-EQUATION SCHEMES

Th e exact equation for g„(r) of the system at tempera-
ture T can be written as

g„(r)=exp[ —P„(r)/ks T+h„,(r) —c„(r)+B„(r)].

Here the direct correlation functions c (r) are related to
the total pair-correlation functions h (r)=g ( )

—1pv Npv ~

GeSe

'I

20
CD

II. INTERATOMIC POTENTIALS

The ejective pair potential for GeSe propo d b
10Vashishta et al. consists of three terms: the Coulomb

interaction, charge-dipole interaction, and steric repul-
sion. The explicit form for the potential between atoms
of p and v species of is

—10

8 l2

4

Z„Z, —,'(a„Z +n.Q ),q, H

r ~pv

Here Ge and Se atoms are assumed to have eAective
charges of 4Z+ and 2Z —,respectively; Z is chosen to
be 0.33e. The other parameters involved in Eq. (1) are
listed below:

FIGG. 1. Pair potentials P„„(r}in the three models for GeSe2.
Three solid curves are from Eqs. (1) and (2), and define the mod-
el (c). Three vertical dashed lines show hard-sphere repulsions
at o.„+o. ; the joining dotted lines are for the Coulomb interac-
tions. Model (b) includes the hard-sphere repulsions and
Coulomb interactions, whereas model (a) has only the hard-
sphere repulsions.



1728 H. IYETOMI, P. VASHISHTA, AND R. K. KAI.IA 43

through the Ornstein-Zernike relation

h~ (r) =c„(r)+g p& f dr, c~&(lr —r, l )h&, (r, ),
P

where p& is the number density of the P-species atoms.
Equations (4) and (5) were originally derived" by
infinite summation of the cluster-expansion diagrams; the
formulation based on the density-functional theory gives
an alternative derivation of those equations.

The HNC equation' ' is obtained by neglecting the
bridge-diagram contribution B„(r)in Eq. (4):

g (r)=exp[ —P„,(r)/k~T+h„(r) —c„,(r)] .

The linearization of the HNC equation (6) with respect to
the nodal functions

ay„,(r)Plp= —
6 gx„x pf drr "' g„(r),

pv
(10)

p, /k~T= gx„ fdrh„(r)y„(r)
2

—+f dr c„,(r)

where X, p, and x„denote the total number of atoms, the
total number density, and the concentration of atoms of
species p, respectively. The HNC scheme has a unique
feature in that the excess chemical potential and hence
the excess Helmholtz free energy can be calculated
directly from the correlation functions

y„,(r) =h„(r)—c„,(r)
results in the PY equation, '

g (r)=exp[ —
P (r)/k~T][1+) (r)] .

(7) F/N = g x p P/p .— (12)

Here c„ is a regular part of the direct correlation func-
tions c„defined as

The HNC or PY equation and the Ornstein-Zernike rela-
tion constitute a closed set of equations for the correla-
tion functions.

It is widely known ' that for hard spheres the solu-
tions of the HNC equation are less accurate than the PY
results; the higher-order terms in y„(r) are fortuitously
canceled out by the bridge-diagram contributions. On
the other hand, for systems with Coulomb interactions,
the HNC theory is much superior to the PY theory.
Recently the interrelationship among the HNC approxi-
mation, the convolution approximation for the correla-
tion functions, and the charge neutrality conditions has
been elucidated theoretically the HNC approximation
takes accurate account of the long-ranged nature of the
Coulomb interaction.

Analytic solutions to the PY equation are available for
hard-sphere systems. ' In contrast, the HNC equa-
tion must be solved numerically. To handle the numeri-
cal instability caused by the attractive part of the poten-
tial between Ge and Se atoms, we utilize the efTicient

Newton-Raphson technique according to Gillan's
prescription; formal generalization of his method to
multicomponent systems was carried out by Enciso.

The key idea is to decompose the correlation functions
into the coarse-grained contributions and the remaining
into fine contributions. The coarse-grained contributions,
spanned by a small number of basis functions, are deter-
mined by the Newton-Raphson method, while the fine

contributions, which are expected to have a small
inhuence on the convergence, are calculated by a simple
iterative method. The advantage of this method lies not
only in its rapid convergence but also in its insensitivity
to initial conditions. In addition, the long-range prob-
lem posed by the Coulomb interaction was solved with
Ng's method.

We can express the excess internal energy and pressure
in terms of the correlation functions using the standard
thermodynamic relations:

U/N =
—,
' g x„x p f dr P„,(r)g„(r),

Zp Z
c„,(r)=c (r)+

V~BT
(13)

IV. RESULTS AND DISCUSSION

For the purpose of the numerical computations, the
range of r is divided into a set of X equal mesh points
r, = (i —1 )b, r ( i = 1 —N ). Then the functions y„,( r ), etc. ,
are represented by their values y„(i)=) „(r, ), etc. , on
these positions. The number X of mesh points and the in-
crement Ar taken in the present calculations are %=1024
and br =0.05a with a =(3/4rrp)'~ . The Fourier trans-
formations were calculated with a fast Fourier transform
(FFT) algorithm; the interval hq of the wave number is
related to Ar through

(14)

To obtain converged solutions to the HNC equation,
we were compelled to start at a very high temperature
(e.g., T= 10000 K) with a given density (p= 3. 114X 10
cm for the liquids or @=3.443X10 cm for the
glasses). Then we reduced the temperature step by step6

with the density kept constant; the solution is sensitive to
the density change. At each new step in this procedure
we used as input the nodal functions obtained at the pre-
vious stage. Finally, we reached T=300 K in model (c)
with the effective potential, Eq. (1), and T=1071 K in
model (b) with the charged-hard-sphere potential, Eq. (2).

The partial static structure factors S„(q) are calculat-
ed from the Fourier transforms of the corresponding
pair-distribution functions through

The density-density structure factor S (q) and the
charge-charge structure factor Szz(q) are then obtained
by taking appropriate linear combinations of S„(q):

S (q)=6„,+4~(p~ )' f dr r [g„,(r) 1]—
0 qr
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S (q)= g(x„x,)' S„(q), (16)

practically reduces to S (q).

A. Short-range order, medium-range order,
and charge-charge correlations

In Fig. 2 we compare the partial pair-distribution func-
tions g„,(r) of the three models in the molten state at

p =3.114X 10 cm and T= 1071 K, which is just
above the melting point of GeSe2, T=1015+2 K. The
coordination numbers associated with g„(r) are also
marked in Fig. 2. The coordination number N„(R) of
the vth species around an atom of p species is obtained
by integrating the corresponding partial pair-distribution
function g„(r) as

N„„(R)=4vrp f dr r g„,(r) . (19)

The distance R defines the first coordination shell, which
was chosen to coincide with the first minimum in g„,(r).

Figure 2 shows that all the three models have the same
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FIG. 2. Partial pair-distribution functions g„(r) for the
three models (a), (b), and (c) for molten GeSe~ ( T= 1071 K and

p =3.114X 10 cm '). The coordination numbers are marked
above the arrows, which are at the minima after the first peaks.

Szz(q)= gZ Z (x x )' S,(q), (17)
1

IIIV

where (Z ) =g„x„Z„.Since Ge atoms have a coherent
scattering length (b&, =0.819X10 ' cm) that is very
close to that of Se atoms (bs, =0.797X10 ' cm), the
structure factor measured by the neutron diffraction ex-
periment,

g b b (x„x„)' [S„,(q) —6„,+(x„x,)'~ ]
S„(q)= "

gx„b„
P

(18)

bond lengths d„ for Ge-Se and Se-Se pairs, which are
defined from the first peak positions in g„,(r):
dz, s, =2.35 A and ds, s, =3.75 A. In contrast, the Ge-
Ge mean separation is remarkably different between the
uncharged hard spheres, model (a), and charged hard
spheres, model (b). The Ge atoms are well separated
from each other in models (b) and (c), while g&, o, (r) has
a main peak at the Ge-Ge contact distance 2o G, in model
(a).

Because the spheres are uncharged in model (a), small-
er spheres can be in any of the voids created by the pack-
ing of larger spheres. This leads to the following se-
quence of distances: due-re dGe-se +dse-se Also the
coordination of Ge-Ge is very low and there are hardly
any shell structures. It looks like a small number of Ge
distributed randomly over a large number of voids. The
Ge-Ge coordination is difficult to define because of the
shallowness of the minimum after the main peak, which
occurs at 2o.&,. The Ge-Se coordination is nearly 6 and
the Se-Se coordination is 12, indicating the random close
packing of Se atoms.

In model (b) the Ge-Se coordination is close to 4 and
sharply defined when compared to the corresponding
coordination in model (a). The Se-Se bond length is 2o s,
and quite sharply defined with the coordination number
of 10. What is important to notice is that the Ge-Ge dis-
tribution function does not start at 2rro„as in model (a),
but at a distance of about 2o.s, and has a first peak at a
separation larger than the Se-Se bond length. This is
what we call conditional packing. The Coulomb attrac-
tion between Ge and Se atoms makes the Ge-Se distance
well defined along with the tetrahedral coordination. The
Se atoms with the larger steric size occupy most of the
volume in the system so that the Se-Se distribution func-
tion has a well-defined main peak. The Ge-Ge separation
is determined as a consequence of the Ge-Se and Se-Se
packing, resulting in dz, z, larger than d s, s, .

Model (c), based on the effective potential Eq. (1), has
essentially the same effects as the steric repulsion and the
Coulomb interaction in model (b). However, since it has
a more realistic steric repulsion (soft sphere) and includes
attractive effects due to electronic polarizability, there are
differences in the detailed structure of the correlation
functions between these models. The manifestation of
the realistic interaction is clear in the broader principal
peak of gG, s, (r) along with the coordination slightly
larger than 4. In addition, the Se-Se correlation has a
close-packed structure with the coordination of 12. The
Ge-Ge coordination is about 6. It might be mentioned
here that it is the Ge-Ge correlation which is most
strongly affected by the inclusion of three-body interac-
tions. "

We conclude the discussion of the partial pair-
distribution functions and coordination numbers with the
following observation: even though the Ge-Se and Se-Se
bond lengths are about 2.35 and 3.75 A, respectively, in
all the three models (a), (b), and (c), and these two dis-
tances are consistent with the formation of Ge(Se, &z)4

tetrahedra since 3.75/2. 35 =(8/3)'~, Ge(Se&&2)& tetrahe-
dra are formed only in charged models (b) and (c) and not
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FIG. 3. Partial static structure factors S„(q) associated with

g„(r) in Fig. 2. The arrows mark the FSDP.

Ge-Ge mean separation, which is much smaller in model
(a) than in models (b) and (c).

Figure 3 shows the results for the partial structure fac-
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FIG. 9. Variation of the height of the first three peaks in

S (q) as a function of density at fixed temperatures, based on
model (c). Each peak height is normalized with the value at the
liquid density (3.114)& 10 cm ).
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FIG. 10. Variation of height of the first three peaks in S~ (q)
as a function of temperature at fixed densities, based on model
(c).

B. Anomalous temperature dependence of the FSDP

The MD calculations reveal that the anomalous de-
crease in the height of the FSDP on cooling is due to
frustration in the packing of the tetrahedra enhanced by
the increased density '" the density also varies as a
function of temperature in the experimental situation,
namely, under the condition of constant pressure.

To understand the density effect, we calculated the
height of the first three peaks in S (q) as a function of
density at fixed temperatures and the results are shown in
Fig. 9; the effective potential, as expressed in Eq. (1), was
used in these calculations. The density dependence of
each peak shows a different trend: the height of the
FSDP decreases, the second peak increases, and the third
peak shows no significant change, as the density is in-
creased. The unusual behavior of the FSDP thus indi-
cates that medium-range order is reduced with the in-
creased density. This result is consistent with the recent
x-ray-diffraction experiment" on an analogous system,
namely, amorphous CxeS2: under a hydrostatic pressure
(the density is accordingly increased), the height of the
FSDP in a-CxeSz is depressed. On the other hand, Fig. 10
shows that the height of all the peaks decrease with in-
creasing temperature, as expected, at constant density.

In the HNC calculation, the depression of the FSDP
with the increased density is overcome by the increase re-
sulting from cooling alone. As a result, the FSDP does
not exhibit the anomalous behavior observed experimen-

tally. In the MD calculations, ' '" since the density-
induced change is larger than the associated change due
to temperature variation, the FSDP indeed shows the
anomalous behavior in agreement with the experiments.
This subtle cancellation of the density and temperature
effects is not correctly predicted by the HNC approxima-
tion. It is mentioned once again, however, that the
separate behavior of the FSDP as a function of density or
temperature is described in a qualitatively correct way
within the HNC approximation. It is hoped that in-
clusion of bridge-diagram corrections to the HNC equa-
tion (6) will improve these shortcomings.

C. Thermal-expansion coefficients

The shifts of the peak positions in S (q) as a function
of temperature and density provide a different characteri-
zation of the medium-range order. Table I lists the posi-
tions of the first three peaks in S (q) calculated with the
effective potential (1) for five different densities and tem-
peratures. Clearly, the density change at constant tem-
perature affects the FSDP much more than the peaks at
higher values of q. The shift of the peak positions as a
function of density at constant temperature, defined by
6 ln, o(q) ib, 1n,o(p), is calculated to be 0.55 (0.55), 0.22
(0.20), and 0.15 ( 0.13) at T=1071 K (623 K) for the first,
second, and third peaks, respectively. In addition, the
position of the FSDP shifts toward a lower value of q as
the temperature is decreased at constant density, while

q, (A )

TABLE I. Position of the first three peaks in the density-density structure factor S~ (q) as a function
of temperature and density, based on Inodel (c) with the effective potential Eq. (1).

p (10" cm ') q, (A ')
q2 (A )

1071
1071
623
623
300

3.114
3.443
3.114
3.443
3.443

1.324
1.399
1.311
1.386
1.382

1.988
2.032
1.995
2.035
2.046

3.554
3.609
3.576
3.624
3.631
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the other peaks show the opposite behavior.
This distinctive feature of the FSDP may be reAected

in the thermal-expansion coe%cients a, which are deter-
mined from each peak shift as
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,(q)

Experimentally the coemcients 0.'were measured for vit-
reous AszSe3 by Busse and Nagel. ' Their results are
a=(1.2+0.2) X 10 K ' and (5.9+1.0) X 10 K ' fo
the first and the second peaks of the static structure fac-
tor, respectively. This difference of a factor of 2 is due to
different (Bq/Bp)T and it indicates that there exists two
characteristic length scales distinguishing the medium-
range correlations from the short-range correlations.

To evaluate u, we use finite differences to calculate Eq.
(21) from the results for the liquid ( T = 1071 K and
p=3. 114X10 cm ) and the glassy (T=300 K and

p = 3.443 X 10 cm ) states; these two states have al-
most the same pressure (see Table II). This calculation
gives u=6X10 K ' for the first peak, 4X10 K
for the second peak, and 3 X 10 K ' for the third peak.
These values agree reasonably with the experimental
values, considering that the systems are different and the
present calculation is crude. This result reveals another
feature of the FSDP in quantitative agreement with ex-
perimental observations.

D. Location of the FSDP

As noted before, there still remains a discrepancy be-
tween the experimental and our calculated values for the
position of the FSDP (1 A ' versus 1.4 A ). The loca-
tion of the FSDP in a-GeSe2 has also been related to the
interlayer spacing in crystalline GeSe2. We investigated
to what extent the parameters of the charged-hard-sphere
potential Eq. (2) influence the position of the FSDP. The
decrease in the Se-Se contact distance from 3.75 to 3.4 A,
in fact, improves significantly the overall agreement with
the experimental results, as can be seen in Fig. 11. How-
ever, the position of the FSDP is quite insensitive to this
change in the Se-Se separation. Clearly, the discrepancy
in the position of the FSDP is due to effects of three-body
covalent interactions among atoms, which can be includ-
ed in the present framework. " The inclusion of such

I
I

I

0
q(A ')

0
12

FIG. 11. Effect of varying o.s, in model (b) in the HNC ap-
proximation. Solid and dashed curves refer to S, (q) and
Szz (q), respectively, calculated at T= 1071 K and
p=3. 114X10 cm, corresponding to Fig. 4(b). The Se-Se
contact distance 2o.s, has been changed from 3.75 to 3.4 A.

E. Thermodynamic quantities

Table II compares the HNC results for thermodynamic
quantities in the realistic model (c) with the correspond-
ing MD results. ' The HNC values for the internal ener-

gy are in good agreement with those of the MD calcula-
tion. On the other hand, the HNC values of the pressure
are considerably different from the MD results. There
exists a noticeable difference between these two calcula-
tions for the pressure. This is understandable because the

forces actually modifies the connectivity between neigh-
boring tetrahedra which, in turn, shifts the position of
the FSDP to 1 A ', in excellent agreement with
diffraction measurements on amorphous and molten
GeSe2." Fuoss and Fisher-Colbrie in their synchrotron
x-ray studies find no evidence of layering correlations in
a-GeSe2. Neutron experiments find FSDP in molten

0

GeSe2 at the same wave vector (1 A ') as in a-GeSez. '

Furthermore, in the molten and a-GeSe2 the height of the
FSDP is nearly the same. Synchrotron x-ray studies and
neutron-diffraction experiments together give strong sup-
port against the layering model. In the context of the vi-
brational density of states, Sen and Thorpe pointed out
a critical role of the ALA bond angle in AX2-type
glasses, which controls the connectivity of the tetrahedral
network.

TABLE II. Excess internal energy U and pressure P calculated with the effective potential Eq. (1).
HNC and MD refers to the values calculated using the hypernetted-chain scheme and the molecular-
dynamics method (Ref. 10), respectively.

T (K) p (10 cm )

HNC
UyW (eV)

MD HNC
P (kbar)

MD

1071
1071
623
623
300

3.114
3.443
3.114
3.443
3.443

—4.09
—4.02
—4.28
—4.23
—4.49

—4.14
—4.07

—4.20
—4.30

39.8
63.7
33.3
52.4
43.3

15.8
34.1

34.2
26.0
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pressure is determined from a delicate balance between
large positive and negative contributions, and thus the er-
ror inherent in the HNC theory is magnified.

V. CONCLUSION

In conclusion, the physical origin of the medium-range
order associated with the FSDP has been elucidated in
terms of atomic potentials. A combination of the
excluded-volume eAect and the local charge neutrality
plays a key role in forming a structured network of
Ge(Seine&)4 tetrahedra. The conditional packing of these
basic units gives rise to the FSDP. The HNC theory re-
vealed that the medium-range order is attenuated by the
increase in the density and this causes the anomalous
temperature dependence of the FSDP. We have exam-
ined thermal expansion through the shifts of the peaks in
the static structure factor and have been able to distin-
guish the medium-range order from short-range correla-

tions. The discrepancy between the HNC and experi-
mental results for the position of the FSDP has been
shown to be due to three-body covalent forces; these
forces modify the correlations responsible for the FSDP,
bringing it in quantitative agreement with experiments. '

The HNC theory works well in describing the thermo-
dynamic and structural properties of molten and vitreous
GeSe2 and thus gives us confidence in applying it to the
study of structural properties and phase relations in the
ternary system Ag/Ge/Se.
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