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In an attempt to obtain a better description than the local-density approximation (LDA)
for the electronic structure of realistic narrow-band systems, we have studied a perturbation-
theory method for the self-energy and have tested it on the electronic properties of the periodic
one-dimensional Anderson model. For a number of models we have calculated a wide range of
properties such as quasiparticle energies, spectral densities, reduced hybridizations, and various
magnetic correlation functions. For two diferent models we were able to compare with Monte
Carlo results and found good agreement. In general, we have obtained a description of narrow-
band systems that is more reasonable than the one given by the LDA.

I. INTRODUCTION

The aim of this study is to incor p or ate the strong
electron-electron correlations inherent in narrow-band
materials into a priori electronic structure calculations
for real solids. Density-functional theory, whether in
the local-density approximation (LDA) or in the local-
spin-density approximation (LSD), has often been suc-
cessfully used in calculating the ground-state properties
and the electronic structure of many systems. In cases
where there are discrepancies between calculation and
experiment, two questions almost always arise. (I) How
good is LDA? (2) How good is the approximation of us-

ing the eigenvalues of the Kohn-Sham equation for the
band structure'? The second point is particularly per-
tinent since the one-particle Kohn-Sham equation is de-
rived for obtaining the charge density, and its eigenvalues
do not therefore need to be the same as the quasiparticle
energies. For tetrahedrally bonded semiconductors, the
LDA gives a very good exchange-correlation potential.
The discrepancy between the LDA band gap and the true
gap is because the conduction-band energies are not given
by the Kohn-Sham equation. Quasiparticle energies from
the Green's function that is constructed from the LDA
orbitals are quite satisfactory.

For systems with narrow bands, such as the d and f
electron series and their oxides, there are physical reasons
and computational evidence that both the LDA and the
use of density-functional eigenvalues for quasiparticle en-
ergies are unsatisfactory; the density-functional eigenval-

ues do not contain the full quasiparticle renormalization
effects that are needed. In the LDA or LSD the exchange
and correlation effects of a system are taken locally to be
the same as the uniform electron gas with the correspond-
ing density or spin density. This approximation becomes
questionable if the conduction or valence electrons are
sufBciently localized. Thus, the magnetic properties of
these narrow-band systems, such as the spatial distribu-
tion of spins from neutron-diffraction experiments, or
the temperature dependence of the susceptibility, s are
often more complex than those derived from the LDA
or LSD. While the Fermi surface is remarkably well ac-
counted for by LDA, the LDA d-band width and, there-
fore, the density-of-states mass can be an order of magni-
tude off. Also, the energy eigenvalues from LDA cannot
explain the spectra from photoemission (PES) and brem-
strahlung isochromat spectroscopy (HIS).

A number of schemes have been proposed to augment
LDA approaches. For example, to obtain the position
of atomic satellites, a LDA total-energy calculation for a
supercell in which one site has either one more or one less

f electron, together with the total energy for the ground
state of the normal number of electrons, gives the po-
sition of the f" —+ f"+i peaks. 2 To obtain a heavy
mass (large specific heat) in the heavy-electron com-
pounds, renormalized band theory 3 incorporates model
resonance f-level behavior into band-structure calcula-
tions.

Our ultimate aim is to incorporate the most impor-
tant narrow-band correlation effects that are included in
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such models as the periodic Anderson 4 and Hubbardi
models into a band calculation for real solids. A success-
ful test would be the ability to account for the magnetic
properties, the narrow f-band density of states, and to
explain PES-BIS spectra. In this paper we focus on the
one-dimensional symmetric and asymmetric periodic An-
derson models. Our approach is to use a form of pertur-
bation theory to reproduce the important features of the
narrow-band correlations. Using this approach, we hope
to test its validity as well as to eventually apply this same
method to the full set of orbitals generated by the LDA
for a real solid.

The two-band periodic Anderson model is a simplified
parametric description of a conduction band (which we

will call the d band) interacting with a periodic lattice of
localized atomic states (which we will call the f states).
The conduction band is characterized by its dispersion
relationship, ep, and its mixing to the localized states
through the hybridization V. The energy of the bare
localized states is at ej with respect to the center of
the conduction band. Because the f states are spatially
compact, strong electron-electron interactions (parame-
terized by U) are expected between electrons that occupy
f orbitals on the same site. Because the Pauli exclu-
sion principle does not allow an electron of the same spin
to occupy the same f orbital, this interaction correlates
the occupation of the f orbitals of difFerent spins on the
same site. Besides these parameters, both the filling and
the temperature play important roles in determining the
physical properties of the system. We do not study tem-
perature effects here, however.

A LDA approach for this model accounts for the ef-
fect of U as a mean-field Coulomb term. In a perturba-
tion theory expansion in U, it thus includes the lowest-
order (first-order) term. To improve the LDA theory, it
is therefore necessary to take into account at least the
second-order terms in U. However, because U can often
be the largest energy in the systems of interest, such a
straightforward expansion in U would not be expected
to be a suitable approach. From another point of view,
the mean-field approach of the LDA gives us a static pic-
ture, where each orbital is occupied by an average num-
ber of electrons (n). However, the true instantaneous
occupation of an orbital fluctuates around its average
value, and is dependent on the instantaneous occupation
of the other orbitals. This means that, although (n (n))—
vanishes, the fluctuations around the mean-field value

((n —(n))z) do not necessarily vanish. Second order is the
lowest order in U' that takes this into account. Since the
fluctuations might be small even for very large U, there
is hope that the range of applicability for an expansion
in the fIuctuations around the mean-field solution will be
larger than that for a direct perturbative approach. For
the. single-impurity case, Horvatic and Zlatic~6 showed
that this approach produces results in good agreement
with exact Bethe ansatz results over a large parameter
range.

In an attempt to keep track of the many different levels
of approximations that we refer to, we will use the follow-

ing terminology: a "mean-field" solution will refer to the
Hartree-Fock solution of the model, i.e. , a self-consistent
solution to first order in U. Second-order perturbation
theory results will refer to the normal expansion of all
quantities to. second order in U. The method that we

use in this paper, i.e. , second-order perturbation theory
in the fluctuations around the mean-field result, will be
called "fIuctuation" results, "second-order fluctuations, "
or more simply "our method. " The results that would
be obtained if one could exactly solve the model Hamil-
tonian will be called the "fully interacting" results.

The organization of the rest of the paper is as follows:
in the rest of this section we very briefiy summarize previ-
ously published work that uses this form of perturbative
approach to solve the one-dimensional two-band periodic
Anderson model. In the next section we present the ap-
proach in more detail and formulate how we obtain the
observables used to characterize our results. For clar-
ity, some of the details of the calculation are presented
in Appendices A and B instead of in this section. In
the following three sections we present our results for the
symmetric case with some asymmetric cases. VVe also
compare our results, first, to exact Monte Carlo results,
whenever possible, and, second, with the mean-field, i.e,
LDA, results. Finally, we discuss these results and con-
clude.

Quite a few different peturbative approaches have been
applied to the periodic Anderson model, each making a
different set of approximations, and thereby limiting its
applicability in the large space of characterizing param-
eters. Yamada and Yosida " have presented the second-
order perturbation theory expansion in U around the
Hartree-Fock (or mean-field) solution of the symmetric
periodic Anderson model. Not much numerical work has
been done to follow up on this paper, most probably be-
cause of the large computational effort required. Zlatic
et al. considered the case of interatomic hybridization,
within the constant; density of states and local approxi-
mations. Both Zlatic et al. and Okada e] al. stress
the importance of thp underlying, unperturbed, mean-
field band structure in determining the properties of the
perturbed system. Schweitzer and Czycholl2i 22 have
looked at the temperature dependence of the f spec-
tral function. Blankenbecler et al. compared results of
Monte Carlo calculations with second-order perturbation
theory results, obtained by using both U and V, respec-
tively, as expansion parameters (the latter is expected to
be a good approach for large U). They varied U from 0 to
about slightly more than the conduction-band width, and
found that the Monte Carlo results crossed over smoothly
from the small-U expansion to the small-V expansion.
One of the main results of this paper is that this smooth
crossover can also be achieved by using the second-order
fluctuation theory result for the self-energy.

II. MODEL

The Hamiltonian for the degenerate two-band periodic
Anderson model is



43 PERTURBATION THEORY OF THE ELECTRONIC PROPERTIES. . . 1639

H=) ei, cq eq +) ey f, f;

~te) (eeR;yt ~ i Re; t ) )
k, i, cr

+U). f gf;gf gf;g

Ho(U) = ) cy cd c). + ) eg n;
k, o. 4 )

0'

+V) (e'" 'ftce +e '" 'c f ) (2)

where the U dependence enters via the Hartree-Fock
atomic energy, ey

—
ey + U(n&/2) . Diagonalizing Ho

then yields the eigenvalues

and the f weight at these solutions is given by

As mentioned in the Introduction, in a more complete
calculation of a real solid the self-consistent Hamilto-
nian Hp would describe the one-electron bands of a self-
consistent LDA calculation. Our Hp is consistent with
this, since the LDA also has an effective mean field eg.
We emphasize here that only ey is present in the mean-

where the first term describes the unhybridized conduc-
tion band (the "d band"), and the second term describes
a periodic lattice of localized states (the "f states"),
which have a bare atomic energy ey. The third term rep-
resents the hybridization between the conduction band
and the localized states, and the last term describes the
intra-atomic electron-electron interaction between th'e lo-
calized f electrons of different spin. In this paper we
use a simple nearest-neighbor tight-binding model for the
conduction-band dispersion (ei,.); we choose our energy
scale so that the center of this unhybridized conduction
band is at zero. We also assume no direct f fhop-ping,
and purely on-site hybridization. These choices are made
for simplicity and clarity; generalizations of any or all of
these assumptions can be made with relative ease. Al-
though we have examined a range of diAerent param-
eters, most of the results presented in this paper have
V = 0.375, e~ ———cos(k), in order to be able to directly
compare them with existing Monte Carlo results. All
energies are in units of 2t, where t is the d-d nearest-
neighbor tight-binding hopping parameter.

In order to expand around the mean-field solution, we
follow Ramada and Yosida and also add and subtract
the Hartree-Fock term U(n&/ 2)ft f, ', where n&o is the av-
erage number of f electrons in the self-consistent ground
state of Ho (see below) at a given filling. We can then sep-
arate out a purely one-electron self-consistent or mean-
field part of the Hamiltonian Hp with

field Hamiltonian, and the bare eg does not therefore en-
ter into the calculation; this point is especially important
for the asyrmmetric case.

The remaining part of the term U P,. f~&f, &f.~& f,&
in

Eq. (I), which includes to lowest order the fluctuations
around the mean-field solution, is treated in perturbation
theory up to second order in the self-energy using the
Green's-function formalism. In a matrix representation,
with the nonhybridized d and f states as a basis, the
one-electron retarded zero-temperature Green's function
is given by the solution to

(5)

with u = u + p + ib, where ~ is the energy depen-
dence, p is the chemical potential, and b is a positive
infinitesimal to give the proper boundary conditions for
a retarded Green's function. The fluctuation effects are
included in the self-energy Zp. Because we are only
considering on-site f fcor-relations, the only nonvanish-
ing element of the self-energy is 2~k~. We use a sim-

ilar form for E~&~ as Horvatic and Zlatic used for the
single-impurity Anderson model, where it produced good
agreement with Bethe-ansatz resultsi (the difference is
discussed in Sec. IV). This form is

with (ny) as the average numbers of f electrons in the
fluctuating state. The linear term in U can be consid-
ered to be a correction to the mean-field f energy, and is
necessary, since the average number of f electrons in the
fluctuating state is not always equal to the mean-field so-
lution for the number of f electrons n&o. The dynamic cor-

relations are dealt with in the second-order term E&
Details of the form of E~& )~~(cu), and how it is calculated,
are presented in Appendix A.

Information on the one-electron quasiparticles can be
obtained from the solution to the Green's function,
Eq. (5). The quasiparticles of a LDA calculation are
usually assumed to have energies approximated by the
one-electron energy eigenvalues of the mean-field self-
consistent Hamiltonian and to have infinite lifetimes.
The corresponding quantities in the Green s-function for-
malism are determined by the poles of the Green's func-
tion, i.e., the roots of the denominator of the Green's
function. In contrast to the band-structure eigenvalues,
these roots do not always correspond to zero-width, unit-
weight quasiparticles. We determine their weights and
widths by analogy to the case where the quasiparticle
contribution to the Green's function can be written as
a sum of weighted Lorentzian-type poles. In this case,
which holds when the poles are not too far from the
real axis, we can determine their lifetimes and weights
from the imaginary part and the derivative of the real
part of the Green's function, respectively. Another ap-
proach for finding quasiparticles is to look for peaks in
the k-dependent spectral weight. For the mean-field sys-
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C

tern both approaches give identical results; however, for
the fluctuating system we will see that this is no longer
the case. The f a-nd d-projected density of states are
obtained from the imaginary part of the diagonal ele-
ments of the Green's function, i.e., from ImG""(u) and
Im G~~(u), respectively, see Eqs. (A2) and (A3).

In strongly correlated systems such as heavy-fermion
systems, the large observed specific heats are usually at-
tributed to large effective masses of the quasiparticles. In
renormalized band theory this eA'ect is usually built into
the theory by reducing the effective f dhy-bridization,
V, which also reduces the f dch-arge fluctuations. To
look for this effect in Monte Carlo simulations, Blanken-
becler et a). examined a normalized effective hybridiza-
tion defined by (f, c;~)/( f, c;~)p, which is a measure of
the f dch-arge ffuctuations. This same quantity can be
calculated in the Green's-function's formalism. The nu-
merator can be determined from Eq. (A4):

) d(u ImG„"~(~), (7)%sr
k

and the denominator is just the same expression, except
that the mean-field Green's function is used. In this and
all other equations we assume that our one-dimensional
system has N sites with periodic-boundary conditions.

The IDA approximation is based on minimizing the
total energy with respect to the charge density, and so
it is designed to do a good job for calculations of the
total energy. According to I DA the total energy of the
periodic Anderson model would be the first two terms of
Eq. (8) plus the exchange-correlation energy. We assume
that LDA treats the exchange part sufFiciently well, and
therefore consider it to be absorbed into the one-electron
parameters in Hp, which means it is part of the first term
in Eq. (8). The LDA, however, does not account for
the dynamic short-range correlations, which produce the
quadratic term in Eq. (8). So, although the LDA should
produce the correct V dependence of the total energy for
small V, it is expected to be in disagreement with the
second-order total energy for large U. The second-order
perturbation-theory expression for the total energy per
site is

( ) 2 n~P(ng)p
ekJk
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where (ny)p is the number of f electrons when the mean-
field band structure is filled up to the chemical potential
of the the fluctuating system, p, which is chosen so as
to give the same total number of electrons in the fluctu-
ating system as there are in the original se].f-consistent
system. (In general, p and the chemical potential of the
mean-field system are dift'erent, so that nP& and (ng)p are
also diff'erent. This means that (ny)p and ej are not con-
sistent with one another, which does not worry us, since

(ng)p arises from an intermediate setup. ) The linear term
is necessary to avoid double counting the Hartree-Fock
term. We can also calculate the total energy as the sum
of the kinetic, (T), and potential, (V'), parts. Using the
equation of motion of the destruction operator, f, , we

can write the potential energy as

. 8
(V) = — ) T i —T,. —C&(t, t+)

2N clt
k, e

which, after the Fourier transform, gives for the total
energy

subtract off the full Hartree-I"ock term. So

¹r
Af—U' (ng) .
2

Tr(Hp p Im t r. )

Putting this into Eq. (9) gives for the total energy

Tr[(~+ Hp r. ) Im Cr.]

The difference between E and E~ & corresponds to de-
termining the Green's function by summing the infinite
series implied in Dyson s equation, G = Gp + GpZCr,
rather than simply determining it up to second order,
G = Gp + GpZGp.

We can also determine various magnetic correlation
functions. The square of the f-orbital longitudinal on-
site magnetization is

& =(T)+(~)
1

2N7r ) Tr (ur + Ty) ImGr.

To determine the kinetic energy, we calculate the expec-
tation value of the .one-particle Hamiltonian, Hp, and

(m~ = n~ —n~). This can be used as a measure for howz
strongly correlated the system is, i.e. , how strongly the f
occupation depends on the f occupation. For an-uncor-
related (mean-field) system, (n&n&) = (ny) /4, while for
a fully correlated system (i.e. , for fully spin-polarized so-
lutions, or any linear combination of them such as the
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paramagnetic combination) n& n& P) = 0. Blanken-f fl

becler et al.2s showed that (n n ) can be determined
T l

from the Hellman-Feynman identity as

= (nant) + (ng)
(H) g g Bef

(12)

We can also obtain (n& n&) as (V')/U, since (V)
U(n&~n~&) . Although this produces nearly the same results
for large U, it tends to diverge for small U. Generally, for
large U, ((m~) ) is 2—5% larger when determined by this
method rather than by using the Hellman-Feynman iden-
tity. From linear-response theory we can also determine
the remaining magnetic correlation functions, for exam-
ple, the nearest-neighbor f dcor-relation (m~ m, (NN)).
For details of how this is done, see Appendix B.

III. SYMMETRIC CASE

The best studied and simplest case of the one-
dimensional two-band periodic Anderson models is the
symmetric case. In this case ef —p = 0 and the bare
f energy is eg —ey —Un&/2 = Un&/2 —. These pa-
rarneters in the mean-field Hamiltonian, see Eq. (2), are
chosen so that there is electron-hole symmetry, i.e. , the
excitation energy for two f holes or two f electrons on
the same site is U/2 (the ground state has one f electron
per site). We study the U dependence of the symmetric
case by varying U from 0 to 4. As mentioned previously,
all energies are scaled by 2t, so that the range of the
electron-electron interactions includes a range of systems
from those that are weakly correlated to those where U
is the largest energy in the Hamiltonian. Note that the
bare f energy ey scales with U so that all symmetric case
results presented as a function of U are for systems with
diferent values of ef as well.

The symmetric case with on-site hybridization has two
special properties. First, the mean-field system is an in-
sulator, and, because of Luttinger's sum rule, it remains
an insulator for all U. [I uttinger's sum rule states that
the number of states enclosed by the Fermi surface of the
one-electron Hamiltonian, Hp t + Zt-(iu), is equal to the
number of electrons in the perturbed system. 2

] Secondly,
because of the symmetry imposed on the system, the d
and f occupation numbers are U independent and equal
to unity. Thus, for all U, ey = U/2 and (ng—) = n& ——1,
and hence the linear term in the self-energy vanishes.

We start by comparing the quasiparticle structure of
the mean-field system with that of a system with a sub-
stantial U, once the second-order Auctuations have been
taken into account. In the center frame of Fig. 1 the
solid lines are the U-independent hybridized bands of the
mean-field Hamiltonian, see Eqs. (2) and (3). They are
also the roots of the denominator of Gf&f for Z = 0,
see Eqs. (Al) and (A2) in Appendix A, and correspond
to zero-width, unit-weight quasiparticles. However, this
simple picture, where the roots of the denominator
of Gf&f coincide with the peaks in the k-dependent spec-
tral function and can be directly associated with quasi-
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FIG. 1. The roots of the denominator of G& for U = 4
for the symmetric periodic Anderson model. In the main part
of the figure, the size of the symbols for the roots is propor-
tional to their quasiparticle weight; o, x and + indicate that
the widths are less than 0.0133, between 0.0133 and 0.0267,
and greater than 0.0267, respectively. The solid line is the
hybridized mean-field band structure. The pa.nels on either
side of the main part of the figure are the f and d-projected-
density of states, which were calculated from the imaginary
part of the diagonal f and d Green's functions.

particles, breaks down when we include the fluctuations.
Nonetheless, because the starting point is a Fermi liquid,
the analyticity of perturbation theory guarantees that
the Auctuating state must also be a Fermi liquid. This
means that both the electron number and the number of
quasiparticles must be conserved when the eA'ects of the
self-energy are included.

The symbols in Fig. 1 are the roots of the real part
of the denominator of Gf&f for U = 4, once the second-
order fluctuations have been taken into account. It is
clear that we often have more than two roots at a given
k point, and that they can have finite lifetimes as well as
weights that are substantially less than unity. Figure 1
also clearly demonstrates the possibility of having a peak
in ImG~&~ without having a corresponding root in the real

part of the denominator of Gf&f. For U = 4 this is the
case for k 3'/8 and u —0.5. The roots of the real

part of the denominator of G~&~ are only a useful guide

to the location of the peaks in the ImG&f . Also, not all
of these roots can be associated with simple quasipar-
ticle excitations; more complicated excitations can also
express themselves as roots of the single-particle Green's
function. Finally, the two side frames in Fig. 1 are the

f and d--projected density of states.
A careful examination and classification of the roots

shows that, although the picture obtained from the roots
is complicated, it is in agreement with our expectations
for a strongly correlated system. First, nearly disper-
sionless and predominantly f-type roots are found near
+U/2 with a weight of about 1/2. These roots are the
atomic satellites corresponding to fi ~ f2 and fi ~ fP
excitations. A numerical explanation for the origin of
these satellites is that the high-frequency part of the
self-energy behaves as U~/4u, which, from Eq. (A2), ex-
plains the position and weights of the satellites. To ex-
plain this form for the self-energy, we first note that the
finite band width implies that ImZ& vanishes outside
the energy range of the mean-field bands, and from the
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Kramers-Kronig relations that the u dependence of the
high-frequency behavior of the real part is consequently
I/u. For V = 0, the numerical factor in the second-order
self-energy is (ny) p(2 —(ng) p)/4, which is 1/4 for the sym-
metric case, and is the same numerical factor obtained
for the exact self-energy in this limit. The numerical fac-
tor is 1/4 for all two-band one-dimensional symmetric
systems. Note that (nf)p(2 —(ny)p)/4 can be viewed
as the total number of possible electron-hole excitations,
when a quasiparticle decays into a bare particle and an
electron-hole of opposite spin [see Fig. 14(a)]. And fi-

nally, from Eq. (A5), we see that the V dependence of
the self-energy is U . Thus we obtain the V2/4w high-
frequency behavior for the large U' self-energy that gives
the satellites near +U/2.

Another major set of roots (with approximately unit
weights) have predominantly d character and a dispersion
very close to —cos(k), the dispersion of the mean-field
d bands. If we characterize the strongly correlated sys-
tem by only these two sets of roots, we get a picture of a
dispersionless f state near ey

——V/2 that is decoupled
from a d band with dispersion —cos(k). An examinatioll
of the f and -d-projected spectral weights as U is in-
creased (see Figs. 2 and 3) shows that there is a smooth
change in the partial density of states from those of an
uncorrelated, hybridized system to those expected for a
strongly correlated system, in which the conduction band
and the f states are decoupled. This decoupling of the
f states from the conduction band can be measured more
quantitatively by a reduction in the effective hybridiza-
tion between the f and d states, see Eq. (7) and Fig. 4.
Because the instantaneous occupation of the f orbitals
of opposite spin, f and f orbitals -(where o = —o),
become more strongly correlated upon increasing U, it
is expected that the d —f charge fluctuations will be
reduced by the instantaneous f occupatio-ns, producing
the observed reduction in the effective hybridization.

Finally, we consider the the nearly dispersionless set of
roots, lying just above the chemical potential, near the

zone center, and below it, near the zone edge. They
have a weight considerably less than unity and also
have zero width, see Appendix C. On increasing U they
have evolved continuously from the predominantly f
type parts of the hybridized bands, and should there-
fore be considered as the quasiparticles associated with
the atomic satellites. With this in mind, and remem-
bering that (ng) = 1, it is natural to associate them
with a many-body Kondo (Abrikosov-Suhl) type of reso-
nance. These quasiparticles are responsible for the low-
temperature behaviors of the system such as the specific
heat, the "coherence temperature, " and the Kondo tem-
perature.

As mentioned in the Introduction, renormalized band
theory has been used to obtain bands that correctly re-
produce the low-temperature properties of Kondo-type
materials . In order to compare our results with these
types of theory, we have performed a least-squares tight-
binding fj.t to the low-lying excitations. If, in doing this,
we fix the d-d nearest-neighbor hopping matrix element

(t) and eg and only vary V, we obtain a poor fit. In that
case we also 6nd that V" is independent of U, which is
out of line with the reduction in the effective hybridiza-
tion. However, because the self-energy near the chemical
potential is strongly k dependent, and has the form
Z&~~(u) —Au + B cos(k) (where A and B scale as U2),
Eq. (A2) suggests that the most suitable additional pa-
rameter to use in the fit would be t"t, an effective f f-f '

hopping. When this is done, the U dependence of Vs'/V
and that of the normalized effective hybridization, as de-
termined by Eq. (7), are shown in Fig. 4, along with

This fit reproduces the positions of the quasiparti-
cles very well, and so we conclude that it is possible to
choose a simple set of one-particle parameters that will
correctly reproduce the low-temperature properties of the
interacting system. The choice of parameters should be
based on the low-energy part of the self-energy in order
to mimic many-body effects, while remaining within a
one-electron picture. However, the resulting one-electron
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FIG. 2. The energy dependence of the f density of states
of the symmetric periodic Anderson model for different values
of U. Each curve is offset by four units to keep them from
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two units to keep them from overlapping. (The slightly jagged
character rejects the discretization of momentum space. )



43 PERTURBATION THEORY OF THE ELECTRONIC PROPERTIES. . . 1643

0.12

0.9
)

0.6

0.09

CI. 3— —0.03

0.0 .--

0.8 'I . 6
U

0.0
3.2

FIG. 4. The normalized effective hybridization ('R/'Ro,
solid line), the normalized fitted hybridization (V"'/U,
dashed line), and the fitted nearest-neighbor f fhopp-ing (t~',
dotted line), as a function of U for the symmetric periodic An-
derson madel. The solid and dashed lines use the left-hand
scale and the dotted line the right-hand scale. The fitted
quantities were determined from tight-binding fits to the low-

lying excitations.

bands all have weight equal to unity, which is not in ac-
cordance with our results, and also means that the atomic
satellites are missing. I uttinger showed that the specific
heat depends only on the position of the quasiparticles,
not on their weight~7. So, although the bands obtained
from the Gtted parameters reproduce the specific heat
correctly, their spectral weight will be very diA'erent from
that obtained from using the complete ~ dependence of
the self-energy. It should be stressed that the renor-
malization of the hybridization that we obtain is differ-
ent from the one obtained using a Gutzwiller variational
approach. There, the renormalization occurs because
double occupancy is projected out, and so, if (n~) is ap-
proximately unity, hopping processes are strongly sup-
pressed, which leads to the effective hybridization having
the form V' = Vg(1 —(ny)). In the symmetric model

(ny) is equal to unity for all U, and the origin of the re-
duction is in the on-site f —f c-orrelations, as discussed
above.

By comparing our results to Monte Carlo results, we
can test the quality of our approach. In Fig. 5 the Monte
Carlo results of Blankenbecler eg at. z for the total en-

ergy are reproduced. The Monte Carlo results smoothly
cross over from the small-U expansion limit regime, see
Eq. (8), to the large-U limit where a small-V expansion
is valid. The latter limit, the small-V expansion, which
starts with a conduction band as well as Hat bands at eg
and ej + U and then mixes them to lowest nonvanishing
order in U, is an extreme example of a strongly correlated
system. ~s This expansion is good for small (V/U), and
should therefore be valid in the large-U limit. Also shown
in Fig. 5 is the total energy as determined from Eq. (10).
This follows the Monte Carlo results, and also smoothly
crosses over between the two regimes. Good results are
obtained for large U because the Green's function has the
correct large-U behavior, i.e., it has an atomic satellite at
—U/2, which occurs for the symmetric case because the
second-order fluctuation-theory self-energy has the same
high-frequency behavior as the exact self-energy in the
V=O limit (as discussed above). Asymptotically, one ob-
tains an energy of —U/2, which is the contribution to the
energy of an atomic level at ej . Half of this energy con-
tribution is the explicit factor of —U/4 in the expression
for the energy, Eq. (10). A second factor of —U/4 comes
from the integral over the atomic satellite, which gives a
weight of 1/2 at the frequency —U/2 (a doubling for
spin is canceled by a prefactor of 1/2).

As a further corroboration of the validity of our ap-
proach, we also compare our results for the square of the
local f moment, ((m~) ), with Monte Carlo results. ~s

Figure 6 compares the Monte Carlo results for this quan-
tity with the corresponding results, Eqs. (11) and (12),
obtained in second-order perturbation theory in U and
U, respectively. We find good agreement in the appro-
priate limits. As expected, ((m~)2) ~ 1, so (n&n&) ~ 0
for large U, implying that the instantaneous occupation
of the spin-up orbital is strongly correlated with that of
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FIG. 5. The total energy as a function of U for the sym-
metric periodic Anderson model. The solid and dashed lines
are the results of second-order perturbation theory in V and V
respectively (Ref. 23). The diamonds are Monte Carlo results
(Ref. 23), and the dotted line is the second-order fluctuation
results, determined by Eq. (10).
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FIG. 6. The on-site square of the f-magnetic moment,
((m~~) ), as a function of U for the symmetric periodic An-
derson model. The notation is the same as used in I'ig. 5.
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the spin-down orbital. So, starting from a static para-
magnetic band structure, we obtain a dynamic picture
of fIuctuating local moments. The spin fluctuations are
made possible by the Kondo resonance, which we ana-
lyzed above.

— 1.70—
V

(n )
f

—, 0.50

IV. ASYMMETRIC CASE I

Although the symmetric case is the most heavily stud-
ied limit of the Anderson model, most real systems have
neither particle-hole symmetry nor is (ny) = I. In this
section we look at the behavior of the asymmetric case in
the same fashion as we did for the symmetric case, i.e.,

by studying its U dependence. In doing this, we will of-
ten compare with the simpler symmetric case. There are
many ways to break particle-hole symmetry. To make the
comparison as tractable as possible, we choose the mean-
field parameters to be the same as in the symmetric case,
i.e. , ey ——0, V = 0.375, and with an unhybridized d-band
dispersion of —cosk. We introduce the asymmetry by
adjusting the chemical potential with U, so that there
are always three electrons per unit cell in the fluctuating
system. We believe that this form of asymmetry is typ-
ical enough to let us make general statements about the
validity of our approach for the asymmetric case.

Before looking in detail at the U dependence of the
asymmetric periodic Anderson model, we point out some
general difFerences with the symmetric case. First, al-
though the total number of electrons is the same for all
U, a redistribution of electrons among the localized and
conduction electrons is possible. A direct consequence of
this redistribution is that (ng) is not necessarily equal
to nP&. This means that the f electrons in the fluctu-
ating state experience a diferent average potential than
in the mean-field self-consistent state. The linear term
in Eq. (6) accounts for this diKerence. As previously
mentioned, the form of the linear term is slightly difIer-
ent from that of Horvatic and Zlatic. This is because
our starting point can be considered a LDA calculation,
which yields mean-field instead of bare ori-site energies;
for the impurity calculation the starting point is the bare
on-site f energy. Secondly, for a given U the chemical
potential p and 6n~ ——n&

—(n~) must be determined
consistently with (ny) and the total number of electrons.
Thirdly, the high-frequency dependence of the second-
order part of the self-energy no longer has the simple
form U~/4u, which resulted in the atomic satellites near
&U/2. Empirically, we find that it typically has the more
general form: [CU (ng)p(2 —(n~)p)]/[4 (w+ p —g,h'fi)].
Note that (ny)p is defined, and discussed below Eq. (8).
The origin of the filling dependence, (ny)p(2 —(ny)p),
has been discussed in the previous section. The constant
C is a function of V, eg, and p. It is a factor that ac-
counts for nonzero hybridization and the electron-hole
asymmetry; it goes to 1 as V ~ 0. The e,h, gt,-term also
reflects the electron-hole asymmetry. If (ng)p is greater
than 1, there is a preference for the quasiparticle to de-
cay into a hole, shifting the centroid of ImK& to lower

1.60
0 1

FIG. 7. The number of f electrons in the mean-field
bands, using the fluctuating system's chemical potential
((ny)p, solid line, and left-hand scale), and the fluctuation
approximation ((ny), dashed line, and left-hand scale), and
the chemical potential (dotted line and right-hand scale) as a
function of U for the asymmetric periodic Anderson model.
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FIG. 8. The roots of the denominator of Gz for U 5.5.
(Same notation as in Fig. 1.)

frequencies. So, since ReE& is related to EmZ&~ by
the EZramers-Ekronig relationship, the e,h'fg term becomes
smaller, which ensures that (n~) is closer to unity than
(ng)p. In many cases we have E h;ri cx (I —(ny)p).

Before discussing the quasiparticle structure, we exam-
ine the U dependence of the chemical potential, p, (ny}p,
and (ny) (see Fig. 7). As expected, (ny} decreases with
increasing U, since double occupation of a localized or-
bital becomes less favorable. Because of this reduction,
(nq) must increase, which, as we will see later, is consis-
tent with the increasing chemical potential as a function
of U.

The qua"iparticle structure for large U has some sim-
ilarities as weH as some essential difI'erences with the
symmetric case. First, it should be mentioned that the
Fermi wave vector is equal to vr/2 for all U, in accor-
dance with the prediction of j uttinger's sum rule for a
three-electron system. In I"ig. 8 we show the roots of the
real part of the denominator of G& for the mean-field
case and for U 5,5. The mean-field bands are the same
as in the symmetric case, only the Fermi level has been
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changed. As for the symmetric model, the f i ~ f0 peak
separates off' from the bottom. However, the fi ~ f~
peak is pinned at the Fermi level since (nf) is not near
unity. This behavior is typical of a mixed-valence sys-
tem with more than one f electron per site. It has
also been observed by Zlatic et ajI. , using the same
approach for the asymmetric single-impurity Anderson
model for less than one f electron per site. A partial
understanding of this difFerence from the symmetric case
can be found in the form of the high-frequency part of the
self-energy for the asymmetric case and from Eq. (A2).
Since (nf)o is nearly U independent, the e,Q'fi term is
also nearly constant and the constant C depends only
very weakly on V via the chemical potential. We define
U = Ug(ny)ii(2 —(nf)Ii), which is plotted as a func-
tion of U in Fig. 11. The reduction relative to U, caused
by the change in filling, is considerable. From Eq. (A2),
this explains why the separation between f ~ f and
fi ~ fo peaks is nearly U'+ instead of U.

In Figs. 9 and 10 we show the f and d--spectral weights
for various values of U. For U ( 2.5 (i.e. , for (ng)
greater than 1.7) we are in the "nearly filled f-orbital"
regime, where we expect the behavior to be of the metal-
lic Hartree-Fock type. Thus, we expect the one-electron
picture to be valid, with two well-deAned quasiparticle
bands and very little weight in the satellites. As U
is increased, the peaks in the f density of states move

up towards the Fermi level. For V ) 2.5 we enter the
mixed valence regime, where the f electrons are pinned
to the Fermi level and a localized-state satellite has sepa-
rated off from the bottom. As we further increase U, the
f states are pushed above the Fermi level, thereby reduc-
ing (ng); we also find a band forming below the Fermi
level, which, away from the Fermi level, is predominantly
d type. On further increasing U, the chemical potential
rises further, and we recover a filled d band. We never
enter a Kondo or heavy-fermion regime, even for very
large U, because (ny) never comes close enough to unity
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FIG. 10. Same as Fig. 9, except for the d conduction elec-
trons. Note the scale difference. For clarity, each curve is
offset vertically by three units. (The slightly jagged character
reflects the discretization of momentum space. )

to allow the fi —+ f2 peak to form above the top of the
d band. This should be contrasted with the symmetric
case, where we go directly from a Hartree-Fock insula-
tor to a Kondo-type behavior at V = 3, never passing
through the mixed-valence state.

From Figs. 8—10 it is clear that the conduction band
and the localized states still decouple with increasing V,
but not as efFectively as in the symmetric case. Again,
if we quantify this decoupling by the normalized eÃec-
tive hybridization (see Fig. 11), we find that the U de-
pendence of the eA'ective hybridization is not only much
weaker than in the symmetric case, but also slightly in-
creases with increasing U. This increase rejects the redis-
tribution of the three electrons per unit cell among the f
and d orbitals, in a fashion that makes f dcharge fluct-u-

ations easier. The fact that this redistribution dominates
the U dependence of the effective hybridization implies
that the d —f charge fluctuations are only weakly in-

fluenced by the instantaneous f occupat-ion, and thus
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FIG. 9. The energy dependence of the f density of states
of the asymmetric periodic Anderson model for different val-
ues of U. The perturbed system always has a total of three
electrons. The thick vertical lines are the chemical potential
in each case. For clarity, each curve is offset vertically by six
units.

FIG. 11. U' is plotted against U. The normalized ef-
fective hybridization is also compared with the normalized
hybridization, obtained from a tight-binding fit. Also ReE(p)
and e&' are compared.
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suggests that the f —f~ correlations are weak, in strong
contrast to the symmetric case.

Also shown in Fig. 11 is Z~~(p), which is only weakly
k dependent. This weak dependence suggests that a
tight-binding fit to the low-lying excitations should use
e"~ rather than t"' (which was chosen for the symmetricf
case) and V"~, both of which are shown in Fig. 11. There
is good agreement between Z~~(p) and en&", which implies

that a renormalization of ey to e&' in Eq. (A2) takes into
account the largest part of the self-energy at the Fermi
energy, and so explains why V""/V does not fall off as
rapidly as in the symmetric case. The different behav-
ior of Vn /V and the normalized effective hybridization
shows that, in general, the dispersion of the low-lying
quasiparticles is not a measure of the f dcha-rge fluctu-
ations over the whole energy range. The At is very good
and again reproduces the low-lying quasiparticle ener-
gies very well. The Fermi wave vector and velocity is the
same as we obtained from the fluctuation calculation.
The quasiparticle bands near the Fermi surface fiatten
with increasing U, and so increases the effective mass.
For example, at U = 5.06 there is a threefold increase
in the mass. This mass increase occurs because of the
renormalization of the effective f level rather than from
a decrease in the hybridization. Since these are mixed-
valence systems, this is not in contradiction with other
renormalized band theories that are applied to Kondo-
type and narrow-band systems.

For large values of U, one would expect the U depen-
dence of the second-order total energy, E&2&, see Eq. (8),
to be dominated by the quadratic term, as in the sym-
metric case. Surprisingly, however, for large U it is nearly
linear, indicating that the Hartree-Fock term is the most
important term. The U~ prefactor is very strongly de-
pendent on the position of the chemical potential. For
the transition metals, Friedel and Sayerss proposed a
simple expression for the prefactor, which, in our case,
gives a form proportional to [(ng)o(2 —(ny)o)] . The
second-order correction to the total energy in Eq. (8)
arises from simultaneously creating up and down spin
electron-hole pairs. Neglecting momentum and energy
conservation, which is equivalent to the local approxi-

mation in the small V limit, we arrive at such a filling
dependence for the prefactor. This filling dependence
means that it decreases with increasing p, and thus with
U. In actual fact, the reduction more than counteracts
the U dependence, and so explains why the second-order
contribution to the total energy is small. This is an ex-
ample of the very strong dependence of the fIuctuations
on the chemical potential. In this case, the total energy,
as obtained from Eq. (10), essentially only differs from
the second-order result because of the difference in the
form of the Hartree-Fock correction, Un&(ng)o/4 rather
than U(ng) n~/4.

As in the symmetric case, the U~ expansion overes-
timates the f fAuc-tuations. In Fig. 12 we show the
on-site f fcor-relation function, determined from E, see
Eqs. (10) and (12). The dashed line is (ng) —(ny)2/2,
which is the value of ((m~)2) when there are (ny) uncor-
related localized electrons. This implies that, on increas-
ing U, the f electrons remain essentially uncorrelated,
even though the three electrons have been redistributed
among the f and d orbitals, so as to produce a reduction
in (ny). This is in agreement with the conclusions we
made for the effective hybridization and total energy.

The three-electron system is the limiting case that sep-
arates two classes of systems, namely, those with more
(respectively, less) than three electrons. This is because
the conduction band can at most be filled with two elec-
trons; so, for a three-electron system, (ny) is never less
than unity. Systems with more than three electrons must
remain regular Hartree-Fock metals or mixed valence sys-
tems for all U. However, for systems with less than three
electrons per atom, on increasing U, we can obtain a
large variety of possible states, including mixed-valence
states, heavy-fermion states, and a system with a par-
tially filled conduction band with a charge-transfer gap
to the f~ ~ f2 peak. To obtain such states continuously
from a U = 0 state, it is, in general, necessary to vary
both ey and p with U, so as to fulfill Luttinger's sum
rule. However, on going beyond simple model calcula-
tions, the parameters are given, and one varies p so as to
obtain the correct total population.

V. ASYMMETRIC CASE II
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FIG. 12. The on-site f~ —fa fluctuations of the perturbed
system are compared with the value one would expect for an
uncorrelated system with the same f density.

There are no exact Monte Carlo results for the
asymmetric system we discussed above. However,
results do exist for the MX systems over a wide
range of asymmetry. Examples of MX systems are
hypothetical copper-oxide chains and linear halogen-
bridged transition-metal chains such as the nickel-
bromide chains. ss The Monte Carlo results of Zotos et
al. sz are limited to the population dependence of (a) the
number of f electrons in the perturbed system, (ny), and

(b) the on-site, nearest-neighbor, and second nearest-
neighbor f ffluctuations. By-varying the parameters
in the periodic Anderson model, see Eq. (1), it is pos-
sible to describe the different regimes of the two-band
model, as classified by Zaanen et al.34 By varying the to-
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FIG. 13. Comparison of Monte Carlo results with our results for the on-site f ffluct-uations, ((m, ) ), and (ny), for four
regimes of the two-band periodic Anderson model: (a) mixed valence, MV; (b) intermediate, I; (c) charge transfer, CT; (d)
Mott-Hubbard (MH).

tal filling, the degree of asymmetry may be changed. We
mention that for the Anderson model we chose t = 0.5,
V = 0.375, and varied U from 0 to about 5, whereas, for
the MX Monte Carlo results, the hopping is the same
as the hybridization and is equal to unity. This means
that the values of U that are used in the Monte Carlo
calculation (i.e. , U = 2 or 4) should be considered as
intermediate, rather than strong, electron-electron inter-
action strengths.

In Figs. 13(a)—13(d) we compare our results for (ny)
and the on-site f ffluctua-tions with the Monte Carlo
results. Over a large range of electron-hole asymmetry
the Monte Carlo results are in good agreement with ours
for the three categories: mixed valence (MV), interme-
diate (I), and charge transfer (CT). Only for the Mott-
Hubbard (MH) regime is the agreement less satisfactory,
where, for total populations near unity, it is not possible
to fulfil Luttinger's sum rule when a reasonably fine en-

ergy mesh is used. Thus, on the basis of the overall broad
agreement, we believe that it is likely that the results of
the previous section would also compare well with exact
results.

VI. DISCUSSION AND SUMMARY

The above results suggest various questions, which we
will try to answer. First, to what extent have we ar-
rived at a better description of strongly correlated sys-
tems than LDA? The results show that we have been
successful in including more of the physics that is re-

quired to correct the three deficiencies mentioned in the
Introduction, viz. , the discrepancies between the LDA
and the experimental results for the specific heat, mag-
netic properties, and PES and HIS spectra. We have not
been able to compare our results for the efI'ective mass
with exact results, so, although we obtain a large mass
enhancement, we cannot say whether the U dependence
is correct. From Horvatic's and Zlatic's results for the
single-impurity case we know that the agreement with
exact results for the low-temperature properties is less
satisfactory as the asymmetry is increased. All the same,
the agreement is still impressive, suggesting a similar ap-
proach for the periodic case. As we have seen, starting
from a static paramagnetic picture, we have been able to
obtain very good agreement with Monte Carlo results for
the Quctuating local moment. In the symmetric model,
satellites appear near +Uj2, as we expected, whereas
in the mixed-valence asymmetric case, only one satellite
appeared, which is also to be expected, since we never en-
tered the Kondo regime. It is not clear whether the result
that the separation between the f~ ~ f~ and f ~ f
peaks is U' instead of U is purely an artifact of the ap-
proach or whether it is correct. The good agreement we

get with the exact results for the on-site f ffluctuations-
and (ny) implies that the total energy has the correct U
dependence, see Eq. (12). This, in turn, indicates that
both the near linearity of the total energy, and the high-
frequency behavior of the Green's function are correct,
see Eq. (10). However, despite the uncertainty about
whether we have obtained the correct large-U behavior
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for the asymmetric case (because there are no exact re-
sults for comparison), the results show that our approach
tends to remove some of the worse deficiencies of a LDA
approach.

Another question is how does this fluctuation approach
compare with exact results? A diagrammatic comparison
is made in Appendix D. Wherever comparison has been
possible, our results for both the symmetric and asym-
metric cases agree well with Monte Carlo results, with
the exception of the nearest-neighbor spin correlations
where the agreement is only qualitative. As mentioned
above, we have not been able to test the quality of our
effective-mass results.

A third question is to what extent can one hope to
generalize this approach to real systems? The formal-
ism can be easily generalized to three dimensions and
many bands (including spin-polarized bands). However,
the problem of obtaining the parameters is more com-
plicated. First, to obtain the parameters for the one-
electron Hamiltonian it is necessary to subtract off the
correlation contribution of the LDA. Secondly, we have
to determine the on-site electron-electron interaction, U,
in a manner consistent with LDA and our approach.
Thirdly, although the largest correlation effects will come
from the on-site electron-electron interaction, there are
other smaller electron-electron interactions such as d-d,
or nearest-neighbor d f, which c-ould strongly influence
Fermi-surface properties and might, therefore, also have
to be considered.

It seems possible to determine a simple set of one-
electron parameters consistent with the low-lying exci-
tations, while, on the other hand, the separation of the

f ~ f and f ~ f peaks is determined by U'+. This
simple picture seems to be an accurate description of our
results, whereby, as with all simple pictures, the steps
and assumptions made should not be forgotten. We have
seen that the form of the self-energy should be used to
determine which parameters one should use to describe
the bands near the Fermi level. This leads us to pose a
final question: is it possible to suggest a parametric form
for the self-energy near the Fermi level? We have not
been able to find a simple form. Since the linear term

t

2 Sj. Sg S3

of the self-energy has to be determined self consistently
with (ny), which can only be determined from a calcu-
lation using the full self-energy, to obtain such a form is
not a straightforward job.
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APPENDIX A

In the nonhybridized basis the Green's function, see
Eq. (5), has the form

(A1)(Gf ( )G-ff(-) ) '

where u = u+ p+ib. On inversion of the bracketed term
in Eq. (5) we get, because the only nonvanishing element

of the self-energy is E~&~,

ff ~
4J —Ep

k (~)=
(~ —ek) [~ —eg —Zk (~)] —V2

(A2)

P( ) = ~(1+
~ —~k 4 ~ —~k

" ) (A3)

Z» (') = —((n, ) —n,'),2

and,

Gk'(~) = — Gk" (~) .
4) —Cp

Up to second order in U, we have 2~k~(a) = Z~~ (~)

+ZP ")(~),where

$1 tsar&$3

"~(1& + k —&~ —»+ &s) fk" fk"(' —fk") + (' —fk')(' —fk")fk' (A5)

with fk
—f(ek), and f(e) is the Fermi function. The nu-

merical effort needed to determine Z& can be greatly
reduced by reverting to real space, as shown by Treglia
et al. 35 We rewrite the momentum conserving b function
using

) p(1~ + y p p + y ) ) a(k —kg —kg+kg)R

K R

and defining

~~(F) = P ) . b(& —e'k) e*""~'k

k, s

We can rewrite Eq. (A5) as

2
off (2)(~)

~ ) e~k& off (2)(-)
N)

with
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off(&)(-) de] de2

Numerically it is also favorable to take the limit of vanish-

ing 6, and, after introducing an energy-conserving b func-
tion, to determine the imaginary part of the self-energy.
The real part of the self-energy can be determined by the
Kramers-Kronig relationship, which converges because of
the finite band width. The summation over R is best per-
formed shell-wise; just keeping the R = 0 term is called
the local approximation. It should also be noted that
the self-energy scales as U2. To determine the Green's
functions [Eqs. (A2), (As), and (A4)], we reintroduce a
finite b of the order of the energy discretization.

APPENDIX B

Using linear-response theory we can also determine the
remaining magnetic correlation functions of the Quctu-
ating system. For example, to determine the nearest-
neighbor f dcor-relation, (mf m,"(NN)), we introduce two
extra terms into the Hamiltonian: APPENDIX D

(A6)
1 2 3

I

clear that the gap initially increases with U and then de-
creases. In light of the decreasing efI'ective hybridization,
mentioned above, this behavior is unexpected. The rea-
son lies in the k dependence of the self-energy for small

For U = 0 there is an indirect gap of 2L between
the Brillouin-zone center and its edge (see solid lines in

Fig. I). On increasing U, the quasiparticles near the edge
and the center move away from the Fermi energy, while
those near k = vr/2 move towards it. So, initially, on in-
creasing U, the gap remains indirect and increases, and
then becomes nearly direct at k = 7r/2, and decreases
(see symbols near k = 7r/2 and u = 0). From Fig. 2 we

can also see that the existence of the double peak struc-
ture discussed by Schweitzer and t zycholl2~ depends on
U, or, more exactly, on U/V~pII, where po is the DOS of
the unhybridized d band.

Uf."(NN) ) n,'..n,"„.+ Uf."(NN) )
We now use Hellman-Feynman and take the derivative of
the total energy with respect to Uf"(NN) and Uf-(NN)
to determine (nf n" (NN)) and (nf n"-(NN)), as a function
of the parameters Ug(NN) and Uf"(NN). Taking the
limit of Uf"(NN), Uf-(NN) —+ 0 we are left with only
the Hartree and Fock terms, and, finally, taking their
difference leaves only the Fock term (coming from the
parallel spins). So,

Because we are not using direct perturbation theory
in the electron-electron interaction, but rather expand-
ing in the fIuctuations around the mean-field solution,

(a)

(mfm, (NN)) = — ) cos(k —k') nf qnf q, .
Pl

Similarly, we can get the other magnetic correlation func-
tions.

(c) QZ

APPENDIX C

Because we are using a perturbative approach to de-
termine the self-energy, I uttinger's Fermi. -surface theo-
rem, which states that at T = 0 the quasiparticles at the
Fermi surface have an infinite lifetime, always holds. For
the symmetric insulator, energy conservation in the de-
termination of the imaginary part of the self-energy [see
Eq. (A5)] means that, if there is a root with energy E
in the denominator of the real part of G~&~, such that
(IE( ( 3E, where the gap is 2A, then ImZ&ff ——0, and the
root will have an infinite lifetime associated with it. Mo-
mentum conservation further increases the energy range
where ImE~&f vanishes. For the present case a geometri-
cal argument shows that for E, k ) 0, this range extends
from the chemical potential up to 3e~&& &&3~.

These zero-
width quasiparticles produce the well-defined low-lying
peak(s) in the f-spectral density. From Figs. 2 and 3 it is

CY G

(e) I

I

L

+o= +
I

L L

G

FIG. 14. (a) The self-consistent Green's function (double-
lined propagator), (b) the full Green's function (triple-lined
propagator), and (c) the self-energy. (d) The missing third-
order ladder diagram and (e) the missing fourth-order RPA
crossed and stacked diagrams.
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a diagrammatic representation is slightly more compli-
cated than usual. First, we have the bare Hamiltonian,
i.e, Eq. (1), with V=O. The corresponding k- and spin-
dependent Green's function is represented by a single
line. We represent the self-consistent mean-field Green's
function, see Eq. (2), by a double line, see Fig. 14(a).
The full Green's function is represented by three lines,
and is given by the Dyson equation, see Fig. 14(b). The
self-energy consists of two terms, see Fig. 14(c): (i) a
self-consistent linear term, which is equal to V(nf)/2,
and (ii) a second-order term, see Eq. (A5). In Eq. (6)
the linear term is (V/2)((ny) —n&), which only differs
from the linear term in Fig. 14(c) in that it has to cor-
rect for the mean-field shift already taken into account
in eg

—ef + (V/2)n~.
By expanding these graphs we can make a comparison

to the exact solution. The lowest order in which our ap-
proach is difFerent from the exact solution is third order,

where we miss the ladder diagram, see Fig. 14(d). For the
symmetric case, odd orders vanish, and they are expected
to be small for small amounts of asymmetry. For the im-

purity case this can be deduced from the determinant
method. In fourth order we miss the random-phase ap-
proximation (RPA), crossed, and stacked diagrams of the
types shown in Fig. 14(e). As with any partial sumrna-
tion, one always runs the risk of missing important terms.
It is possible to suggest various improvements that would
pick up some of the missing terms, such as the inclusion
of the RPA series, or self-consistency in the second-order
term of the self-energy, as well as in the one-legged series.
However, our results agree well with exact results, which
indicates that either the terms which we miss are small,
or there is a fortuitous cancellation. Yamada has shown
that, for the symmetric single-impurity Anderson model,
the total proper fourth-order correction is very small, and
our approach takes the improper part into account.
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