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Electronic structure of a single layer of Na on Cu(111)
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High-resolution photoemission and two-photon photoemission have been used to investigate the
electronic structure of a single layer of Na on Cu(111). In addition to an occupied Na-induced
state 0.11 0.03 eV below the Fermi energy, we resolved three unoccupied states with binding
energies relative to the vacuum energy of 0.72+0.03, 0.27+ 0.03, and 0.13+0.04 eV. These
values are at variance to the predictions of a simple phase-analysis model. The eAective mass of
the lowest unoccupied state and the occupied Na-induced state were measured to be
m*/m, =1.3+'0.1. This is considerably larger than the expected free-electron value. More
refined theoretical models accounting for the atomic structure of the adsorbate are necessary for a
realistic description of the electronic structure of single alkali-metal layers on metal surfaces.

Adsorption of alkali metals on metal surfaces produces
shifts of the surface states of the bare substrate' and in-
duces adsorbate-derived states' ' ' " as shown in a lot
of photoemission and inverse-photoemission (IPE) experi-
ments. The observed electronic structure of a single
alkali-metal layer is commonly interpreted in two
diff'erent ways. Either the results are compared to a self-
consistent calculation of the band structure of an isolated
monolayer' of the respective alkali metal "or they are
related to the predictions of a phase-analysis mod-
el. ' ' This model was originally introduced in order to
describe the surface states of clean metal surfaces' '
formed in the potential well between the vacuum barrier
and the crystal. Surface states occur at energies where
the accumulated phase shift for one roundtrip in the po-
tential well sums up to a multiple of 2z: Ng+@g =2zn,
n =0, 1,2, . . . where Ng and @g are the phase shifts upon
reAection of an electron at the crystal and the image bar-
rier, respectively. For the system Na/Cu(111), Lindgren
and Wallden used this model to explain an extremely nar-
row peak close to the Fermi level EF, ' ' which they ob-
served in photoemission. ' In their modification of the
above model, the sodium layer is accounted for by intro-
ducing a region of constant potential U~, of thickness d
between the crystal and the image barrier. For an elec-
tron with energy E, an additional phase shift
=d[2m/6 (E —UN, )) '~ has to be taken into account:
@c.+@p+2@D=2rrn. As a consequence of the I/r image
potential, @s diverges and a series of unoccupied states
below the vacuum level is expected to be formed in the
Na/Cu(111) system, similar to the image-potential states
on clean metal surfaces. ' '

Measurements of the unoccupied-level structure of the
alkali-metal-covered metal surfaces done so far were per-
formed with IPE. Most of these investigations showed a
single weak structure near the vacuum energy interpreted
as an alkali-metal d-derived state '' according to Wim-
mer. ' No clear experimental evidence for the series of
states predicted by the phase-accumulation model could
be found so far. To clarify whether this is due to an inade-
quate description of the physical problem within the phase
model or a result of insufhcient resolution of IPE, we used

two-photon photoemission (2PPE) to investigate a single
layer of Na on Cu(111). 2PPE has proven to be an ade-
quate tool for resolving image states of clean metal sur-
faces. '

In 2PPE, pulsed laser light is used to excite electrons
from an occupied state below EF into an unoccupied state
below the vacuum level E„, Within the lifetime of this
excited state, a second photon may be adsorbed and pho-
toemission from the intermediate state can be observed.
Details of the experimental setup have been published pre-
viously. ' The experiments were performed under UHV
conditions at a base pressure of p =7x10 '' Torr. A
tunable dye laser pumped by an excimer laser is used as
the light source for 2PPE. In all 2PPE measurements we
used p-polarized light for both excitation steps. Ordinary
one-photon photoemission (1PPE) is excited by the unpo-
larized monochromatized light of a mercury lamp. The
photoelectrons are analyzed in a sectorial hemispherical
analyzer with an energy resolution set to around 45 meV
in the present experiments.

The upper part of Fig. 1 shows typical photoemission
spectra of the clean Cu(111) surface recorded in normal
emission. All data are referred to the Fermi energy EF.
The 1PPE spectrum at the left-hand side excited with a
photon energy of 5.59 eV is dominated by the occupied
surface state 5 existing in the L2 -L

~ gap of the projected
bulk band structure around I . In agreement with recent
publications, we found a binding energy of —0.39
+ 0.02 eV at I. For the work function @, determined by
the low-energy cutoN'of the photoemission spectra, we ob-
tain 4.94 ~ 0.02 eV which is in the range of previously re-
ported values. At the right-hand side of the upper part
of Fig. 1 a 2PPE spectrum excited with a photon energy of
4.48 eV is shown. The sharp peak I at 4.11 eV above EF
results from emission out of the lowest image-potential
state. In agreement with previous findings, we get a
binding energy relative to the vacuum energy of
0.83+ 0.03 eV. As depicted in Fig. 1 at this photon ener-
gy very e%cient resonant excitation from the occupied
state 5 into the image state I takes place.

Na is deposited onto the sample from a well-outgassed
commercial getter source (SAES) mounted in a heated
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collimating glass tube. The pressure during evaporation
did not exceed 1.5x10 ' Torr. The adsorption of Na
was monitored by low-energy electron diffraction
(LEED), 1PPE, and 2PPE, including work-function mea-
surements. In LEED and 1PPE we found the coverage
dependence described by Lindgren and Wallden. ' In ac-
cordance with their investigation we determined the com-
pletion of the first Na layer at the maximum intensity of
the Na-induced peak F (Fig. 1) observed in photoemission
at low photon energies. This coincides with the weak
maximum to the work function of @=2.77 eV which ap-
pears after passing through the work-function minimum
typical for alkali-metal adsorption on metals.

In the lower panel of Fig. 1, 1PPE and 2PPE spectra of
the Na-covered Cu(111) surface are shown. The 1PPE
spectrum is wider than the one of the clean surface which
is due to the reduced work function and exhibits the Na-
induced peak F. F is found to have a binding energy of
—0.11+0.03 eV. It serves as the initial state in 2PPE for
a resonant excitation with a photon energy of 2.12 eV into
an unoccupied state J about 2 eV above EF. The respec-
tive 2PPE spectrum and the excitation process are shown
in the right-hand side of the figure. As the highest acces-
sible unoccupied states populated with electrons from EF
have an energy of E =EF+hv (marked at the energy
scale of the spectrum), one has to increase the photon en-
ergy to a value close to the work function in order to look
for further states close to E„,, This is demonstrated in
Fig. 2 where a series of 2PPE spectra of a single layer Na
on Cu(111) recorded at different photon energies can be
seen. As in Fig. 1 the energy of the highest accessible
unoccupied states (EF+hv) at the corresponding photon
energy is shown. The additional line F gives the energy
where electrons excited from the state F would appear un-
der absorption of two photons with energy hv. All spectra
exhibit a peak J at about 2 eV binding energy which is due
to emission out of the first unoccupied state. The peak in-
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FIG. l. Upper panel: 1PPE spectrum (left-hand side) and
2PPE spectrum (right-hand side) of the clean Cu(111) surface.
The arrow depicts resonant excitation from the occupied surface
state S into the lowest image-potential state I at a photon energy
of 4.48 eV. Lower panel: Spectrum for a single layer of Na on
Cu(111). Resonant excitation between the Na-induced states F
(occupied) and J (unoccupied) occurs at hv=2. 12 eV. The po-
sition of the highest accessible state is marked on the energy
scale.
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FIG. 2. Series of 2PPE spectra of a single-layer Na on
Cu(111) recorded at diff'erent photon energies in normal emis-
sion. At hv-2. 64 eV, three unoccupied states (marked by bars)
can be seen (see text).

tensity compared to the low-energy cutoff in the spectrum
(not shown in the figure) decreases by a factor of about 20
when increasing the photon energy from 2. 12 to 2.43 eV.
This is a consequence of the fact that at the higher photon
energy, J is populated with electrons from a region of low
density of states, whereas at hv 2.12 eV the efficient res-
onant transition from F into J takes place. At hv=2. 32
eV both the unoccupied state and F are seen in the spec-
trum, whereas no emission from F is detectable at
hv=2. 43 eV. However, at this photon energy an addi-
tional peak appears at about 2.4 eV above the Fermi level
and is seen in all spectra with hv~ 2.43 eV and is conse-
quently a second unoccupied state. At hv= 2.53 eV this
state is populated with electrons from the occupied state
F. This resonance increases the photoemission intensity in
this peak by a factor of 2 relative to J. After passing
through this resonance, the peak intensity drops by a fac-
tor of 10 as can be seen in the spectrum recorded at
hv =2.64 eV. In this spectrum a third peak above the as-
sumed position of F appears at E EF—2.6 eV. As this—
state could not be excited with lower photon energies, it is
also identified as a further unoccupied state near the vacu-
um level. Thus, three unoccupied states close to E„„are
identified and must be designated as the three lowest
members of a Na-induced series of image-potential states.

We measured several series of spectra as shown in Fig.
2 and extrapolated data measured for coverages belo~ one
monolayer. In this way we find the following best values
for the binding energies relative to E„„of0.72+0.03,
0.27 ~ 0.03, 0.13 ~ 0.04 eV, and a work function
@=2.77 ~ 0.03 eV for one layer Na on Cu(111).

The model calculation of Lindgren and Wallden using
d=3.07 A and UN, EF= —3.2 eV as the par—ameters
for the Na potential describes well the occupied Na-
induced state F as the n 1 state, but yields a binding en-
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ergy for the lowest image state (n =2) of E E—„„=—0.5
eV (Ref. 14) in disagreement with our experimental
findings. To find out whether a variation of the parame-
ters d and Ug, determining @D would lead to a better
agreement with the experiment, we made a calculation
with the barrier shift @~ given by the McRae-Kane for-
mula which is a good approximation for states close to
the vacuum level. ' @p was determined as described by
Smith. ' Agreement between the model and the experi-
mental data within the error limits is achieved only for a
certain range of d and the corresponding UN, d =5-9 A
and UN,. —EF =0-1.5 eV. Using this set of parameters no
occupied Na-induced state would appear, as a conse-
quence of the fact that Ug,. lies above EF. Thus, no set of
parameters exists that describes the experimental binding
energies of all four Na-induced states observed for a sin-
gle layer Na on Cu(111), if the sodium layer is described
by a simple square-well potential. This indicates that the
atomic structure of sodium has to be taken into account
for a realistic description of the electronic structure of a
single layer of Na on Cu(111). Actually this conclusion
holds even if the highest measured image state (n =4)
was disregarded, since the above parameter range is deter-
mined by the lower two image states (n =2,3) only.

For a monolayer of Na on Cu(111) one might expect to
find effective masses to be free-electron-like. That holds
especially for the image states of this system as they are
located near the middle of the L2 —L ~ gap. In that case,
only slight deviations from the free-electron value are ex-
pected. On the other hand, the effective mass of the
partially occupied alkali-metal-induced states measured
so far were found to be larger than expected from self-
consistent calculations for an isolated alkali-metal mono-
layer. ' As pointed out in Ref. 4 enhanced self-energy
corrections due to the two-dimensional nature of the ad-
sorbate or hybridization of the alkali-metal band with the
substrate bands might be responsible for this effect. We
measured the eff'ective mass for the occupied structure F
and the lowest unoccupied image-potential-induced state.
These measurements together with the binding energies at
I for the higher imagelike states are shown in Fig. 3.
Both states are found to disperse parabolically with the
same eA'ective mass of en*/m, =1.3+'0.1. Therefore, in
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FIG. 3. Dispersion E(jci) of the occupied and the lowest
unoccupied Na-induced state measured along I M (open cir-
cles). The best parabolic fits (lines) yield the effective masses of
m*/m, =1.3 ~0.1 for both states. The solid circles mark the
best values for the binding energies at I of the four measured
Na-induced states (see text).
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agreement with the above-mentioned experiments, we
find effective masses considerably larger than expected
from a simple theory. Even for the image-potential state,
which is expected to have an effective mass close to unity
due to its location in the middle of the gap, no free-
electron behavior is found.

We conclude that the qualitative predictions of simple
phase analysis concerning the existence of imagelike states
on a single layer of sodium on Cu(111) are in agreement
with our experimental findings. However, it is not possi-
ble to describe the measured binding energies and disper-
son quantitatively within this model. Investigations con-
cerning the coverage dependence of surface-state energies
upon alkali-metal adsorption are under progress.
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