
PHYSICAL REVIEW B VOLUME 43, NUMBER 2 15 JANUARY 1991-I

Exciton Green s-function approach to optical absorption in a quantuin well
with an applied electric field

Shun-Lien Chuang
Department ofElectrical and Computer Engineering, Uniuersity of Illinois at Urbana Cha-mpaign,

1406 West Green Street, Urbana, Illinois 61801

Stefan Schmitt-Rink
A Td'z T Bell Laboratories, Murray Hill, New Jersey 07974-2070

David A. B. Miller and Daniel S. Chemla
A Tdk TBell Laboratories, Holmdel, New Jersey 07733-1988

(Received 19 June 1990)

An exciton Green's function is derived and used to calculate the polarization-dependent optical
absorption in a semiconductor quantum well with an applied electric field. With use of the exciton
(or Coulomb) Green's-function approach, the optical-absorption coefficient due to the bound and
continuum states of excitons can be obtained simultaneously and this approach also takes into ac-
count the coupling between different subband pairs. This is in contrast with the conventional ap-
proach in which the 1s exciton bound state is calculated variationally and the continuum states are
calculated simply using the Sommerfeld enhancement factor from the pure two-dimensional case
without the correct quantum size effect. Also, the coupling between different subband pairs is usu-

ally neglected. We compare the numerical results of the Green's-function method with those of the
commonly used variational method and find that the variational method overestimates the oscillator
strength by 20% for the ls bound state and by 50% for the continuum, although the 1s bound-state
energy can be quite accurate. The numerical results using the exciton Green's function are corn-

pared with experimental data and found to be in very good agreement.

I. INTRODUCTION

Quantum-well optoelectronics has become a very in-
teresting and dynamic field of research because of its po-
tential applications in devices including improved lasers,
and novel high-performance electro-optical modulators
and photodetectors. Interesting fundamental quantum-
mechanical phenomena can be controlled experimentally
by tailoring the band structure of the semiconductor
heteroj unction profiles. Since the earlier research on
quantum confined Stark effects, ' a tremendous amount
of effort has been expended to investigate both the
theoretical and experimental aspects of the linear and
nonlinear optical properties of semiconductor quantum
wells and the exciton effects. For a review of the linear
properties including the electric-field effects and the non-
linear properties, see Ref. 3.

The theoretical calculations for the linear absorption
coefficient are either (1) using variational method' for
the bound 1s exciton state and the pure two-dimensional
Coulomb enhancement factor for the continuum states
within the parabolic model, or (2) taking into account the
valence-band-mixing effects and solving the bound-
exciton problem variationally or numerically ' with ap-
proximations for the Coulomb potential. Until recently,
a direct numerical approach was used to solve for the ex-
citon wave functions in quantum wells and to calculate
the absorption coefficient. " However, a large number
of basis functions have to be used because of the singular

nature of the Coulomb potential in momentum space.
In this paper, we present an alternative approach based

on the exciton Green's function to calculate the absorp-
tion coefficient. It is also called the Coulomb Green's
function and was introduced' in the coordinate space for
applications involving perturbations of the ground state
of the hydrogen atom and later was applied to the exciton
problem. ' ' Its momentum-space representation has
also been very useful recently in the study of the optical
Stark effect. ' ' The Green's function satisfies an inho-
mogeneous Coulomb wave equation for an electron-hole
pair with the dipole moment as the source term. The
equation is similar to the exciton (hydrogen) wave equa-
tion and contains terms such as the single-particle elec-
tron and hole Harniltonians with the Coulomb interac-
tion except that the total energy is shifted by the photon
energy, and the driving source term is the optical dipole
moment.

Previously, the exciton Green's function was used in
the study of the exciton polarizations' and optical Stark
effect. It was solved in the purely two- and three-
dimensional limits. ' However, because of the numerical
nature of the approach, very little work has been done in
applying it to the problem of the real, finite-size, quantum
wells. In this paper, we show numerical results calculat-
ed using this technique for the linear absorption
coefficient in finite wells with applied electric fields, prop-
erly taking into account the singularities of the Coulomb
potential in the momentum space. We compare the nu-
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merical results of the exciton Green's-function method
with those using the variational method. ' We find that
although the variational method may give very accurate
results for the binding energy of the lowest bound exciton
in the quantum well, its numerical values for the oscilla-
tor strength may differ by 20%. This agrees with the
essence of the variational concept since a first-order error
in the trial wave function usually results in second-order
errors in the energy when the binding energy is mini-
mized. The oscillator strength is simply determined by
the square of the wave function at p=o, where p is the
separation between the electron and hole in the plane of
the well interface. For absorption above the band edge,
in previous work usually the pure two-dimensional (2D)
Coulomb enhancement factor for the continuum states is
used. We show that the pure 20 enhancement factor
overestimates the absorption coefficient by a factor of
about 1.5 for a (100 A GaAs)/Alo 3Gao 7As quantum
well.

In Sec. II, we derive the relation between the absorp-
tion coefficient and the exciton Green's function for a
quantum well with a general profile. We then show the
solution technique for the Green's function taking into
account the singular nature of the Coulomb potential in
Sec. III. For convenience in calculations and physical in-
terpretations, normalized dimensionless quantities with
an undertilde symbol are used, unless specified otherwise.
For example, the exciton energy E„ is normalized by the
exciton rydberg Ro, E „=E„/Ro. The comparison with
the variational method is discussed in Sec. IV with both
analytical and numerical results. In Sec. V, we compare
our results with the experimental data for the
polarization-dependent absorption coefficient. The con-
clusions are given in Sec. VI. Only the linear susceptibili-
ty is considered in this paper. Further applications of the
exciton Green s function to optical nonlinear susceptibili-
ty' ' are in progress.

i.e., summing over all the electrons in the crystal. The in-
itial state a is taken to be the ground state Ig &, i.e., the
valence band being fully occupied and the conduction
band empty. The final state b is assumed to be the exci-
ton state IX &, which can be either a bound state of the
exciton or an excited scattering state of an electron and a
hole in the continuum. The energy difference Eb —E, is

Ez, which is the exciton energy measured from the
ground state. The linear optical susceptibility can be
rewritten as

The free electron and hole state without Coulomb in-
teraction can be defined ' ' in the following manner.
nmk & is the state obtained by replacing a single electron

in the valence band I mt & by an electron in the conduc-
tion band Ink&, where k is the wave vector in the x-y
plane, and n and I are the electron and hole subband in-
dices, respectively (Fig. 1). The exciton state IX } can be
expanded as a linear combination of the above states

IX&= g P„(k)Inmk& .
n, m, k

The matrix element can be reduced from an X-particle
operator form to a single-particle operator form "

( nm k
I
eR

I g &
= ( +'„'i,

I
«

I
+

=p„(k),
and the result is discussed in Appendix A. The sin-
gle electron state 4'„k and the single-hole state +"

k satis-
fy

II. OPTICAL SUSCEPTIBILITY AND
THE EXCITON GREEN'S FUNCTION

In this section, we use the density matrix approach to
derive the optical susceptibility for a quantum well with
an applied electric field. The final expression for the opti-
cal susceptibility is expressed in terms of the exciton
Green's function.

Following the density-matrix approach as in Shen,
the linear susceptibility can be written in SI units in the
following form:

M,'be,
eoX; (co)=—gV E —E —Ac@—i Ia, b b a

where the factor of 2 accounts for the spins, M,'b is the
ith spatial component of the dipole matrix element M,b

(i.e., i =x,y, z), which is defined as

M, i,
= ( a I e R I

b &

and21, 22

E(;

)
n=C1

En

I=HH1

1=1
X'I (3)

FICx. 1. A quantum well in the presence of an applied electric
field.
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Q2
V + V, (z)+ ~e~Fz ql'„k(r) =E„'(k)ql'„k(r), (7a)

2m,*
tions, assumed to be the same for the well and barrier ma-
terials. The optical matrix element becomes

g2
V' + Vi, (z) —~e~Fz 4 „(r)=E„",(k)+ i,(r),

2mh

(7b)

(X~eR~g }= g P„*(k)p„(k) .
n, m, k

The amplitude P„(k) satisfies the effective-mass equa-
tion for excitons in a quantum well

respectively, where m, and mh* are the eA'ective masses,
V, (z) and Vh(z) are the quantum-well potentials for the
electrons and holes, respectively, ~e~ is the charge of a
hole, and I' is the electric field. The electron and hole
wave functions can be written as

ikp
%"„„(r)=f„(z) —u, (r),

A

where
=Ex%. (k»

E„(k)=EG+E„'(k)+E (k)

E„(k)P„(k)— g (nm~ Vi, k.
'nt' m')P„. .(k')

(10)

sk-p

i. (r) =g (z) u„(r), (8b)
Ak WkE„'(k)=E„'+, E"(k) =E +
2m ~ 2mh

where 3 is the area in the plane of the interface, and
u, (r) and u, (r) are the periodic parts of the Bloch func-

I

The Coulomb potential with the quantum-well size eftect
1S

2

(nmj Vk k ~n'm') = ~,
~

f dz, f dzh f„"(z,)g*(zh)e ' " f„.(z, )g, (zi, ) . (12)

The exciton Green's function is expressed as' '
G~ (k, fico+i I )

P„* (k')p~ (k')
—y yx

Ex fico iI—— (13)

where Ace is the photon energy, I is the half-linewidth
due to dephasing, and superscript j refers to the jth spa-
tial component of the dipole moment. The optical sus-
ceptibility can be written in terms of the exciton G-reen s
function in the following form:

coy,, (co)= g p'„* (k)G„' (k, fico+ir ) .=2
n, m, k

(14)

The exciton Green s function satisfies the following in-
tegral equation in momentum space, similar to Eq. (10)
for the envelope function of the exciton:

[E„(k)—II]G~ (k, 0)
( n m

~ V„„.~ n 'm ' ) G„'. ~ ( k', Il ) =p'„(k ),

where

X &-*(k)&. (k)=&xx .
n, m, k

(17)

cc =

coeval(nii

ceo),

e2= 1m[coy(co)] .

(18a)

(18b)

III. SOLUTION FOR THE EXCITON
GREEN'S FUNCTION

To solve the exciton Green's function satisfying

Substituting (16) into (15) and making use of (10), then
multiplying by the complex conjugate of the envelope
function P„*and summing over n, m, and k, we find that
c$ is given by the expression in the large parentheses in
(13). Thus, we prove (15). Let us consider either i =j=x
(or y for TE polarization) or i =j =z (for TM polariza-
tion) and drop superscripts i and j without loss of clarity.
The absorption coefficient is calculated from the imagi-
nary part of the optical susceptibility:

(15) [E„(k)—O]G„(k,II )

G„' (k, 0)= g P„(k)c$, (16)

where O=Aco+i I Acompariso. n of Eqs. (15) and (10)
shows that the eigenvalues E& and the eigenfunctions
have to be solved in (10), while the integral equation with
the dipole moment as the source term has to be solved for
the exciton Green's function (15). To show that the exci-
ton Green's function indeed satisfies (15), we expand the
Green's function in terms of the exciton envelope func-
tions assuming that they form a complete set:

( nm V(k —k') ~n'm') G„«(k', fI)=p„(k)
n', m', k'

the singularity of the Coulomb potential must be taken
into account properly. Here we assume that 6 depends
on the magnitude of k only, since only the s states of the
exciton wave functions contribute to the linear absorp-
tion. We first subtract the singular part of the potential
and write
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(nm V(q)ln'm') = (nml Vk), In'm') where

where

q=k —k',

+ V")(q)S„„,n.., . (20)

(21)

2e & 1

2~ [k~+(k') —2kk'cosP]'
2

,
—K(4kk'/(k+k') )

2e k+k' ~
(27)

q =[k +(k') —2kk'cosP]'

(nml Vk'& In'm') = f dz f„(z)f„,(z)

(22)

and K is the complete elliptic integral of the first kind:

x f dz' g (z')g (z)

XF(k, k', Iz —z'I), (23)
K(x)= f dO

1 —x sin 6)
(2&)

and

2

F(k, k', Iz —z'I ) = f dP (e ~ ' '
~ —1) (24)

26 0 7lg The second term on the right-hand side of Eq. (26) can be
integrated analytically by a change of variables,
k —k'=k", and integration over k":

eV(2)(q)— (25)
26q

Since V' '(k —k') is still singular at k =k', we subtract
its singular part again

V' '(k —k')G„(k', 0)
k'

2 2k e k Co

„, 2elk —k'IA k2+(k )' 2e 4~ '

where

(29)

= f "dk V„"„', G„.(k', n)
0 277

2k G„(k,fl)
k +(k')

2 2k G„(k,Q),
-„, 2eli —I'la k'+(k )'

(26)

4 I I ( —,')I ( —,')
Co = f dx = =5.244 116 .

2 o 1+x' 2I ( —,')

(30)

The factor 2k /[k +(k') ] is chosen in (26) so that it
equals 1 when k =k', and it speeds up the convergence
rate for large k'. Thus Eq. (19) becomes

I

[E„(k)—Q]G„(k,Q) —g f dk' (nmI Vk'k In'm')G„(k', 0)
0 277

—f dk' Vk „', G„(k',0)—
0 2'

2k e kG„(k,fl) — COG„(k, Q) =)u.„(k) .k'+(k')' (31)

Using the exciton Bohr radius

4~eh
ag =

m„e
(32a)

Ak
R0=

2m„

We define

m„e4

2(4vre) A
(33)

aI1d

k~== 1

ag
(32b)

G „(k,o)= R
G„(k,0), (34a)

k =k/k~ . (32c)

where m, is the reduced effective mass, 1/m, =1/m, *

+1/m&*, we normalize the lengths by the Bohr radius
and the wave number k by k~,

p„(k)=
+2A'Mb

m0EG

1
p,„(k),

7cv
(34b)

(35)

All the energies are normalized by the Rydberg for the
exciton:

The matrix elements p„, r„, and M& are given in Ap-
pendix A, and Q=Q/Ro. Equation (31) becomes
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k
[E„(k)—Q]G„(k,Q) —g f dk' — (nm~ Vk'k. ~n'm')G „,(k', 0)

nm

1 2
2kdk' —

Vk k G „(k',0)— —
2

G „(k,o) —CokCr„,„(k,o)=p„(k), (36)

where kyrie /(2eR0)=4' has been used in the last term
containing Co. It also simplifies the terms containing
V' " and V' ' since both contain the same factors
k2(e /(2eR0).

Let k =tan[(rc/2)x] and use the Gaussian quadrature
method for

f dk —F(k)= f dx=(1+k')F(k)
o 2m o 4

(k, /4)(1+k, ) is the Jacobian. We define

k,
8; =w; (1+k;),

G „(i)=+8;G„(k;,0),
(38)

(39)

k;= g w; (1+k;)F(k;),
I

(37)

where w, (i = I, . . . , X) are the weighting factors and

p„(i)=QWp„(k;) . (40)

Then Eq. (36) can be written in terms of a matrix equa-
tion with a symmetric matrix 2:

(2," '" —05„„,5 6,, )G „(j)=p „(i), (41)

k 2k,-

mn,
'n'mE (k ) C k + y

~ V(2)

1 (Wi) o i I

k

0

(42)

e2=Im —g p„* (k)G„(k,A'co+i I ) =Im2

[V„
2e f' „kg gp„* (i)G„(i)

i

(43)

IV. ANALYTICAL RESULTS IN PURELY 2B
AND QUAIS-2D LIMITS

g P (k)=&A C&x(p=O) (47)

A. Purely 20 limit
has been used. For the lowest bound state of the exciton,
i.e., the X =1s state,

For a purely two-dimensional case, we write
4„(p)=(2/ir)'~ e (48)

e2=Im —g p*(k)G(k, Aco+il )
2

k

where

(44)
Thus it is convenient to pull out the factor 1/a~=k~,
and normalize all the energies Ez, Ace, and I by the Ryd-
berg

G(k, A'co+iI )= g
yx(k ) y axe( k~ )

E~ —Ace —i I

2p kg

& =bound states
'PX(P=o) ' r

(E x —A'co) +1

If p is independent of k (take p=er„=real), we recover
the Elliott formula

y yx(k) 21

2 ~ kp
(Ex —A'co) + I

(46)
where

( =0)= 2
—2n. /( ka )1+e

1/2

(49)

where @x(p=0) =aii@x(p=0), the dimensionless
bound-state wave functions.

For continuum states

where kaii =Q(EX EG)/Ro . — (51)
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E =E~ E—G=fi k /(2m„), (52)

We thus have the Sommerfeld enhancement factor with
@2=1m —g p„* (k)G„(k, fico+i I )

2

(53)

We can rewrite the summation over the continuum states
in the form

2p2II'~ I2

VR0

We note that

gP (k) I

(Ex —A'co) +I (59)

d k k 5 = g P *(k)P (k')
k

Thus (46) becomes

Pka SEI
2irROI- o (ii'tco EG ——E )2+ I 2

(54)

(55)

=Ak f dk —
P *(k)(t (k)

= Ak' g W, P (t)P (i):—g P (t)P (i), (60)

where E =E/R0.
Without the Coulomb enhancement factor [take

S(E)=1], the free-electron and free-hole absorption re-
sult is

where P (i) is the normalized eigenvector obtained
directly from the computer solution (Appendix B). Thus,
in terms of the normalized, dimensionless eigenvector
P (i), wehave

p k~ ~ Aco —EG
e2"'(co) = —+tan2' 0L 2 r (56)

y yx( .
) 21

e2„~ (E ~ fico) +I—f + 2 2
(61)

Using

pk
(57)

0

we have the bound- and continuum-state contributions
(49) and (55).

pk
0

(62)

where we have normalized e2 by the limiting free
electron-hole result

X =bound states

@~(p=0) r
(E ~ —A'co) +I

The above expression (61) contains both the bound- and
continuum-state contributions.

Let us compare the Green's-function method with the
variational method.

+— dE
(fico E E) +I——

B. Quasi-2D limit

l. The Green's function m-ethod

(58)

2. Variational method (Ref. l)

In this method, we assume the separable trial function
for the 1s bound exciton

For comparison purposes, we consider only one elec-
tron (n =Cl) and one hole (m=HH1) state, and com-
pare our numerical results using the exciton Green's
function with those of the commonly used variational
method. We can rewrite (43) as

0'= f„(z,)g (zh )C&(p),

C&(p) =(2/7r)' e—1

and minimize the exciton energy

(63a)

(63b)

E,„(g)= =E„'(0)+E"(0)+ — f dz, f„(z, )I f dz& Ig (zh)I f dpp 2

(64)

with respect to X, where

d + V(z, )+ IeIFZ,
2f71 dz

d+ —,, +V(z )+IeIFzh
2mh dzg

It is convenient to write in terms of the normalized pa-
rameter

(66)

the normalized (dimensionless) wave function 4&(p )

=as@(p),

4ireIp +(z, —zq) ]'~ (65)
&0 „(p)=(2/~)'~ Pe (67)



1506 CHUANG, SCHMITT-RINK, MILLER, AND CHEMLA 43

(68)

where
—t

G(x)= J dt
o (t+x )'

(69)

Here, unlike in Ref. 28, where the wave functions for
f„(z, ) and g (zi, ) are obtained variationally, we find
them numerically from a transition matrix method. We
may also check the purely 2D limit by deleting the z
dependence and using

G(0)=1, (E b) =/3 —4p . (70)

Thus the minimum occurs at P =2 and ( E b );„=—4 as
expected.

For a quantum-well problem, once )r3 is obtained, we
find E b and E =E, +E b, where

E „=[E„-+E„'(0)+E"(0)j/Ro,
and the energy gap EG has been added to Eq. (69) for the
exciton energy E~. The normalized imaginary part of the
permittivity is

8P 2 I
(Ex fico) +I—

+1 SEI
0 (intro —E —E) +I (71)

V. NUMERICAL RESULTS AND DISCUSSIONS

and the normalized binding energy E b=Eb/Rp. The
normalized binding energy E b is obtained from the last
two terms in (64):

(E, ) =/3' —4/3 j dz, ~f„(z, )~'

X j dzh (g (zh)~ G(2/3(z, —zh(/as),

In Fig. 2, we compare the numerical results for the
imaginary part of the normalized permittivity using the
exciton Green's-function method, Eq. (61), with those us-
ing the variational method, Eq. (71). The horizontal axes
are in terms of the normalized photon energy measured
from the band-edge energy of the free electron-hole state
in the exciton rydberg unit, (Are EG—E„'—E" )—/Ro.
We assume a GaAs/Alo3Gao7As quantum well of a
width 100 A without an applied electric field. The exci-
ton half-linewidth is taken to be 1 rydberg (=3.88 meV).
For comparison purposes, only one conduction subband
and one heavy-hole subband are considered since the
variational method usually uses the same assumption,
which is a good approximation when the subband energy
level difFerence is larger that the exciton binding energy.
This is true in our case. The physical parameters used
are E =1.425 eV, @=12.15eo, mhh(x)=(0. 34
+0.42x)mo, m &„(x)=(0.094+0.043x)mo, and m,'(x)
=(0.0665+0.0835x)mo. In Fig. 2, the two dashed lines
are calculated using the variational method for the bound
exciton state: one with the 2D Sommerfeld enhancement
factor, the other without the 2D enhancement factor for
the continuum states. We find that the variational
method gives an accurate binding energy (Eb
= —2. 186Ro = —8. 5 meV) comPared with the value

from the Green's-function method (E& = —2.226R o= —8.6 meV). However, the oscillator strength differs
from that of the Green's-function method by more than
20%. This is expected since in the variational method
the energy, when minimized, has a second-order error
when the trial wave function has a first-order error.
Thus, the oscillator strength, which is proportional to the
square of the wave function, is less accurate than the
binding energy, percentage-wise. We also see that the 2D
enhancement factor overestimates the absorption by
about 50%%uo in the continuum and produces a dip at the
onset of the continuum, which is not observed experimen-
tally. We have also compared the results of the Green's-

In our numerical integrations, the Gaussian quadrature
method has been used. Depending on the desired accura-
cy and the range of photon energy for calculation of the
absorption coefficient, 48 quadrature points have typical-
ly been used for the absorption coefficients to be accurate
with the photon energy larger than ten rydbergs above
the band edge of the free electron-hole state. The actual
calculations can be done either from solving for the
Green's function using Eqs. (41)—(43) or solving for the
exciton wave function directly using (10), (Bl), and (B2)
in Appendix B. Both methods give identical results. The
computation time depends on how many optical energies
Ace are needed to plot the absorption spectrum. If we
only need a few optical energies, it is more efficient to find
the Green's function by directly inverting the matrix
equation (41) and evaluating e~ using (43). If we require
absorption spectrum at many optical energies, say, the
number of Acu's is much larger than the number of quad-
rature points for the k variable, it is computationally
more efficient to solve for the exciton eigenvalues and
eigenfunctions using (10) or (Bl), and then evaluate ez us-

ing Eq. (B2).

P &
Variational method
with 2D enhancement factor

pg I

g
~ 1~i

&a~o ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~I ~ ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ % ~~ ~ ~ se i ~ I ~ ~ ~
~1 ~

~ ~o ~ ~ ~
e ~

~+i"""

Exciton Green's-
function method

Variational method
without 2D enhancement factor

-4 -2 0 2 4
Normalized Photon Energy (Ry)

6 8

FICx. 2. The normalized imaginary part of the permittivity,
ei/e(„, for a (100 A CraAs)/Ala 3Gao 7As quantum well using
the Green's-function method compared to the variational
method with and without the Sommerfeld enhancement factor.
The horizontal axis is in terms of (Rco EG E't Et )/Rp the
normalized photon energy measured from the subband edge.
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th d with those using another variationa 1function me o w'

method presented in Ref. 4. We found that the exciton
binding energy i ed' differs more from the Green's-function
method than that using the variational method shown
here. This is because the Coulomb potential term is ap-
proximated using an average separation 2 instead o
(z —z ) in the z dependence in the variational method oze zh ln e z
Ref. 4. Thus the Coulomb term becomes easier to evalu-
ate in the mini. mization procedure of the variational ap-
proach, i.e., one integration for the vibrational method of
Ref. 4 versus three integrations in Eqs. (68) and ( 9). e
numerical result for the binding energy is —1.94 Ry, or
—7.5 meV, and the oscillator strength for the bound state
is underestimated by about 20%, while the continuum-
state absorption is overestimated by more than 50%.
This may also partially explain why the theoretical calcu-
lations of the absorption coeKcients in Fig. 10 of Ref. 4
using the 2D-enhancement factor increase faster than for
the experimental data as the photon energy is increased.
The overestimations in the continua of p
electron-hole subbands accumulate erros when a larger
photon energy is considered.

In Figs. 3(a) and 3(b), we show the experimental re-
sults of the —ln(transmission) spectra of a 94-A

quantum-well structure with different applied electric
fields for both the TE (the optical electric field is parallel
to the plane of the layers) and TM polarizations (the opti-
cal field is perpendicular to the plane of the layers). Our
numerical results using the Green's-function method are
shown in Figs. 4(a) and 4(b) for the normalized absorp-
tion coejIIicients. We have used two heavy-hole and two
electron subbands for the heavy-hole exciton and two
light-hole and two electron subbands for the light-hole
excitons. The exciton linewidths at different fields are
taken from the experimental data. For the TE polariza-
tion in Fig. 4(a), both the heavy-hole and the light-hole
excitons contribute to the absorption coeKcient. Wit
applied electric fields, the single-particle energies E„' and
E" decreased for the lowest electron and hole sub-are ecreas

tlbands. The exciton binding energy is also slight y
changed. The resultant red shifts of the peak ground-
state exciton absorption are clearly seen with the reduc-
tion in the magnitude of the absorption coe%cient main y
due to the reduction of the overlap integral. The peak
absorption with a higher energy is due to the light-ho e
exciton. For the TM polarization, only the light-hole ex-
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0FIG. 3. Experimental —ln(transmission) spectra of a (94 A
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field is polarized parallel to the plane of the layers. e app ie
electric field is estimated to be (i) 0 V/cm, (ii) 6X 10 V/cm, (iii)
1.0X10 V/cm, (iv) 1.5X10' V/cm. (b) The incident optical
field is olarized perpendicular to the plane of the layers. Thee isp

ii 6X 10app ie e ec1 d electric field is estimated to be (i) 0 V/cm, ii
f. 2V/cm, (iii) 1.1X10 V/cm, (iv) 1.5X10 V/cm. (From Refs.

and 3.)

FIG. 4. Theoretical results using the G reen's-function
method for the normalized absorption coeKcients o (of a (94 A
GaAs)/Alo 3Ga07As quantum well. (a) The incident optica
field is polarized parallel to the plane of the layers. The applied
electric field is (i) 0 V/cm, (ii) 6 X 10 V/cm, (iii) 1.0X 10 V/cm,
(iv) 1.5X10' V/cm. (b) The incident optical field is polarized
perpenerpendicular to the plane of the layers. The applied electric
field is (i) 0 V/cm, (ii) 6X10 V/cm, (iii) 1.1X10 V/cm, (iv)5

1.5 X 10' V/cm.
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citon contributes to the absorption. Even with the in-
clusion of the band mixing and the angular momentum
effects (the azimuthal angle dependence), it has been
shown ' that the leading-order contribution of the
heavy-hole exciton in the TM polarization is due to the
3d state and its magnitude is negligible compared to that
of the light-hole 1s state. Thus the optical dipole moment
for the HH1-C1 exciton state for TM polarization is tak-
en to be zero. Generally speaking, our numerical results
using the Green's-function method agree very well with
the experimental results. There are still some discrepan-
cies if an exact match of the theoretical and the experi-
mental curves is desired. For example, the relative mag-
nitudes of the heavy-hole and light-hole exciton absorp-
tions and the broadening of the light-hole linewidth due
to the coupling to the continuum of the heavy-hole exci-
ton (the Fano resonance' "effect) need further investiga-
tion. Further improvement of the theory is possible tak-
ing into account the valence-band mixing effects.

APPENDIX A: POLARIZATION-DEPENDENT
MATRIX ELEMENTS (REFS.23-26, 29, AND 30)

p„(k)=er„(k)
eP„(k)

mo E„(k) (A 1)

where mo is the electron mass in free space. The follow-
ing approximate matrix elements are used based on the
parabolic-band model.

TE polarization (r =x or y):

2

The single-particle dipole moment can be related to the
momentum matrix element P„(k),

VI. CONCLUSIONS

An exciton Green's function is applied to study the op-
tical absorption of quantum-well structures with applied
electric fields. This method is quite general and is applic-
able to a quantum-well potential with an arbitrary profile.
It also takes into account the bound and continuum exci-
ton states in a consistent manner. In the conventional
variational methods, the bound exciton wave function is
obtained using a trial function and the continuum part is
usually taken from the pure 2D-Sommerfeld enhance-
ment factor. Thus, the bound states and the continuum
states are not orthogonal to each other and do not form a
complete set either. We compared our numerical results
with those of the variational method and found that the
variational method overestimates the absorption due to
bound excitons by 20% and overestimates the absorption
by more than 50% in the continuum when the pure 2D-
enhancement factor is included. We have also compared
our theoretical results with the experimental data, and
found very good agreement. Further work on the in-
clusion of the valence-band mixing effects and/or appli-
cations to optical Stark effects is in progress.

—,'(1+cos 9„), HH

—,'(5 —3 cos 0„), LH,

TM polarization (r =z):

'2

mE„k

0, HH

—,'(1+3 cos 9„), LH,

where

I„' =, zg zdz,
m OEG(EG+ b, )

Mb' ——

12m,*(EG+—,'6)
E,„+E~

cos 0„
en+ hm+ ~ r

(A2a)

(A2b)

(A3a)

(A3b)

(A4)

(A5)

(A6)
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~cv

Then,

&zeM,
moEg

(A7)

nm

(A8)

for the TE polarization, HH case.
For the bulk case, and if the k dependence of p„(k) is

ignored, we have

p =er„. (A9)

The heavy-hole contribution to the TM polarization case
is taken as zero as discussed in the text and in Refs. 29
and 30. We define the dipole length
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APPENDIX B: EIGENVALUES AND
EIGENFUNCTIONS FOR THE EXCITON

An alternative way to And the reduced exciton Green's
function is to solve the exciton eigenfunctions and eigen-
values directly from Eq. (10). The resultant matrix equa-
tions are similar to that of the Green's function

obtained from Eq. (13). In order to produce a continuous
absorption spectrum, we may need to evaluate the ab-
sorption coe%cient at many photon energies, A'cu. When
the number of photon energies is larger than the number
of the quadrature points, it may be computationally
faster to calculate the wave function P(k) by solving for
the eigenvector in (Bl) and evaluating

n', m', j
(j ) =E «P „(i), (B1)

where the normalized exciton wave function in the
momentum space P has been discussed in Eq. (60), and
the matrix A;" '" is the same as in Eq. (42). After ob-
taining the wave function P, the Green's function can be

(B2)

by summing over all the discretized exciton states X at
each photon energy Ace.
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