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Magneto-optical absorption by electrons in the presence of parabolic confinement potentials
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We study theoretically the absorption of long-wavelength perturbation by a many-electron system
with externally imposed parabolic confinement potentials and a uniform magnetic field. It is shown
that the absorption lines are at exactly the same frequencies as if there were only one electron. The
general formulas for the frequencies and line-intensity ratios are found, and explicit analytical ex-

pressions are shown in some examples.

I. INTRODUCTION

There has been considerable recent interest in the
physics of an electron gas under a magnetic field in the
absence or presence of confinement potentials. Examples
that have already been experimentally realized include (i)
a two-dimensional electron gas confined at a heterojunc-
tion, say, between GaAs and Ga& „Al As, where the
motion in the third direction is effectively frozen out' (the
much stronger confinement potential which "freezes" out
the motion in a particular direction is simply assumed to
be so strong that the intersubband transitions associated
with this confinement can be ignored as is assumed
throughout this paper). (ii)quantum wells, where elec-
tronic motion is free in two directions but experiences a
finite confinement potential in the third direction; (iii)
quantum "dots" or "coins" where the electrons
effectively have no degree of freedom in the z direction,
but experience confinement potentials for motions in the
other two; (iv) "fiat" quantum "wires" where again the
z-direction motion has been frozen, while it is free in the,
say, x direction, and subject to a finite confinement poten-
tial in the y direction. More examples are sure to come
in the future.

There are many physical properties of these systems in
which one may be interested. An important example in-
cludes the collective mode frequencies one would observe
by optical absorption. If one takes the somewhat ideal-
ized situation of a pure electron gas with only electron-
electron interaction in the form

U=gu(r, —r ),

where r,- denotes the electron positions, in the absence of
confinement potentials the celebrated Kohn's theorem
tells us that the only observed frequency is the cyclotron
frequency co, = ~e~B Imc with the same effective mass m

that enters in the one-particle dispersion; i.e., the same
frequency as if one has only one electron. This is applic-
able to case (i) above. Recently it has been shown by
Brey, Johnson, and Halperin (BJH) that this reduction
to a single-particle problem holds also for the case of par-
abolic quantum wells [case (ii)]. It is natural to ask
whether this statement is actually more general, i.e.,
given an electron gas with interparticle interaction (1.1),

in an external parabolic confinement potential, but other-
wise of arbitrary unequal strength in the three directions,
and under a magnetic field in an arbitrary direction, do
the optical absorption frequencies always correspond to
that of a single particle in the same external potential and
magnetic field?

Recently Li et a/. pointed out that this is indeed true.
There we have also shown the explicit forms of frequen-
cies and the raising and lowering operators for some par-
ticular cases. It is the purpose of this paper to show the
details of the proof of the statement and moreover give a
systematic procedure of finding the relevant operators
and frequencies, and thus also the ratio of line intensities.

We shall first give a proof of the theorem in its entire
generality. It should be noted that this proof is indepen-
dent of the construction of the raising and lowering
operators. It is simply based on the separation of center-
of-mass motion and the relative coordinates in parabolic
confinement potentials. This proof, however, gives us no
hint as to what the actual observed frequencies are. Thus
we shall also present another argument, though in effect
equivalent to the first one, which has an obvious classical
analog and is "constructive" (in the sense used in
mathematical literature), i.e., it actually instructs us how
to obtain the observed frequencies, the raising and lower-
ing operators (and the "conserved" quantities), and hence
the oscillator strengths and the line intensities of absorp-
tions. This proof incidentally also tells us some useful
properties of the raising and lowering operators. We
shall give the frequency for the general case, and apply
this procedure to the parabolic well [case (ii)], an asym
metric quantum coin [case (iii)], a "cylindrical' quantum
wire (i.e. , free motion along the z direction, but with
equal confinement potentials along the x and y direc-
tions), and a general "quantum droplet" with the magnet-
ic field in an arbitrary direction.

II. THE THEOREM, ITS PROOF,
THE RAISING AND LOWERING OPERATORS

AND THEIR PROPERTIES

Consider an electron gas confined by parabolic poten-
tials with electron-electron interaction given by (1.1).
The Hamiltonian is given by
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[HC. M. H I l
—o (2.8)

++U(r; —rj) .
(i,j)

(2.1)

and a complete set of eigenstates of the Hamiltonian can
be chosen to be the product states

(2.9)

Here i =1,2, . . . , N denotes the electrons and (i,j)
denotes all pairs, r, —= (x, ,y, , z, ), and we have
parametrized the confinement potentials by m„, u, and
~, . m, is the canonical momentum

(2.2)

with A the vector potential characterizing the external
uniform magnetic field B. e &0 the electronic charge.
(We have put Pi= 1.) We shall show the following: Under
a uniform external time-dependent perturbation (e.g., the
optical absorption to a good approximation), the only fre-
quencies one observes are identical to those one would
observe for a single particle in the parabolic potential un-
der the same magnetic field.

We shall erst give the simplest proof. Define the
center of mass and relative coordinates and momentum

eH;= — $m; A, ,
I

(2.10)

where A, characterizes the light waves with A, indepen-
dent of r;. Hl can be rewritten as

eH = — II. A
mc

(2. 1 1)

Thus we have successfully separated the center-of-mass
motion and the relative motion. Notice that our center-
of-mass particle has mass Xm, charge Xe, and is subject
to parabolic potentials X times that of the single particle.
Thus the eigenfrequencies of ~'Pc M ) are identical with
those of a single electron. Under a uniform time-
dependent perturbation, say from a long-wavelength
light, the coupling is given by the perturbation

II' ', . . . , ll' '. Noticing the identity
N

gx, =—N

(gx, ) +—g (x; —xj)
i=1 i~i j +N

X:—Xl —X2,(2)

X")=x, +x, —2x, ,

X' ':—x, +x2+ +x~, —(N —1)x~,

(2.3a)

(2.3b)

(2.4)

and is thus independent of the relative coordinates and
momenta. Operating H, on (2.8) thus only operates on
~%'c M ), and moreover in a way identical to the case as if
one perturbs a single electron in the well with the in-
cident light. Thus one only observes the same frequen-
cies and with the same intensity ratios among lines as if
one had only one electron in the confinement potential
with the same magnetic field. (The overall intensity,
however, in increased. ) This completes the proof.

We now present the second argument showing the sep-
aration of the center-of-mass degree of freedom. We con-
sider the commutator of m; and r; with the Hamiltonian
H in (2.1). It is easy to show that

le
[~,„~, ]= B, , —

and similarly for y, , z;, and m.;, one can rewrite H as

H=HCM +H„l, (2.5)
[~;„x;]= i, — (2.12)

where

2Am 2
(2.6)

and similar equations for the other directions, whereas
operators of diC'erent electrons commute. Notice that the
right-hand sides of (2.12) are constants. We have the
equations

involves the center of mass only and is of a form similar
to the single-electron Hamiltonian. H„l, of a complicat-
ed form, involves the relative coordinates and momenta
only. Notice now due to the uniformity of the external
magnetic fteld, A(r, ) is a linear functional of r, and
hence

i[sr, , H]=— (~, B, vr,,B )—IC
—mco„x; — g U(r; —

r& ),
l

—i[x, , H ]=~,„/m,

(2. 13)

(2.7)

involves R and Vz alone. It is easy to show that the
center-of-mass momentum and position on the one hand
commute with the relative coordinates and rnomenta on
the other, and hence

and similarly for the other directions.
We now transform these equations to the basis

R"' ' ', ll"' ' '. The center-of-mass coordinates
and momenta (2.3) equations are obtained by summing
(2.13) over i Notice that the. gradient terms of U cancel
pairwise. The rest of the terms are linear in the momen-
tum or position coordinates. One gets
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—i[II, H]= (IIXB) —Nmai„X,
PlC

and similarly for the other directions

—i [R, H]=II/(Nm),
(2.14)

which are independent of the relative coordinates. No-
tice that the right-hand sides of (2.14) are linear.

The equations of motion for the relative coordinates,
which will not be shown here, can be found by forming
appropriate linear combinations of (2.13) and easily seen
to be independent of II and R. Thus we have shown the
desired separation. Recall that in the Heisenberg repre-
sentation of quantum mechanics, the left-hand sides of
(2.14) are just the time derivatives. From (2.14) we thus
see that the time derivatives of the center-of-mass coordi-
nates and momenta obey the same equations as a single
electron except the replacements m ~Km, e~Xe. Un-
der the uniform external perturbation H, we have al-
ready seen that [Eq. (2.11)] that only the center-of-mass
motion is affected. This completes the proof.

It should be noticed that (2.13) and (2.14) have a close
classical analog. Equation (2.13) is simply the classical
equations of motion of the ith electron, provided that one
identifies m.; with mv; where v, is the velocity of the ith
electron, and the left-hand sides as mi, and x, . The clas-
sical equations of motion of center of mass is then (2.14)
with the analogous replacements.

Under an external perturbing electric field E(t) the
classical equations of motion are

(Nm )V„= (V X 8) —Nm ro„X+NeE (t),(Ne)
c

X=V
(2.16)

and similarly for the other directions. Here V is the
center-of-mass velocity. Notice that (2.16) does not in-
volve any relative coordinates. It can also be seen easily
that the electric field E(t) drops out of the relative coor-
dinates equations of motion. The above proves our state-
ment in classical mechanics.

The success of the above argument relies on the fact
that the Lorentz force and the restoring forces on the
electrons are both linear [cf. (2.13) and (2.14)] and the
electric field acts on all electrons identically. It is in-
teresting that the statistics of the particles involved plays
no role in the argument.

Equation (2.14) actually instructs us how to obtain the
relevant eigenfrequencies, raising and lowering operators,
and hence the intensities of absorption. Writing any gen-
eral operator as

0=:-( II+A, NR . (2.17)

Then the operations on operators 0 [equivalent to the
time derivative i(d/dt)], defined by —[H, O]=-[O,H],
then forms a Linear map onto the same linear space [see
Eq. (2.14)]. First we shall treat the case with ai, co, and

all nonzero, deferring the other cases to Sec. III
below. In this case it is more convenient to use the
"basis" operators (11„/m, II /m, Il, /m, co NX, co~NY;
and a~ NZ), and with

mv, =—(v, XB)„—mao x;
c

(2.15)

II H H,O=g +gy ——+g, -+X,co„NX
m ~m 'm

+A, co cVY+A.,co,XZ (2.18)

and similarly for the other directions. Notice the electric
field term is independent of i. The center-of-mass equa-
tion of motion is then

the linear map is then described by the matrix [by (2.14);
this matrix multiplies the column vector
(g, g, f„X„X~,X, ) ]

0 LCO COSH ice, sin&sing —iai 0 0

l COq COSH

—ia~, sinO sing i co, sin0 cosiL

0

0

—iso, sin 0 costi

0

0

l COz

0

0

0

0 0 (2.19)

Here (9, iL ) are the angles in spherical coordinates
defining the direction of the magnetic field. Notice that
M is Hermitian, moreover

(2.20)

Thus there exist six real eigenvalues for M, and more-
over if m is an eigenvalue, so is —cu with a complex-

conjugate eigenvector. The eigenvalues are easily found
to satisfy

CO Ci3 (Cc+C7O~x +CO& +CO )

+co [ai, (ai sin 9 cos iL+co sin Osin iL+ai, cos 0)

(2.21)
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Thus all eigenvalues are nonzero (we have assumed all
co„, cu, and co, are nonzero), which we shall denote by
+co

$ 2 3 with co
&

co2 co3 )0. The corresponding eigen-
vectors can be chosen to form a unitary transformation
U, which diagonalizes M

(2.22)

where 0 is the diagonal matrix

Equation (2.28) shows that II is a linear combination of
a —,b +—

, and c —,and thus an electromagnetic wave can
only cause transitions at +co, 23. Equation (2.28) will
also be useful in obtaining the oscillator strengths, as we
shall see below.

The above observations actually provide a lot of useful
properties of the Hamiltonian and the associated raising
and lowering operators, to which we shall now turn. Not-
icing the form (2.6) of the Hamiltonian for the center of
mass, we see that, for any given state

~
4 ),

and U is formed by the eigenvectors

C03

(2.23)

& e~H, ~e ) =
& 11„+~11„e)21'

+ + ~„'&xeixe)+ &0,
2

and thus there must be a state ~G ) which has the lowest
eigenvalue EG. Hc M ~G) =EG~]G) (the uniqueness of
this state will not concern us at this momentj. Since a, b,
and c are lowering operators [see (2.26)].

(3)gk.
~IG)=blG&=c~G&=-0, (2.29)

g(1)
X

(2.24)

where the superscripts identifies the eigenfrequencies (do
not confuse them with the electron labels or relative coor-
dinates labels). The operators a —,b —,and c —,defined
by

m

u+ =—g„"'* + +X,'"*~.ex+

satisfy

[H, a +—
] =+co,a— (2.26)

(a,a, b,b, c,c +)=

(2.27)

with the inverse transformation

with similar equations for b —and c —,are thus then the
raising and lowering operators associated with H. a
and a + are Hermitian conjugate of each other and we
shall write them simply as a and a + when convenient.
Classically the quantities in (2.21) with II/m replaced by
XV satisfy (d/dt)a =+ice,a etc. , and t]he eigenfre-
quencies are identical with those quantum mechanically.

The unitary transformation can also be viewed as a
linear transformation of the operators

for otherwise they would be eigenstate(s) of still lower en-
ergy. Notice now that the commutators among a —,b —,
and c —are c-numbers, since each of them is a linear com-
bination of II and R, which obey commutation analogous
to Eq. (2.12). It is then easy to show that, provided
co ] ) c02 ) co3 thus barring accidental degeneracies,

[a —,b —]=[b —,c —]=0 . (2.30)

For consider [a, b +
] ~

G ). Since [a, b +] is a c-number,

H[a, b +]~G) =[a, b +]H~G) =EG[a, b +]~G) .

On the other hand, using (2.26) and (2.29)

H [a, b +
] ~

G ) =H(ab + &+a ) ~]G )—
=(EG —co, +co~)[a,b +] /G ),

for

[a, a +]=0 if and only if a +~G) =0,

which is possible only if [a, b +]~G) =0. But [a, b +] is
a c number, hence [a, b +]=0. The same proof applies
to [a, c +], [b, c +], [a, c], [a, b], and [b, c]. Taking
the Hermitian conjugates completes the proof of (2.30).
When degeneracies exist, one can always first consider
slightly different parameters co, and ~, so that the de-
generacies are lifted. The operators then satisfy (2.30).
Then one lets the parameters approach the original value,
and (2.30) is still guaranteed: i.e., one can always, for the
case with degeneracies, construct the raising and lowering
operators such that (2.30) is still satisfied.

Notice, however, that [a, a +], [b, b + ], and [c, c +
]

are not zero in general. We have no general proof for
this, but we shall verify in a case by case basis that this is
correct. (See Sec. III.) Notice that

(2.28)

&~ +Gl~ +G
& =&Gl~~ +IG &

=
& G~[a, a +]~G)

= [a,a +
] & G i G ) . (2.31)
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We shall proceed assuming that [a,a + ], [b, b + ], and
[c, c +] are nonzero (and thus positive), i.e., a +6),
b +

~
G ), and c +

~
G ) are eigenstates of H with energies

EG +co i 2 3 respectively.
Now using (2.28), Hc M can be rewritten as

Hc M =X 'm(a + a+b +b+c c)
—1

+ ([a, a +]+[b,b +]+[c,c +]) . (2.32)
2

Operating this on
~
6 ), we thus get

—1

EG=+ ([a, a +]+[b, b +]+[c,c +]),(2.33)
2

and operating on a +
~
G ) yields, using (2.29) and (2.30),

Ha +~G) =(EG+X 'm[a, a ])a +~G),

and hence

Now we come to oscillator strength associated with the
absorption into a particular collective mode co, 23. We
shall be interested in the case where the initial state is

~
6 ) (for the other cases we simply need the suitable mul-

tiplication factors involving the numbers of quanta that
are already present, since we have already shown the
equivalence to harmonic oscillators). Consider a relevant
normalized excited state ~%', ) —=X, 'a +6). Equation
(2.31) shows that X, = [a a ]' . The oscillator strength
of light absorption is given by"

where 3
&

is the unit vector along the perturbing vector
potential A)(t):—A)e '"'. Using the commutation rela-
tions obtained and (2.28),

f, = (g(,')A)„+x+-+y+x+-+z)[a, a +]', (2.36)
CO(

X 'm [a, a +
] =cia(,

and similarly for b and c. Thus

(2.34)
where the commutator has already been evaluated in
(2.34). The coefficients g k have to satisfy

H, =(n)+ —,')co, +(n2+ —,') to2+(n3+ —,')co3, (2.35)

with

n) =a +a/[a, a +],
etc. n) 2 3 have integer eigenvalues. Equations (2.35) and
(2.30) thus show us that the eigenstates of the center-of-
mass motion can be characterized by quantum numbers
similar to those of three uncoupled harmonic oscillators,
despite the presence of a magnetic field. (This is in accor-
dance with correspondence principle and the fact that
co) 23 are also the classical frequencies of motion. ) Spe-
cial cases of this statement (for a single particle) has been
made before. ' Crucial in the above demonstration is
the fact that Hc M is quadratic in coordinates and mo-
menta; the external magnetic field, being uniform, pro-
vides a vector potential which is linear in position.

~g"'~'+ . + X, ,'"~'+ =1

a =(")II + +A.("NX+
X X X (2.37)

with the overall magnitude of the coe%cients not fixed.
The relations between these are simply

a =(~mg'"~ + + ~A, '"/co
~

+ . )
' a,

and hence (2.36) reads

(2.38)

so that U is unitary.
In actual calculation it is often more convenient to use

operators of the form (2.17) with the coefficients "unnor-
malized, " i.e.,

+ ]1/2 (2.39)

The complicated denominator can be calculated direct-
ly or by calculating [a,a+]:

g(1)e ~ g(1) ~ ((2)e
a+ a++ b+. . .

[a, a +
] [a, a +

] [b, b +
]

(2.42)

=[a,a+]/[a, a +]= [a,a+] (2.40)
Ncu]

via (2.34). Thus alternatively

from which one can also directly obtain (2.41). The in-
tensity of light absorption is proportional to co)

~ f, ~

.
In the above it is crucial that cox cc)y and coz are all

nonzero. If one or more of these is (are) zero, we have to
modify the argument. We shall defer the discussion to
Sec. III where explicit examples will be given.

f, =Keg"' A, [a,a+] (2.41)
III. APPLICATIONS

The inversion formula (2.28) can also be rewritten, by
(2.40), as

In this section we shall turn to some applications of the
general theory we developed in the preceding section, as
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well as giving the modifications necessary when zero ei-
genvalue exists.

A. Kohn's theorem

To orient ourselves we consider case (i) mentioned in
the Introduction. In this case there is no confinement po-
tential: m~ =~~ =coz =0. With the field along z, the
equations of motion are

—i[n„H]= rl a,e

B. Parabolic well

In this case co,%0 but co„=co =0. This has been treat-
ed before by BJH, however, our general theorem (with
suitable modifications: see below) gives us some useful in-
formation and moreover puts the work of 8JH within the
same general framework as all the other cases. Thus we
shall treat this case afresh.

We choose B=B(sin8, 0, cos8) as in BJH. The
quantum-mechanical equations of motion are, with
Nz —COp,

—i[n, H]= — n„a,e
mc

—i[II„H ]=0 ,

i[NR—,H]=IIlm .

(3.1)

(3.2)

—i [II„H]= —co, II cos8,
—i [II,H]=co, II cos8 —co, II,sin8,
—i [II„H]=co, II» sin 8—m cooNZ,

—i[NZ, H]=n, lm,

(3.7)

The right-hand side of (3.1) does not involve R. At this
point the classical analogy is useful: (3.1) is simply
Nm(dldt)V=(Ne/c)VXB, and (3.2) is dR/dt =V. The
second equation simply gives us R(t) once we solve V(t)
using the first equation. Moreover, the emotion in the z
direction separates out: V, is a constant. This suggests
that we simply consider the set of operators

H II0=/„+g» (3.3)

instead of (2.3). Equation (3.1) then tells us that the
operation on 0 defined by [O,H] is simply a linear map-
ping on the coefficients (g, g ) with the matrix a truncat-
ed form of (2.19), i.e.,

0 LCOc

and

—i[NX, H]=II lm,
i [NY—, H ]= II» lm .

(3.8)

II„rr, rr,0—:g +g +g, '
+X(cooNZ),

m ~m 'm (3.9)

the operation —[H, 0] defines a linear map on the sub-
space spanned by 0 into itself. The map is described by
the Hermitian matrix

It is useful to recall (as in Sec. III A) again the classical
analogy. Anyway the first four equations form a com-
plete set of equations of motion involving H, H, II„
and Zonly. If

0 (3.4)
I N cosO 0

where co, = (
~
e

~
B )/mc is the cyclotron frequency.

Our theorem in the preceding section can then be
adopted here, though most of the results are obvious by
inspection. The eigenvalues are m=+m„and the eigen-
vectors give us the raising and lowering operators

M, ])
=

l chic cosO

0

0

ice, sinO

0

—i~, sinO 0

0

(3.10)

a —+=0 +iH (3.5)

which were first obtained by Kohn.
Classically one has i (d /dt )( V —+i V» ) =+co, ( V

+iV»). One then integrates dR/dt=V to obtain R(t).
The analogous quantum-mechanical procedure gives us
two invariants

coo+ co, +[coo+co, —2cooco, cos(28) ]
'

(3.1 1)

multiplying the column matrix formed by the coefFicients
(g'„,g, g„X,). The eigenvalues are co=+co& 2 with

K, = II„/m +co,XY

Ã2 =II»/m —co,NX,

satisfying

[IC, ~, H]=0 .

(3.6)

and are nonzero. Our general theorem can thus be car-
ried over except the trivial changes in the dimension of
the linear map. We introduce the angle a (for a more in-

tuitive understanding of a, see the Appendix), which
satisfies

67pcos O coc sin OcosO cos~ sin~
2 2 2

—co sinOcosO co +co sin O
—sinew cosa

K&+iK2 are in fact the "level" operators connecting de-

generate states discussed in Ref. 12. K, 2 are related to
the position of the center of the cyclotron motion (of the
center of mass).

cos(x smcx
—sino.' cosa

L

0 Q)p
(3.12)
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This a must exist since the first matrix in (3.12) is real
and symmetric and must be diagonalizable by a rotation.
The eigenvalues of this matrix are co, and co&. (This is of
course not an accident: see the Appendix. ) The ("un-
renormalized") raising and lowering operators can be ob-
tained easily by finding the eigenvectors of M„,&~,

CO

a —= +i(II„cosa—II,sina)+ cos(a —8)II
CO(

Nm coo
2

sina Z,

which can also be obtained by simple algebra. The line
intensities of absorption under long-wavelength light can
be obtained by (3.13) and (2.41), or using (3.15) and (3.14).
For example, if the incident light is polarized along x, ab-
sorption is at co2 and co, (and only these), with an intensity
ratio of tan a. If the incident light is polarized along y,
the intensity ratio is [with the help of (3.12)]
(co2/co, )tan a.

Finally, we can "integrate" (3.8) (recalling the classical
analogy). We obtain two invariants of motion

CO

b =+—i(II,cosa+ II sina)+ sin(a —9)II
C02

1Vm mo
2

+ coso: Z

(3.13) H-
+Nco, YcosO,

H
K2 = —Neo, X cosO+NZco, sinO,

(3.16)

The form of these operators are chosen to allow an
easy comparison with the work of BJH, the details of
which will be relegated to the Appendix. Our general
theorem (2.30) implies that [a —,b —]=0, which can be
also directly verified. On the other hand, we can directly
calculate

which, by the classical analogy, can be seen to be related
to the translational symmetry along x and y. It can be
easily verified that

[a, a +
]=2Am co, ,

[b, b+]=2&mco~ .

[a —,E, 2]=[b—,E, 2]=0,

(3.14)
which can also be proven in a similar way as (2.30).

(3.17)

Moreover, our general theorem (2.28) then guarantees
that II, and XZ are linear combinations of a —and b —.
Equation (2.42) provides us with the inversion formulas.
With the help of (3.12) they are

II =—[cosa(a+ —a )+sina(b+ b)], —

II = [co~cosa(a++a )+co2sina(b++b )],1

(3.15)

Q. Asymmetnc coin

In this case the z direction is frozen out, and we shall
simply drop the degree of freedom associated with the
motion in this direction. All the discussions in Sec. II
carry over except the change in dimensionality.

If co =co „i.e., a symmetric coin, due to the cylindrical
symmetry, it is useful to introduce the operators

II, =—[cosa(b b) —sina(a+——a )], X+ =—X+i Y, H+=H„+i H (3.18)

coocosO2

Q +0—co sin(a —0)1

b++b+co2cos(a —0)

In this case it can be easily seen that the equations of
motion decouple into two sets, involving II+ and X+ on
the one hand, and H and X on the other.

Generally from the linear map we get the raising and
lowering operators

Ha+ = i(co, —co+—)XX+ +g, +i(co, +co+)XX
m

H+
+i(co, +co )XX=+gb i(co, —co—)NX+

m

a =(a+)t, b =(b+) (3.19)
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where

Ra=
2 2

CO~ Cgy

+ +COck)+2

CO~ Cgy
2 2

CO +CO

(3.20)

2 6) Q7 Q)
CO~ +CO

and

2
a1 +a)~+a1, +[~,+2', (co„+co )+(co2 —co2)2]'~2

2 =CO
c x y X y

(3.21)

satisfying

4 2( 2+ 2+ 2)+ 2 2 () (3.21a)

co ( I+g(, ) (2'+ —co, ) co (1—g„) (2'+ —co, )

co+ (1+g )2 (2' +co, ) ci)+ (1 —g )2 (2' +co, )

which are the eigenfrequencies. The finite difference be-
tween co and co couples the otherwise decoupled set.

0 as co+ ~coy In this limit one can check that our
results reduce to that of Li et al. , and co+ reduce to
[(co, /2) +coo]'~ +co, /2. In general, at 8 =0 there are
resonances at u and co . The difference between the fre-
quencies increases with increasing field, and as
co, ))max(co, ) one mode approaches co, while the other
branch approaches to zero as 1/8.

It can be checked easily that [a —,b+—)=0 in accor-
dance with our general theorem. A straightforward
direct calculation yields

(g(1)+ .g(1) )[ a +
]
—1/2

2=N' 2e/m —(2'~ —co, )

—1/2

f =Ne(g' '+i( ')[b b+]
(3.24)

For a circular symmetric coin these ratios are simply
co /~+ irrespective of the direction of polarization.
Now consider incident circular polarized light. For
E =+iE„(H, ~ II+),

[a, a ]= (2'+ —co, ),2S

[b, b+]= (2' +co, ) .
2%

(3.22)
2=N' 2e/mg(, (2co +a) )

—1/2

Our general theorem again guarantees that H„, and
II, and hence II+, can be expressed entirely in terms of
a —and b —,and hence the external long-wavelength per-
turbation can only cause transitions at +~, 2. Equation
(2.42) allows us to express II„~ in terms of a —and b-
easily. However, we shall not show them here. We
directly use (2.41) to obtain the relevant ratios of line in-
tensities.

First we recall that, in (2.41), g") is the coefficient of
a (not a+) in terms of Il„. From (3.19)

There is only absorption into m+ if the dot is sym-
metric. Generally the ratio of intensity of absorption into
~2=—co to that of cu, =—co+ is given by

Cg) 26) + 67

67+ 2CO +M

which, to lowest order in ~„—~, is given by

(
2 2)2
x y

4'+ COC

(1+g, ),1 1

(1+g, ),2=1 (3.23)

Similarly, for circularly polarized light where E = —iE„
(H1 ~ II ), if the dot is symmetric, absorption is entirely
at u . Taking asymmetry into account produces absorp-
tion into co+ also with an intensity ratio to that at ~
given by g, (co+/co )(2' +~, )/(2'+ —co, ), which to
lowest order in the difference m„—co is

(coax co& ) /4co co~ .

D. Cylindrical wire

Thus for linearly polarized light along x(y ) the intensity
ratios are given by

In the last two cases we can carry over our general dis-
cussion (of Sec. II B) provided we restrict ourselves to an
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appropriate subspace. This, however, is not true when
there are zero eigenvalues. The original Kohn's theorem
in the absence of any confinement potentials, if we in-
clude II, in (3.2), actually consititutes an example. How-
ever, that case is so simple that one may as well work out
any desired relations by simple algebra. As a nontrivial
example we consider a cylindrical wire, i.e., co =coy cop

and co, =0. Without loss of generality we take
B=B(sinO, O, cosO).

The equations of motion are as in (2.11). Our previous

experience with the parabolic well suggests that we con-
sider the set of operators.

II. II, n,0=g +gy +g, +X, (co(@VX)+X~(co~Y) .

(3.25)

Then the operation —[H, 0] is a linear map acting on
(g„g~,g„X„k~). The map is given by the Hermitian
matrix

~wire

0

leo cosO

0

0

l 63ccosO

0

ice, sinO

0

l COy

0
—ice, sinO

0

0

0

0

0

0

0

0

l COy

0

0

0

(3.26)

The eigenvalues are +co, 2 and zero, where

2 4
c c

Q) i 2:co+ =ct)p+ + +Q)p6)ccos 02+-4
1/2

(3.27)

The eigenvector with zero eigenvalue corresponds to
the operator

II
+i ( co, cosO+ co+ )(NX iI' )—+ga

ffl

+i (co,cosO+ co )(XX —iI')
fPl

II+
a = i (co, cosO —co+ )(NX+ —+iI')

(3.31)

with

H. —XYco,sinO, (3.28) +
+gb

Pl
—i(~,cosO —co )(XX+ +iI')

[I, H]=0, (3.29)
a and b can be obtained by taking the Hermitian con-
jugate. Here, analogous to (3.20),

and is related to the translational symmetry along the
wire. It is simplest to proceed by eliminating the vari-
ables H, in (3.25) by making use of the invariant (3.28)
(c.f. Appendix), reducing the dimensionality of the linear
map by 1. After some algebra, it can be seen that the
problem reduces to the asymmetric dot of Sec. III C pro-
vided we make the following identifications:

ga=

co s1n 0

coc sin 0
2 co++coccos%)+ cop+

2

co, sin 0

~2 sln20
2 co coc cosOQ) — 6)0+

2

(3.32)

2 2~x ~p

~co +N sin 0

coc ~Q)ccOSO,

N Y~XY' =NY+ I',
(3.30)

Our general theorem on commutators is still applicable
for [a —,b —], [a, I ], and [b —,I]. To verify the latter, it
is useful to notice

[H,I]=0

and thus

where

Ice, sinOI'=—
e)p+co, sin 0

[a+, I]=[b+,I]=0 .

Analogous to (3.22),

+ 2[a, a+]= (2'+ —co, cosO),

(3.33)

One can check that one indeed obtains Eq. (3.27) for
the frequencies. The eigenvectors with finite eigenvalues
corresponding to the raising and lowering operators (un-
renormalized) are analogous to (3.19),

[b, b+]= 2 (2' +co,cosO) .
(3.34)

lt can also be checked easily that indeed [a —,b ]=0.
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With these commutators, the intensities of light absorp-
tion can be obtained via formulas as in Sec. II. For ex-
ample, if the incident light is circularly polarized with
electric vector in the x —y plane, then the answer is thus
completely analogous to Sec. III C except the proper re-
placements (3.30). The collective modes can also be ex-
cited by light polarized along the z direction. Applying
(2.41) shows that the intensity of co to that of co+ is
given by

2
co — (co&cosO+co —)+gb(oi cosO co ) 2'+ co cosO

co+ (co,cosO —
co+ )+g, (co,cosO+co+) 2o~ +co,cosO

'

It can be easily checked that, if 0=0, then the results
reduce to those of a symmetric dot ( with extra free
motion along the z axis). The intensity of absorption of
polarized light along z vanishes as sin 0 for both modes
[see (3.31) and (3.30)] as 8~0.

K. Quantum "droplet"

In this case we have confinement potentials in all three
directions. The general frequencies of the modes have al-
ready been given in Eq. (2.21). Finding the explicit ex-
pressions for ~, 2 3 and their optical oscillator strengths
are algebraically extremely tedious and the results are not
too illuminating, and will not be attempted here. We
shall merely content ourselves with some comments. (i)
If the magnetic field is along one of the principal axes x,
y, or z, then the motion along the field is decoupled from
the others. One simply obtains an oscillator along B and
a quantum coin, in general asymmetric, where the results
of Sec. III C applies. (ii) In general there are three
modes. At B~0 they are co, co, and cu, . At high fields
[co, ))max(cu„, co, co, ) ] an examination of Eq. (2.21)
shows that one mode approaches m„ the second ap-
proaches a constant, whereas the third approaches zero
with co3~ 1/B. The first one is intuitively obvious. The
last one semiclassically corresponds to a slow "EXB"
drift near the edge of the droplet. (iii) The line intensities
can be obtained numerically with the help of (2.36) and
(2.34).

IV. CONCLUSION

In this conclusion section we compare our results with
existing theoretical and experimental works.

Experimentally far-infrared absorption measurements
have confirmed the Kohn's theorem predictions in the
case of parabolic quantum wells [case (ii)], as have al-
ready been discussed in the literature. ' For circular
symmetric quantum "coins" [case (iii)], Refs. 3(a) and 3(c)
have confirmed Kohn's theorem and have shown spectral
weights consistent with those predicted in Sec. III. The
other experiments in Ref. 3 seem to have nonparabolic
confinements, which exhibit themselves as having more
than two resonances and/or absorption frequencies
dependent on the number of electrons present. (See Ref.

7 for a more detailed discussion. )

These are various theoretical efforts in studying
plasmons or magnetoplasmons in the presence or absence
of parabolic confinement potentials. Approximations in-
variably have to be made at some stage in a many-body
calculation. However, it is clear that (from the present
investigation) a result consistent with Kohn's theorem
will be guaranteed so long as the center-of-mass equation
of motion is preserved. Classical hydrodynamics has
been used, though only for some special cases of parabol-
ic confinement potentials (or, equivalently, with proper
interpretations, a uniform positively charged back-
ground) to study magnetoplasmons. It is gratifying that,
at least for the case of a spherical three-dimensional

droplet (co„=co =co, =coo) and thus also of a symmetric
coin, the classical hydrodynamics' does give results in
agreement with the present investigation.

Quantum mechanically, there are two major types of
efforts in calculating the relevant frequencies of optical
absorption microscopically. Brey et al. ' recently have
demonstrated explicitly in the local-density approxima-
tion that Kohn's theorem is obeyed, at least in their case
of a parabolic quantum well in the absence of the magnet-
ic field. There are also various efforts using the standard
(diagrammatic) techniques of many-body theory. In or-
der that the equations of motion of the center of mass be
preserved in the approximate calculation, it is obvious
from a generalization of the work by Kadanoff and
Baym' that one must use a "conserving approximation. "
In fact, for the case of a two-dimensional electron gas and
in the absence of confinement potentials along the x-y
plane [case (i)], this point has been demonstrated explicit-
ly (in the strong-field limit) by Kallin and Halperin' in
their (conserving) self-consistent Hartree and Hartree-
Fock calculations. ' In the presence of confinement po-
tentials, the situation is less clear in the literature. Refer-
ence 18, for example, has calculated (in the absence of a
magnetic field and effectively for the weak interaction or
large subband separation limit) the intersubband collec-
tive excitation in the case of a "liat wire" [case (iv) of the
Introduction], where states of subbands higher than the
first are unoccupied. Though explicitly for a square-well
confinement potential, this work would give a result
violating the generalized Kohn theorem in the parabolic
case. This work uses the response function as in Fig. 1,
but with the full Green's function replaced by the bare
ones. However, the response function corresponding to
the self-consistent Hartree approximation should involve
the full Green's function with the self-energy as in Fig. 2.
(This self-energy vanishes in the uniform case. ) In the
parabolic case it is not difficult to show (in the weak-
interaction limit) that the presence of this self-energy
cancels the "depolarization shift" from the summation of

FIG. 1. Response function in the self-consistent Hartree ap-
proximation. The double lines represent electron Green's func-
tion and the wavy line represents electron-electron interaction.
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—i [Il, H ) = —m co,cos cos ONX+ m co, sinO cosONZ

—m co,K2cosO,
(A 1)—i [II„H]=mco, sinO cosONX —(coo+co, sin O)NZ

+mm2KzssnO .

FIG. 2. Self-energy in the same approximation as in Fig. 1.

These equations have to be solved together with—i [NX, H]=II /m and —i[NZ, H]=II, /m [and then
the y motion can be solved by (3.16)]. These are then two
coupled harmonic oscillators. Introducing the rotation u
about Jp as ln (3.12) one obtains

the series of bubbles ("the vertex correction"), leading to,
at q =0, a resonance at the bare one-particle energy sepa-
ration as required by the generalized Kohn theorem. '

Votes added. After this paper has been submitted, two
papers [P.A. Maksym and T. Chakraborty Phys. Rev.
Lett. 65, 108 (1990); and F. M. Peeters, Phys. Rev. B 42,
1486 (1990)] have appeared in which some of the results
obtained in the present paper are reported.
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APPENDIX

In this appendix we solve the problem of a parabolic
well in a more intuitive way, and compare our results
with BJH. It also allows us to understand how and why
the rotation introduced in Ref. 9 decouples the problem
to two independent harmonic oscillators. The equations
of motion are as in (3.7) and (3.8). It is again advanta-
geous to solve the problem in a way analogous to which
one would do classically. One first obtains the invariants
K& z of (3.16) by inspection. Using Kz to eliminate II in
(3.7) yields

X' cosu
Z' sinu

—sinu X
cosu Z

and similarly for II and II„and co& z are as in (3.11), i.e.,
we obtain two independent harmonic oscillators (oscillat-
ing about positions shifted from the origin). It can be
shown that a defined by (3.12) is the same as in BJH.
The raising and lowering operators are thus a simple gen-
eralization of those known for simple harmonic oscilla-
tors and can be written down as in BJH:

a —=m cu&XX'+i H„'+

b —=m co2XZ'+i H,'+

m co
Kzcos(a —O),

mM,
K2sin(a —O) .

(A4)

Using (A3), (3.12), and (3.16},one can show that these are
just (3.13}. Notice that (3.13) does not involve X, as it
must be [though this may not be obvious from (A4)].
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