
PHYSICAL REVIEW B VOLUME 43, NUMBER 2 15 JANUARY 1991-I

Analysis of guided electron waves in coupled quantum wells
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The propagation of guided electron waves in two coupled quantum wells is analyzed with use of '

coupled-mode equations. The conditions for energy transfer from one well to the other are exam-
ined and expressed in terms of coupling constants and propagation constants. The model developed
in this work allows for the accurate determination of key structure parameters, such as the transfer
length, and remains valid under strong-coupling conditions where the first-order model becomes
inadequate. The analysis presented here should provide a useful basis for the design and evaluation
of mesoscopic devices operating with coupled electron waves.

I. INTRODUCTION

Owing to the recent advances of semiconductor tech-
nologies, it has been possible to reduce the critical dimen-
sions of devices to below the mean free path of the elec-
trons and to increase the mean free path itself (on the or-
der of a micrometer at low temperature) by suppressing
scattering and using a sma11-electron-effective-mass ma-
terial. Particularly, mesoscopic devices in which electrons
can retain phase coherence while traveling through the
active region have been demonstrated experimentally and
have stimulated much theoretical interest in exploiting
the true wave nature of electrons. ' Like light, electron
waves can be guided in quantum-well channels. The
guided electron waves in adjacent channels can be cou-
pled strongly or weakly depending on the thickness
and/or the barrier height of the coupling layer. Such an
electron-wave-coupling function opens up interesting and
potentially important opportunities for device applica-
tions in quantum electronics and optoelectronics. For
instance, a quantum transistor and a quantum-
directiona1-coupler switch have been proposed. The
operation of such devices differs intrinsically from that of
classical transistors. Instead of turning the current on
and off, one modulates the relative phase or the degree of
coupling or the direction of the propagating waves. Very
high switching speeds and transconductance could there-
fore be expected since the modulation involves little (if
any) capacitive charging or current injection. Take the
quantum-field-effect directional coupler proposed in Ref.
5 as an example. By biasing the gate clad on the coupling
region and consequently tuning the coupling barrier
height, one can change the coupling strength between
two channels in close proximity and thereby change the
transfer length (or coupling length) at which a complete
transfer of electron wave from one channel to the other
occurs. Since the physical dimension of the device s ac-
tive region is fixed and the transfer length varies with the
gate voltage, the portion of the electron wave transferred
from the input channel to the output channel can be
modulated by the gate voltage.

It is conceivable that such an entirely diff'erent operat-

ing principle may become the basis for the development
of a new class of transistors —quantum-wave transistors.
Clearly, accurate determination of the transfer length is
crucial to the design and analysis of such devices. Naive-
ly, the approaches developed for optical-wave guiding
could be adopted to calculate electron-wave coupling,
recognizing the similarities between electron waves and
light. Indeed, a recent attempt of calculating the transfer
length based on a first-order model valid for weakly cou-
pled waveguides' was described in Ref. 5. We will show,
however, that under strong-coupling conditions the re-
sults of such calculations deviate significantly fom that
obtained by a more rigorous model presented in this
work.

Similar to most anlaytic coupled-mode models in op-
tics, ' '" the model presented here also only considers the
first two normal modes. This approximation is intro-
duced purely for the sake of simplicity in order to obtain
closed-form equations. However, unlike most analytic
models in optics, no other approximations are made in
our model. Particularly, the coupling is not treated as a
perturbation, and the guide does not have to be weakly
guiding. In this sense it is an exact treatment of
electron-wave coupling, and is applicable to the general
problem of two-coupled waveguides (not necessarily sym-
metric or weakly coupled).

Although in carrying out the analysis one may take ad-
vantage of the similarities between light and electron
waves, it should also be realized that there are some im-
portant differences. Particularly, photons and electrons
have diff'erent dispersion relations rejecting the fact that
the former has a zero mass and the latter has a finite
mass. In the analysis, we will examine some of the conse-
quences of wave coupling resulting from such differences.
Also, light is a vector field while the electron wave is a
scalar field. Typically, by approximations such as weak
guiding, " the vector wave equations in optics are reduced
to scalar equations. The fact that photons are bosons
while electrons are fermions gives rise to an additional
constraint for electron-wave coupling, that is, the transfer
from one guide to the other has to obey the Pauli princi-
ple. In this work, however, we will confine the discussion
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to a single electron system, and do no more than just
mention this difference here.

II. GENERAL FORMULATION OF GUIDED WAVES
IN TWO COUPLED QUANTUM WELLS

A coupled electron waveguide system comprising two
quantum-well channels a and b formed by the
confinement potential V, (x) is shown in Fig. 1. Also
shown in Fig. 1 are the potentials, V, (x) and Vb(x), cor-
responding to the individual uncoupled channel a and
channel b. Not explicitly shown are the Ohmic contacts
to the channels acting as electron reservoirs. In such a
system an electron wave packet initially launched into
one channel can be coupled to the other while propaga-
ting in the z direction. The motion of the electron wave
is governed by the Schrodinger equation:

$ 2, B2 B2 B2+ + + V, (x) g(x,y, z)
Bx By Bz

Further, the electron wave P(x, z) propagating in the z
direction can be expressed as

g(x, z) =P(x)e (2)

where k, denotes the wave vector.
Substituting Eq. (2) into Eq. (1'), we have

d x + V, (x)g(x)= E-
2m

A' k,
P(x )

2m

=E„f(x)

=Eg(x,y, z), (1)

where ij'j(x, y, z) is the electron wave function correspond-
ing to the electron energy E. The electron waves guided
by the quantum wells are assumed to be bounded in the
following discussion. The rotation symmetry in the y-z
plane warrants a simplification in notation. Namely, we
may formally omit the variable y, and rewrite the wave
function as it(x, z) and the Schrodinger equation as

B2 B2+ + V, (x) g(x, z)=EQ(x, z) .x2 Bz2

A k 2 =E —Ex2

Thus the electron wave propagating in the z direction is a
linear combination of the two normal modes:

P(x,z)= A, i', (x)e ' + A2l(2(x)e

where gi(x) and Pz(x) are the eigenfunctions of Eq. (3)
corresponding to the eigenvalues E„& and E 2, respective-
ly, and 3, and A2 are arbitrary constants.

We can also express the electron wave function g(x) of
the coupled system in terms of the electron wave func-
tions, g, (x ) and pb (x ), of the individual uncoupled
quantum-well channels represented by V, (x) and Vb(x)
shown in Fig. 1. 6, (x) and gb(x) satisfy the following
equations:

d itt, (x) fi k,+ V, (x)g, (x)= E — itj, (x)
2m dx 2m

=E„g,(x),
t'kb'

+ Vb(x)gb(x) = E — pb(x)
2m dx 2m

=Exbpb(x) . (6)

Multiplying Eq. (5) by iI'jb(x), Eq. (6) by p, (x), and sub-
tracting one from the other, then integrating the resul-
tant equation along x from —~ to + ~, we have

(E„Eb)f it(x—)P (bx)d x

= f [ V, (x)—V ( b))xg, ( )lx(b( t)dxx
dP drab

dx dx

where E =E —(iii k, /2m) is the eigenenergy in the x
direction which is quantized to a series of separated levels
E j,E„2, . . . , etc. As mentioned in the Introduction, for
simplicity, only the two lowest energy levels E „E 2 will
be considered in the following. In other words, we con-
sider the situation where the initial isolated mode (i.e.,
the input wave packet) launched into one channel excites
the first two normal modes of the coupled system charac-
terized by wave vectors k

&
and k2..

A k,
x1

The last term on the right-hand side of Eq. (7) equals
zero, because g, =0=gb at x =+ oo. Therefore we ob-
tain

E„,—E b=
Ak Akb a

2m 2m

V
=—f ( V, —Vb)g, (x)gb(x)dx

1

+ab +ha

FIG. 1. Potential profile of quantum-well electron
waveguides. where a= I" it, (x)itb(x)dx is the overlap integral of
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the wave functions, and

a,„=f (V, —V&)g, (x)gt( x)dx,

eb = V V X b X dX (10)

Equation (8) defines the relation between the wave vec-
tors, k, and kb, in the z direction of the individual quan-
tum wells a and b.

Similarly, we can obtain the following two equations:

(E E„,—)f g(x)g, (x)dx

= f [ V, (x)—V, (x)]g(x)g, (x)dx, (1 1)

E&(E )

E&(E )

(14a)

(14b)

t//(x) = A, q, (x)+ AI, l/)g(x), (15)

where A, and Ab are coeScients to be determined. The
normalization of the wave function f l/t(x)g(x)dx = 1

gives

As before, if we neglect the higher modes (i,j ) 1),
namely, assume that only the lowest energy level in each
individual quantum level is occupied, we can simplify Eq.
(13) to

(E E„)—f g(x)l(t~(x)dx

X Vb X X b X dX

2+ Ab2+2A

(12) Substituting Eq. (15) into Eqs. (11)and (12), we have

(16)

The electron wave function g(x) of the coupled system
can then be expressed as a linear combination of the
eigenfunctions of the individual quantum wells:

g(x)=+A„Q„(x)+gAq gq. (x),

(E E„,)( A—, + Aqa) = A, a, + Aqai„,

(E„E,g)( A—„+A, a) = A~a~+ A, a,~,
where

(17)

(18)

where g„(x) and g~~(x) are the eigenfunctions of Eqs. (5)
and (6) corresponding to the eigenenergies (E„,); and

(E„I,)J of the quantum wells a and b For. propagation in
uncoupled individual wells, the total electron energy F.
should be greater than the corresponding quantum levels,
that is,

a, = f ( V, —V, )f, ( x) hatt(x )d x,

a& = f ( V, —V~ )g~(x)P~(x)dx

(19)

(20)

The three unknown parameters A„Ab, E„are thus
determined completely by three equations (16), (17), and
(18), and we obtain two sets of solutions as follows:

A
a&

Ab =.
1

2(l —a )

2(1 —a )

1 — 1—
' 1/2 ' 1/24a'P'(1 —a')

P

1 2P, (1—2a —)+P,
2P2(1'2)'1/2'1/2

b

1 —2P„(1 2a )+PI, —

(21)

for the lower energy E„1of the coupled system:

E„,=E„,+( A, a, + A~ a~, )/( A, + A& a), (22)

and

A
Q2

A b2

1 1+ 1—
2( 1 —a )

4a P, (1—a )

1 —2P, (1 2a )+P, —
1/2 ' 1/2

1/2 1/2
1 4a PI, (1 —a )

1+ 1—
2(1 —a ) 1 2Pq(1 2a )+—Pq—

(23)

for the high energy E 2 of the coupled system:

E„z=E„+( A, a, + A „a„,) /( A, + At, a ),
where

(24)

X 2X dX= A X +Ab (b) X

X [A, g, (x)+ A& P~(x)]dx

=A, A, +Ab Ab
1 2 2 2

P, =(a,&
—aat, )/(a&, —aa, ) =P& ' . (25) +a( A, Aq + A, At, )=0 . (26)

The two eigenfunctions p, (x) and 1/2(x) corresponding to
the two solutions are orthogonal

For a special case where the two quantum wells are
identical, i.e., V, = Vb and P, =Pb =1, we can easily see
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what these two eigenfunctions (normal modes) are,

A, =Ab =[2(I+a)] (27)
L(z)

which means that itji(x) is a symmetric state (even func-
tion) with the lower energy R(0)

0!g +CXbg
x i xa + (28) FIG. 2. Switched directional coupler consisting of two elec-

tron waveguides.

which is smaller than E, due to ab, (o., &0. Therefore,
in the coupled system propagation modes exist even if the
total electron energy E is smaller than E, but greater
than E„i. This is different from the conditions given by
Eq. (14) which applies to uncoupled wells.

For the higher normal mode, we have

represents the wave coupling from well b to well a.
Substituting Eqs. (34) and (35) into Eqs. (36) and (37),

we get

(M. A, +ir bAb A, k, )A, e

A, = —Ab =[2(1—a)] (29) +(M, A, +ir, b Ab —A, k2)A2e ' =0, (38)

which indicates that itj2(x) is an asymmetric state (odd
function) with a higher energy

(30)

ik)z
(Mb Ab +i~b. A. —Ab ki)Aie

ik2z+(Mb Ab +i~b A Ab k2)A2e (39)

The difference between the E„i and E„2 is

2
E„2—E„,= (au, —ab, )&0.

1 o.'
(31)

i(i(x, z)= A i[A, iir, (x)+ Ab Pb(x)]e

+ A2I A, i(i, (x)+ Ab itib(x)]e

=L (z)g, (x)+R (z)gb(x), (33)

where

L(z)=A, A, e ' +A~A, e
I 2

(34)

Therefore the two wave vectors for the two normal
modes in the coupled system are related:

ki k2= — (aa, ab, )&0 . —& 4m

(1 a)fi—
Following a standard approach in optical-wave-guiding

analysis, ' we rewrite the wave P(x, z) in Eq. (4) of the
coupled system in terms of the waves of the uncoupled
wells:

Since the above equations (38) and (39) must be satisfied
for any value of z, the four parentheses must be zero.
The coupling constants are thus determined:

irb =(k, —k2)A, A, /(A„A, —A, Ab ),
orb, =(k, —k2)( —Ab Ab )/(Ab A, —A, Ab ) .

(40)

(41)

It can be seen that the coupling constants are directly
proportional to the difference of the wave vectors of the
two normal modes in the z direction. A difference in
wave vectors of the modes means that as the two modes
propagate, their relative phase reaches alternately be-
tween ~ and 2,~. As a result, there will be alternating oc-
currences of maximum destructive interference in one
well and constructive interference in the other between
the two modes, as if the electron wave packet swings
back and forth between the two wells while propagating
along the wells. The above equations essentially state
that the greater the wave-vector difference, the stronger
the coupling and the sooner the wave packet transfers
from one well to the other.

Together with the coupling constants we also find
propagation constants:

ikl z Ik2zR(z)=Ai Ab e ' +A2Ab e (35) M, =(k~A, Ab —k, A, Ab )/(A„A, —A, Ab ),
which describe the variation of the amplitudes of the
wave components in wells a and b, respectively (Fig. 2).
Furthermore, one can always write two general linear
differential equations for L (z) and R (z):

(42)

Mb =(k, A, Ab —kiA, A„)/(Ab A, —A, Ab ) .

(43)
dI =iM, L +i~,bR,
dZ

dR
— =L.MbR +txb~L .

dZ

From Eqs. (42) and (43), we find two useful relations
I

M, +Mb =k)+k2
(3'7) and

(44)

The coupling constant ~,b stands for the wave-coupling
coeKcient per unit length from well a to well b while
propagating along the z direction. Conversely, scb,

6=Mb —M, =(k, —k2) (45)

The above general analysis establishes the basic rela-
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tions between the normal modes of the coupled well sys-
tem and the isolated modes of the individual wells. It al-
lows us to calculate the coupling constants and propaga-
tion constants from basic physical quantities of the un-
coupled modes. Furthermore, we note that so far only
one approximation has been made for the sake of simpli-
city, that is, the inclusion of the first two modes only.
Also, it can be verified that the above coupled-mode
equations satisfy the basic physical laws such as particle
conservation and particle flux conservation (see the Ap-
pendix). With these results we are now ready to address
the main issue of this work, that is, under what condi-
tions an electron wave can be transferred from one well
to the other while propagating along the channel.

Kb
—K b 2(15=0 (55)

Under the phase-matching condition, that is 6 =0,
M, =Mb =(k, +kz)/2, and we have

P, =Pb =1, (56)

consequently,

parameters which can be tuned by applied field, the
power output from one particular channel (well) can thus
be modulated by an external voltage.

To illustrate the process of energy transfer more clear-
ly, let us consider a simple case in the following. From
Eqs. (40), (41), (45), and (26), we find that two coupling
constants satisfy the relation

III. RESULTS FOR DIRECTIONAL COUPLING Q b QCXb =Ah CXQ (57)

Define L'(z) and R '(z) as

L (z) =L'(z)e

R (z) =R'(z)e

and from Eq. (33), we have

f(x,z) =L'(z)e™f,(x)+R'(z)e™~ltb(x)

and the coupled equations (36) and (37) become

dL' =iK R'e'
ab

(46)

(47)

(48)

(49)

k, —k2
Kab =Kba =K=

Corresponding to this condition is a coupled system of
two identical wells or two wells having equal energy lev-
els. The coupling constant K can be determined by sim-
ply finding the wave vectors of the normal models of the
coupled system.

The state of complete transfer from one channel to the
other, i.e., C» =C22 =0, occurs when

—i2Sz= I KbaL e
dz

(50)

L'(z)
R'(z) (51)'C21y* C22y' RO

With the boundary conditions L'(0)=LO, R'(0)=RO,
the solution of Eqs. (49) and (50) can be expressed as

» 'Y 'C12'Y 0

xz = (2v+ 1)—
2

where v is an integer. Then the smallest length, referred
to as the transfer length, at which the wave completely
switches from one guide to the other, is

L;„=— x=vr/(k, —k~)
7T

where y =e' ' and 2(A, ,
—A2)

(60)

i5
C» =cosfz — sinfz =Cz2,

sinfz
C12 K b

(52)

(53)

sinfz
21 Kba (54)

with f=(o +~,blurb,
)'~ .

The transfer matrix (51) is a very useful result for it de-
scribes the conditions for electron wave transfer from one
well to the other as shown in Fig. 2. The matrix ele-
ments, given in Eqs. (52)—(54) and representing the in-
teraction between the two wells, are functions of the
structure parameters and the distance z in the propaga-
tion direction. For a given structure at a certain dis-
tance, an interesting situation, C» =C22=0, may hap-
pen. This corresponds to a complete energy transfer
from one well to the other. Conversely, C,2 =C2, =0 ~n

dicates that the wave packet has swung back to the well
which it was originally launched into after traveling a dis-
tance. Since the matrix elements depend on the structure

where A, , =2vr/k, and A.&=2m/k2 are the characteristic
wavelengths of the two normal modes, respectively.

From the above equation, it is evident that after propa-
gating a distance equal to L;„or its multiple along the
channel, the phases of the two normal modes of the cou-
pled system will differ by ~. As a consequence, the two
modes will have a constructive interference at L;„in one
well and a destructive interference in the other. As men-
tioned before, subjected to an external bias the coupling
constant K and thus the transfer length L;„can be
modulated. This is the base for the proposed quantum
field-effect directional coupler.

Phenomenologically, all these are similar to optical
directional coupling. " This comes as no surprise, consid-
ering the fact that the equation for optical-wave guiding
has the same form as the Schrodinger equation for
electron-wave guiding, Eq. (3), with the square of the
propagation constant P and the square of the product of
the wave vector and the refractive index kon (x) taking
the places of the eigenvalue E in the former and the po-
tential V(x) in the latter.
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However, it should be stressed that the two systems are
intrinsically different, in addition to being different in the
boundary conditions at the interfaces. The fact that the
electron has a finite mass and its momentum along the
channel must be conserved due to the translation symme-
try indicates that a complete transfer is forbidden unless
the two wells are either identical or have equal energy
levels, i.e., E„,=E

b. (here and below, we assume that the
effective-mass differences in the two wells can be neglect-
ed. ) This can be readily verified by examining Eqs. (40),
(41), (45), and (52), and it is in sharp contrast to the case
of optical directional coupling where for a given asym-
rnetric coupler there always exists a wavelength, referred
to as the central wavelength, at which a complete transfer
can occur. '

In addition to presenting the difference on physical
grounds, we may also observe the difference by compar-
ing the related terms in the two wave-guiding equations
for electron and light. Whereas for electron-wave guid-
ing the eigenvalue term E„and the potential term V(x)
are fixed for a given structure, the equivalent eigenvalue
term P and potential term kon (x) for light-wave guid-
ing depend on the structure as well as the wavelength of
the input light. Therefore, for a given optical coupler of
two asymmetric guides, the dispersion curve /3, (X) of the
first guide may intersect with that of the second guide
Pb(A, ) at a so-called central wavelength A,o.

' This means
that the input light of this wavelength will be able to
completely transfer from one guide to the other. For a
given electron-wave coupler, however, the dispersion re-
lation is

k, = [2m (E E„,) /fi ]
'— (61)

Notice that E, is a constant for a given well (indepen-
dent of the electron energy). Therefore k„(E) and k, i, (E)
will never intersect at any energy and a complete transfer
will never occur, unless E equals F. I, in which case the
k„(E)curve and k,b(E) curve coincide.

Moreover, the maximum transfer efficiency in the case
of electron wave coupling, represented by C, 2

—K b/f
(i.e., sinfz= 1), is independent of energy, as can be seen
from Eqs. (40), (41), and (45), whereas the maximum
transfer efficiency is a function of wavelength in the case
of optical coupling. ' The consequence is that for an

asymmetric optical directional coupler there exists a nar-
row passband centered at the central wavelength, for an
asyrnrnetric electron-wave coupler such a filtering func-
tion does not exist.

I

I

I

I

V',

2d == 2W == 2d
X

FIG. 3. A symmetric square quantum-well electron
waveguide coupler.

ing' can be adopted as was done in Ref. 5, we will show
below through an example that such a model becomes in-
creasingly inadequate as the coupling becomes strong.

We consider a finite square-well symmetric coupler as
shown in Fig. 3. The well thickness is 2d, the barrier
height is Vo, the spatial separation of two wells is 28'.
We choose to calculate the transfer length as an example
since it is a key parameter that determines the device
physical dimension and performance. After some basic
calculations based on the equations in Sec. II, one can ob-
tain

a=e "" 2k„d sin(k„d)+e ""cos(k d)

+4 sin (k„d)
t/o

(1+k'd ), (62)

a,b= —2E„sin (k d)e " '/(1+k'd),

a, = —Voe " '"+ 'cos (k„d )sh(2k'd)/(1+k'd ),

500

400

C
E

(64)

where k =(2mE, /fi )' and k'=[2m(VO E,)/—
fz ]' =k tg(k„d).

From Eqs. (28), (30), and (58), we have the coupling

IV. TRANSFER LENGTH CALCULATION
UNDER STRONG- AND WEAK-COUPLING

CONDITIONS

The above discussions and equations provide a
sufBcient basis for calculating the key parameters of an
electron-wave coupling device. Since the operation and
performance of a mesoscopic device are very sensitive to
these parameters, it is critically important to determine
them accurately. Although under weak-coupling condi-
tions, the standard first-order model in optical-wave guid-

300

200
20 40 60 80 100 120

2W (A)

FIG. 4. Calculated transfer length L;„shown as a function
of the barrier thickness 28. Curve a calculated according to
the strong-coupling Eq. (66). Curve b calculated according to
the weak-coupling approximation Eq. (67).
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constant v as

1/2 1/2
CXa +CXba

xa

xa

1/2
CZ +eb

2m +a +ha1—
1+a

2m aa ah1—
1 —uz

1/2

(65)

Equation (6S) is an exact expression for t~. Usually,

kz a ++ba))
2m 1++

~a &ba
or

1 —a

and we can have an approximate solution

m «a ~baK-
A'k, 1 —a

(66)

which is still valid for strong coupling. For weak cou-
pling, i.e., a «1 and na, &e,b, we have

a,b=
2 E,sin (k d)e " /(1+k'd),

A k, 5 k,

(67)

which is proportional to the energy level of the individual
quantum wells, and can be obtained directly from the
first-order model. '

For GaAs/Ga& Al As quantum-well coupler pro-
posed in Ref. 5, m =0.07m„k, = 8.4X 10 cm
VO=10 meV and 2d =200 A. The transfer length L
as a function of barrier thickness 28' is calculated and
plotted in Fig. 4. Curve a corresponds to the strong-
coupling result from Eq. (66) and curve b corresponds to
the weak-coupling formula (67).

One can see that the difference between the rigorous

mode developed in this work and the weak-coupling ap-
proximation increases rapidly as the barrier width
reduces and the system becomes more strongly coupled.
We also note that the projected transfer length falls
within the range of typical electron mean free path in
GaAs, indicating the feasibility of experimental observa-
tion.

In summary, we have established a rigorous theoretical
formalism for guided electron waves in coupled
quantum-well waveguides, which can be applied to the
studies of the various electron-wave guiding phenomena.
Some of the approaches and results may be applied to op-
tics as well. We have examined the difference between
the electron-wave coupling and optical wave coupling.
We find that if the effective-mass difference between the
wells can be neglected a complete transfer is forbidden
unless the two wells are either identical or having equal
energy levels, i.e., E„,=E b. This is in sharp contrast to
the case of optical directional coupling where for a given
symmetric or asymmetric coupler there exists a so-called
central wavelength at which a complete transfer can
occur. The model developed in this work allows accurate
determination of key structure parameters such as the
coupling constants, propagation constants, and transfer
length, and it remains valid under strong-coupling condi-
tions where the first-order model widely used in literature
becomes inadequate.
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APPENDIX

In order to check whether the solutions of the
coupled-wave equations satisfy particle conservation and
particle-Aux conservation requirements, we start with
Eqs. (48) and (51) and express the particle density as

2

f1 dx g*(x z)g(x z) =L
p +R p +2CxLpR p + (tcb& K&b 2tx5 )(Kb&L p K&bR p +25LpR p )

From Eq. (S5), we have

:go+g () +2+gogo (A2)

which does not change with z. Using Eq. (55), we can show that the Aux along the z direction is

0'*(x,z) — % (x,z)dz = [(M, +atrb, )L p+(Mb+czK, b )R p+(K&b+Kb&+ctM, +et'�)LpR p j
iA 2

m 8 m

which is indeed conserved.
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