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Coulombic and neutral trapping centers in silicon dioxide
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Metal-oxide-semiconductor structures incorporating thermally grown silicon dioxide films were
implanted with arsenic ions and then annealed at high temperatures. The subsequent trapping sites
produced are amphoteric. Coulombic-attractive traps (for electrons) were produced with the
avalanche injection of holes from the silicon substrate and the subsequent capture of some of these
holes on the arsenic-related sites. During internal photoemission of electrons from a thin aluminum

gate, the voltage shifts due to hole annihilation by electrons were recorded and the effective capture
cross section was determined. This capture cross section was found to vary from —10 ' to
3X10 " cm' for average electric fields ranging from 2X10' to 3X10 V/cm. An average field

threshold ( —1,2 X 10 V/cm) was found, below which the capture-cross-section —average-field
dependence follows a power law with an exponent of approximately —1.5. Above the average field

threshold, the power-law exponent was found to be approximately —3.0. Also, when the amphoter-
ic arsenic-related sites are empty, they can form neutral trapping sites for electrons. For these trap-
ping centers, it is found that the neutral capture cross section is relatively independent of the aver-

age electric field. For average fields ranging from 5 X 10' to 6X 10 V/cm, the neutral cross section
is found to be approximately constant at (1—2) X 10 "cm . For the Coulombic electron traps, clas-
sical and quantum-mechanical Monte Carlo simulations agree qualitatively with the experimental
results. These simulations suggest that the heating of the electron-energy distribution and tunnel

detrapping are the primary cause of the decrease in the effective capture cross section in the high-
field regime. For the neutral traps in the low-field regime, the classical Monte Carlo simulation also
agrees with the experimental results. However, for fields above the electron-heating threshold, the
simulation predicts an increase in the capture cross section not found in the experimental data. We
suggest that this discrepancy arises since the classical simulation does not account for tunnel detrap-
ping, which would lower the effective cross section.

I. INTRODUCTION

In recent years, there has been a growing interest in the
electronic properties of trapping centers found in silicon
dioxide (SiOz) used in metal-oxide-semiconductor (MOS)
technologies. With the increasing demand for faster and
more dense devices, both charged and neutral trapping
centers have been found to be important in the role of de-
gradation and breakdown mechanisms, especially in
submicron metal-oxide-semiconductor field-efI'ect transis-
tors (MOSFET's). Even the so-called intrinsic (process-
dependent) centers commonly found in SiO~ today can be
strongly afI'ected by the large electric fields that are neces-
sary as device dimensions decrease. And even though
these centers may have very small capture cross sec-
tions, ' significant threshold voltage shifts and even ca-
tastrophic breakdown can still result, since at high elec-
tric fields trap creation results. ' ' Therefore it has be-
come necessary to study these trapping centers with
much better control than previously reported. Of partic-
ular interest, of course, is the field dependence of the cap-
ture cross section for both Coulombic and neutral
electron-trapping centers, as both types of traps have
been found to be prevalent in thermally grown Si02 films.

Measurements of many difterent types of traps in Si02
can be found in the literature. Unfortunately, researchers
have had to rely on variations of processing conditions to
produce trapping centers. As a result, the density, distri-
bution, and position of the traps in such SiO2 films are
measurable, but generally uncontrollable. It is for these
reasons that in our samples, trapping centers were pro-
duced with the implantation of arsenic ions (As+ ) into
the Si02 film. Therefore the density, position, and charge
sign of the traps were controlled and could be verified ex-
perimentally. Also bulk trapping properties could be as-
sessed, since with ion implantation (and subsequent pre-
and post-metallization anneals), the traps could be posi-
tioned away from the Si/Si02 interface to reduce
interface-state e6'ects. It is known that trapping sites that
are produced from As+ implantation with high-
temperature annealing treatments will trap both electrons
and holes' ' with a large capture probability. Therefore
by combining avalanche injection of holes from the sil-
icon substrate (n type) and internal photoemission of
electrons from the gate electrode, both neutral and
Coulombic-attractive centers may be studied using the
same sites.

Some preliminary results of this work have been pub-
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lished previously. ' ' However, this work is presented
here in a compLete manner, in full experimental and
analytical detail.

II. SAMPLE FABRICATION

The substrates were n-type (100) silicon wafers with a
resistivity of 0. 1 —0.2 Qcm. After standard cleaning, a
thermal oxide was grown in a nominally dry oxygen am-
bient at 1000'C to a thickness of approximately 1240 A
(as determined by ellipsometry). The wafers were then
given an As+ implantation at room temperature. The
ion concentration and energy for these samples were
5X10' cm and 60 keV, respectively. The wafers were
then annealed in nitrogen at 800'C for 30 min. Thin
(
—120—150 A) Al circular gate electrodes with an area

of 5.2X10 cm were deposited through a shadow mask
from an rf-heated crucible at a pressure of 10 Torr to
form MOS capacitors. The capacitors were given a post-
metalization anneal (PMA) in forming gas (N2/H2) at
400'C for 20 min to reduce the Si/Si02 interface-state
density. Finally, the oxide from the back side of the
wafer was etched to allow electrical contact. Control
samples were similarly produced but contained no ion
implantation.

III. MEASUREMENT PRjOCKDURES

Avalanche injection from the silicon substrate was
used to inject holes into the Si02 film. In this technique
the substrate is driven into deep depletion, where, under
high electric fields, holes produced by impact ionization
are injected into the Si02 film. Using an automated sys-
tem, the amplitude of a 50-kHz sawtooth was continuous-
ly monitored in order to keep the average hole injection
current constant. The ramp was periodically interrupted
to measure the midgap voltage, which increased as some
of the injected holes were trapped. The midgap voltage
shift is defined as the shift in the high-frequency (1 MHz)
capacitance-voltage (C-V) curve (when the Fermi level is
at a silicon midgap position at the Si/Si02 interface),
measured after charging, relative to the initial C-V curve.
In this experiment, the total amount of initial charge (i.e.,
trapped holes) was varied by terminating the avalanche
injection when the midgap voltage V reached a certain
desired value. The net midgap shift b V was varied
from ——2 to ——16 V.

After the sample had been charged to a predetermined
state, electrons were injected from the Al gate using
internal photoemission. A deuterium lamp (Oriel No.
6316) and an ultraviolet cutoF filter (Corning No. 9-54)
were used to photoinject electrons from the Al gate into
the Si02 film. The photocurrent was kept constant using
a feedback system to control the applied bias. The
midgap voltage shift, which now decreased as some of the
injected electrons recombined at the trapped hole sites,
was sensed during periodic interruptions of the injected
current.

The use of midgap voltage to measure fixed oxide
charge or oxide trapped charge has been reported previ-
ously. ' This technique can eliminate the contribution

of the charge in the interface states. Assuming, for sim-
plicity, that the interface state are amphoteric and creat-
ed by dangling silicon bonds or so-called Pb centers, ' '
it has been shown that two electrons can be captured by
each site as the Fermi level at the Si/Si02 interface is
moved from the silicon valence band to the conduction
band. The states above midgap are acceptorlike while
those below midgap are donorlike, with equal numbers of
each. (Each pair of donorlike and acceptorlike states cor-
responds to one Pb site. ) Therefore when the Fermi level
is at midgap, the interface is electrically neutral and the
interface charge will not contribute to that sensed. It
should be noted that, in general, not all interface states
are Pb centers, nor need they be symmetric about
midgap. However, for the capacitors used here, the den-
sity of interface states was low and symmetrical about
midgap and we therefore assumed AV to be an accu-
rate measure of the net oxide trapped charge.

IV. ANALYSIS OF TRAPPING PROPERTIES

where

k, =n, (u,„)o, ,

k =4o.
(lb)

(lc)
—E

k, =N, v,ho. ,exp T (ld)

X is the density of traps, n, is the density of filled traps,
n, is the density of conduction-band electrons, ( u, h ) is
the mean thermal velocity of an electron, o., is the micro-
scopic capture cross section, 4 is the local photon flux,
o. is the photoionization cross section, X, is the effective
density of states in the conduction band, and E, is the
trap depth measured from the conduction-band edge.
The first term on the right-hand side of Eq. (la) is the
capture rate of thermal electrons from the conduction
band. The last two terms are the detrapping rates by
photon and phonon absorption, respectively.

The photoionization cross section for similar traps in
Si02 has been found' to be more than an order of magni-
tude smaller than the trapping cross sections found in the
present study. It is therefore assumed that the photode-
trapping term in Eq. (la) may be regarded as negligible.

The trap energy for electrons of the As-related traps is
large ( —3.3 eV) relative to kT and therefore the proba-
bility of emission from the trap by multiphonon absorp-
tion is very small. ' In this case, the final term is also
negligible and Eq. (la) may be approximated by

dn,
=n, u, „cr,(N —n, ) .

df
(2)

At high electric fields, the effective energy depth of the
trapping center is reduced. In this regime, impact ioniza-

Using first-order kinetics, the rate equation for electron
trapping can be written as '

de ] =k, (X n, )—k~n, —k, n, , —
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tion of a trapped electron, as well as tunnel detrapping
(field ionization), may be significant. Initially, we have
assumed that the above approximation is valid, at least
for low electric fields, and that any detrapping mecha-
nism will be absorbed in the field dependence of the cap-
ture cross section as discussed below.

The conduction-band current density is usually given
21

=n Ud n U h (3)

dQ J=—o(eN, —Q),dt e

where

(5)

OX OXQ=e I n, dx, N, = I Ndx .

For any given time t, the total charge fluence is given by

where e is the electron charge ( —1.6 X 10 ' C) and ud is
the drift velocity of an electron. It has been shown that
for electric fields in the range (0.2 —0.8) X 10 V/cm, the
drift velocity is approximately equal to the thermal veloc-
ity of —10 cm/s. However, the electron-energy distribu-
tion is not in thermal equilibrium with the lattice for
fields ~1.5X10 V/cm, and significant electron heating
occurs. Under these conditions the above approxi-
mation is not valid, and o.,u,„[in Eqs. (1) and (2)] should
be replaced by the average of the product of the micro-
scopic cross section and carrier velocity over the actual
hot electron-energy distribution. In any case, an e6'ective
cross section can be defined as cr =o,u„„/ud, and we shall
take this approach. With this substitution, Eq. (2) be-
comes

dn,
o(N —n,—) .

dt e

For the electron trapping case, n, is the density of
trapped electrons while A —n, is the density of
Coulomb-attractive centers (i.e., trapped holes). It is as-
sumed that the electrons are only trapped on the
Coulombic sites. For most of the range of electric fields
of interest, it has been found that this is valid. However,
for higher electric fields ( ~3X10 V/cm) electron trap-
ping on neutral sites (that is, on uncharged As-related
centers) may no longer be neglected, since the capture
cross section of the Coulombic centers approaches that of
the neutral centers. This is discussed in more detail in
Sec. VI.

Since the time evolution of trapped charge per unit
area is the actual quantity that is measured experimental-
ly, Eq. (4) must be integrated over the Si02 film thickness
(d,„)to give

The midgap shift is related to the first moment of the ox-
ide charge density per unit area by

AV
X

mg
OX

(8)

where x is the centroid of charge measured from the
metal-Si02 interface and F.,„ is the static (or low-
frequency) permittivity of the oxide. Using Eqs. (7) and
(8), the capture cross section o and density of traps N,
can be calculated when 6 V is measured as a function
of time. If the charge centroid (x) is not known, o may
still be determined and an effective trap density may be
calculated using

J„,=J +J„+J,h, (10)

where J is the actual injected photocurrent density (i.e.,
the particle current density), J„ the capacitive displace-
ment current density due to the changing applied bias,
and J,h is the displacement current density due to the
charging of the traps. The capacitive displacement
current is simply given by

dV,„„=—C

w here C is the dielectric capacitance of the Si02 film per
unit area and d V, /dt is the rate of change of the bias ap-
plied to the gate electrode. The displacement current
density due to the charging in the SiOz is given by '

d „Bn((x,t)
dx

o Bt
XJ,„=e 1—
OX

X
&i,ea

—
d OX

For the capacitors used in this study, the position of the
trapped charge centroid is determined by the implanted
As+ spatial distribution. Using secondary-ion mass spec-
troscopy' ' (SIMS) and the photo I Vmeasu-rements,
the position of the charge centroid (x ) was verified exper-
imentally.

During the injection of charge into the SiO2 film, the
external current (J,„,) was maintained at a constant value
by adjusting the applied bias. In doing so, a displacement
current component arises due to the changing applied
bias. As the charge traverses the Si02 film, some of it is
trapped, and contributes a component to the external
current which is measured at the gate electrode. There-
fore, to get the correct value of the charge fluence, the
measured or external value must be corrected by account-
ing for the displacement components. The total current
density measured in the external circuit J,x, is given by

N;„,(t) = f dt' or
i J(t') dN;„, (t)

dt e
(6)

X1—
OX

dQ(t)
dt

(12)

Finally, substituting Eq. (6) into Eq. (5), the capture cross
section is given by

The actual particle current density is then given by

d 1

dN;„, (eN, —Q)
(7)

dV,J =J„,+C
dt

X1—
OX

dQ(t)
dt

(13)
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For electron trapping in Si02, both displacement
currents are often neglected' ' ' ' ' ' since they are
usually much smaller than the set current level, particu-
larly for samples with low trapping probabilities ( 0. 1).
(The trapping probability is simply the probability of an
electron becoming trapped as it traverses the length of
the Si02 film. This probability can be calculated by the
multiplication of the density of the empty traps by the
capture cross section. Typically, for thermally grown ox-
ides, the trapping probability is of the order of
10 —10 .) In our case, the external current and the
total of the displacement currents were of the same order
of magnitude, at least during the initial portion of the ex-
periment. Therefore the displacement current com-
ponents were calculated and subtracted from the current
measured in the external circuit to obtain the actual par-
ticle current density and subsequent charge fluence.

The solution of Eq. (5) yields an exponential time
dependence of the trapped charge, Q, from which o may
be deduced. This is the most common procedure for
determining o. from charge trapping measure-
ments. ' ' ' ' ' However, there are experimental lim-1, 13, 14,23, 32, 33

itations to this technique. First, one assumes that the
average electric field (F) is constant throughout the ex-
periment. If large changes in the field arise from
significant charge trapping, inaccurate values may result.
For small amounts of trapped charge (and therefore small
midgap voltage shifts), the average field may be assumed
to be constant and the exponential fit will produce accu-
rate values of o. . It must also be assumed that the parti-
cle current is constant in time to properly use the ex-
ponential fit. Again, for small densities of Coulombic
centers this is true.

In the present work, the samples purposely contained
large densities of traps which resulted in large midgap
voltage shifts and an average field that was time depen-
dent. Also, substantial displacement currents were mea-
sured resulting in a particle current that was not con-
stant. However, using Eqs. (7) and (8), the instantaneous
eftective cross section could be calculated since both the
particle current and average field are known for all times.
This procedure not only yielded accurate results, but pro-
duced a series of o.-F data points as opposed to a single
data point from the exponential fit technique.
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FIG. 1. Midgap voltage shift 6 V
g

for avalanche injection of
holes from the silicon substrate and their subsequent trapping
on the As-related sites in the SiO2 layer, followed by internal
photoemission of electrons from the Al gate and their subse-
quent annihilation of the trapped holes as a function of time.

V. EXPERIMENTAL RESULTS AND DISCUSSION-
COULOMBIC-ATTRACTIVE CENTERS

Figure 1 shows an example of data illustrating the mea-
sured midgap voltage shift (b, V ) as a function of time
during the avalanche injection of holes and subsequent
photoinjection of electrons. In Figs. 2(a) and 2(b), the
midgap voltage shift (b, V ) and the applied gate voltage
are shown in more detail for (a) the avalanche injection of
holes (6V,„,&) and (b) the internal photoemission of elec-
trons electrons (hV, ). The reader should note that the
bias applied during internal photoemission V, is negative
(i.e., electrons are injected from the gate contact).

As shown in Fig. 2(a), during the avalanche injection of
holes, the midgap voltage shifts to greater negative
values, demonstrating the increase in the total amount of
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FIG. 2. Typical midgap voltage and applied-gate-voltage
shift characteristics during (a) avalanche injection of holes from
the silicon into the SiO2 film followed by (b) internal photoemis-
sion of electrons from the Al gate for Coulombic trapping
centers created by the holes trapped on the As-related sites.
V,„,~ is the peak voltage of the sawtooth wave form applied to
the gate electrode for the avalanche injection (a) while for the
internal photoemission (b), V, is the (negative) dc bias applied
to the gate electrode.
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positive charge in the SiOz film. No analysis was per-
formed on the trapping parameters of the injected holes.
The injection of the holes was used only as a technique to
create Coulombic trapping sites (for electrons) in the SiOz
film. After the Coulombic trapping sites were intro-
duced, electrons were photoinjected into Si02. Figure
2(b) shows the midgap shift returning to lower negative
voltages as some of the electrons are captured on the
Coulombic sites. The applied voltage is also shown to
change with time.

Figure 2(b) demonstrates the phenomenon called volt
age turnaround. One might normally assume that as the
density of trapped electrons in the SiOz film increased,
the magnitude of the average electric field and the ap-
plied voltage should increase in time. This, however, is
not the case as shown in Fig. 2(b) where the voltage mag-
nitude decreases initially and then after a substantial
period of time, increases. This phenomenon has been
noted for both electron' ' and hole' ' trapping and is
due to the experimental technique that is used to inject
the charge carriers. In our case, a feedback system is
used to maintain a constant, externally measured current.
The applied voltage is adjusted to keep this current con-
stant. However, there is a displacement current which is
due to the changing charge state of the SiO~ film [see Eq.
(13)]. The displacernent current arises from the trapping
rate of electrons. Initially the density of unfilled traps
(i.e., Coulombic centers) is very large, and since the trap-
ping rate is proportional to the density of unfilled traps,
the displacement current density (J,h) is also large. To
maintain a constant external current, the magnitude of
the applied voltage is increased. The changing applied
bias also contributes a term to the displacement current.
However, it should be stressed that this is only a conse-
quence of the trapping rate and the condition of a con-
stant current in the external circuit. As time increases,
the density of trapping centers decreases, thus reducing
the trapping rate and displacement current. Eventually,
the displacement current becomes smaller than the value
set for the external current and the voltage turnaround
occurs. Beyond the voltage turnaround, the applied bias
changes, not in response to the changing displacement
current, but rather in response to the buildup of trapped
charge in the SiOz film.

The time at which the voltage turnaround occurs is a
complicated function of the density and spatial location
of traps, the external current level, as well as the initial
applied voltage. All of these parameters affect the trap-
ping rate by altering the density of traps, by changing the
capture cross section (which is strongly field dependent),
or simply by altering the external current value. It is not
important to know the exact nature and effects of these
parameters on the turnaround voltage. We know the ap-
plied bias and can calculate the density of trapped elec-
trons, and therefore the trapping rate at any point in
time. Since we can deduce the displacement current from
measured quantities, we can calculate the actual particle
current as a function of time [see Eq. (13)]. It is from the
particle current that the charge fluence is calculated.
Figure 3 shows an example that demonstrates this point.
This figure shows the displacement currents and calculat-
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FIG. 3. Transient current characteristics separating the dis-

placement current (I,h+I„~) from the particle current I~. The
external current I,„, was set to be constant, while I„~ is calcu-
lated from the changing applied bias (see inset) and I,h is calcu-
lated from the trapping rate of electrons.

ed particle current (Iz ) as a function of time, where the
changing applied bias is shown in the inset. Even though
the major contribution to the displacement current arises
from the changing applied bias, it should be stressed that
this is only a result of the changing trapping rate and the
need to maintain a constant current in the external cir-
cuit. The two displacement currents are separated only
for clarity.

Using Eq. (7), the effective capture cross section is cal-
culated from the rate of change of trapped charge per
unit area Q with respect to the total charge fiuence N;„j.
Figure 4 shows examples of the trapped charge as a func-
tion of the total injected charge for four different values
of electric field. It should be noted that the values of
electric field given here are only auerages as the applied
bias changes with time. This figure demonstrates the
effect of the electric field on the density of trapped charge
for a given charge Auence.

From the data shown in Fig. 4, a derivative at each
point was determined and o was calculated using Eq. (7).
Even though the applied bias changes during the experi-
ment, it is known at every point in time. Therefore 0 can
be evaluated as a function of the average electric field.
Numerous experiments were carried out where the exter-
nally applied field, the density of Coulombic trapping
centers, and the external current were varied. For each
experiment, a series of 0. values was determined. Finally,
the data from all the experiments were grouped into
small intervals of average electric field ( b,F 8 1 X 10
V/cm) and an average over the interval was taken. Fig-
ure 5 shows the effective capture cross section as a func-
tion of the electric field. Each data point shown here
represents an average of all data values within the range
hF. (Error bars have not been included for these data
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FIG. 4. Typical room-temperature trapping characteristics
for Coulombic centers. The injected charge Auence is calculat-
ed from the net particle current I~. The values of F given here
are actually the time-averaged values since the electric field
changes as electrons are trapped.
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FIG. 5. Coulombic capture cross section as a function of the
average electric field. A power-law fit for the low- and high-
field regions is shown and gives exponents n = —1.5 and —3.0,
respectively. The threshold E,h is found to be —1.2X 10
V/cm. Also shown are both quantum and classical Monte Car-
lo simulations. Both models include the effects of electron heat-
ing. The quantum calculation also includes both the existence
of and transitions {phonon and photon) between bound states of
the trap potential and tunneling from these levels into the SiO~
conduction band. The experimental data fall between these
models, implying that both electron-heating effects and
quantum-mechanical tunneling contribute to the decrease in o.
in the high-field regime.

since the errors are smaller than the symbols shown. ) It
can be seen that o. falls into two distinct regions of aver-
age electric field with the threshold F,h=1.2X10 V/cm.
A power-law fit was calculated (o. ~F"), and the ex-
ponents (n) are approximately —1.5 and —3.0 for the
low- and high-field regions, respectively.

These values of n are in agreement with Ning's earlier
work even though there are a number of differences in
both the samples and the analytical and measurement
techniques. The Coulombic centers in the devices used in
the present study were generated using ion implantation
of As+ and as such were positioned away from either in-
terface (x/d, „=0.38, measured from the Al-Si02 inter-
face using the photo I Vtech-nique' ' ' ' ). Not only
was the charge density larger (and controllable), but the
position of the trapped charge centroid was measured ex-
perimentally. Subsequently, the voltage shifts measured
in this work were approximately two orders of magnitude
larger. As a result of both the large initial displacement
current and the relatively large density of Coulombic
centers, the applied voltage (therefore average field),
changed substantially throughout the measurement. This
not only led to a greater number of data points, but also
allowed a cross check between data taken with different
densities of Coulombic centers produced though the
avalanche injection of holes, different initial applied bias,
and different injected current densities.

In the low-field regime, the dependence of o. on the
field F is usually attributed to Poole-Frenkel (PF) lower-
ing of the potential barrier surrounding the Coulombic
center [see Eqs. (Al) —(A3) in Appendix A]. It can be
shown that the PF lowering of the potential around a
Coulombic trap leads to an I' ' dependence of the crit-
ical radius r„where r, is the distance along the field
direction from the trap center to the potential maximum.
For low electric fields, where the distortion of the poten-
tial on either side of the trap is still relatively small, the
capture Volume is proportional to r . Therefore the cap-
ture probability and cross section are proportional to
F in the low-field regime. This simple calculation ap-
plies only if two assumptions are made. First, the volume
of the trap must be a sphere of volume 4/3~r, and
second, the critical radius r, must be taken as the dis-
tance from the center of the trap to the PF-lowered po-
tential maximum along the direction of the externally ap-
plied field. With these assumptions, the capture volume
varies with the field as I'" where n = —

—,'. However, the
capture volume is not a sphere as the trap potential is
perturbed by the field and a spherical geometry would
only apply with I' =0. Also, according to Lax, ' final
capture occurs only after an electron falls below some
critical energy where the probability of being remitted is
equal to the probability of final capture. If some value
below the potential maximum is used to define the critical
energy below which an electron is considered trapped,
the critical radius of this point (from the trap center) does
not vary with an F ' dependence and will not yield a
capture volume dependence of F ~ . [This simple cal-
culation may be performed with the suitable algebraic
manipulations of Eqs. (Al) and (A2) in Appendix A.]

Dussel and Boer assumed an electron to be captured
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once it was 2 kT below the top of the PF-lowered barrier
and calculated the "actual" (not spherical) volume en-
closed by the trap potential giving a full description of
the volume shrinkage (VS) model including the effects of
the Poole-Frenkel lowering of the barrier. However, even
Ning's corrected version of the VS model equations, un-
derestimates the field exponent (n), even in the low-field
regime. Therefore, for F &F,h, the field dependence of
the capture probability (and therefore the capture cross
section) arises from more than just the volume shrinkage
of the trap and PF lowering of the trap potential.

Once the average field rises above F ~ F,h

[—(1—2)X 10 V/cmj, at least two different phenomena
can contribute to the decrease in the capture cross sec-
tion as shown in Fig. 5. The most obvious of these is
quantum-mechanical tunneling. As the average electric
field increases, the distance from the center of the trap to
the edge of the conduction band (along the direction of
the field) decreases and therefore, the electron tunneling
probability increases and the effective capture cross sec-
tion decreases. A relatively simple calculation shows that
tunnel detrapping from shallow excited states of the trap
site (even for fields as low as 10 V/cm) can be significant
and does contribute to the determined value of 0', there-
fore o. can decrease more rapidly with F than the VS
model predicts, even for F (F,h.

Heating of the electron distribution with increasing
electric field can also cause a decrease in the electron
trapping probability and the effective capture cross sec-
tion in the high-field regime. As first suggested by Dussel
and Boer, and demonstrated by Ning, when the elec-
tron distribution becomes hot with respect to the Si02
conduction-band edge, the capture of an electron results
from increasing energy loss through phonon and/or
photon-assisted processes. Therefore a corresponding de-
crease in the trapping probability and capture cross sec-
tion would be found with the increasing average electron
energy. Ning assumed a Maxwell-Boltzrnann distribu-
tion of electron energies from which an effective electron
temperature was calculated. He further assumed that the
average electron temperature was proportional to the
average (external) applied field. Finally, using Lax's
cascade capture model, assuming electron capture
through acoustic phonon emission and combining this
with the VS model, he showed that o. should vary with
F . He also showed qualitative agreement between this
model and his data. The power factor value of n = —3
agrees with the results of the present work. However, it
is now known that the hot electron distribution is
not governed by a Maxwell-Boltzmann distribution of en-
ergies and even though the average electron energy is
proportional to F in the range 1 ~ F ~ 4 MV/cm, recent
results have shown both acoustic and optical pho-
nons are important in the electron scattering in the high-
field regime. Therefore it would seem that Ning's result
(n = —3 in the high-field regime) although correct, was
somewhat fortuitous. In the following paragraphs we
shall present a comparison between Monte Carlo simula-
tions and the experimental data. Since the Monte Carlo
model has been found to give an accurate represen-
tation of the electron-energy distribution, no attempt has

been made to determine an analytical solution to the rela-
tionship between o. and F.

As the field increases, volume shrinkage of the
Coulombic trap decreases the effective capture probabili-
ty and therefore the capture cross section. This effect,
along with quantum-mechanical (QM) tunneling dom-
inate the change in o. in the low-field regime. Electron
scattering for fields F ~F,„ is controlled by polar optical
phonons which effectively therrnalize the electrons such
that their average energy is small relative to the SiO2
conduction-band edge. As the field approaches F,h, the
nonpolar acoustic phonons begin to dominate the scatter-
ing process. The acoustic phonon scattering process re-
sults in small electron-energy losses, but in large-angle
scattering events. Therefore as electrons gain energy
from the field, their effective path length in the Si02 films
becomes longer and their transport becomes dispersive.
The continuing high rate of energy loss due to optical
phonon scattering keeps the average electron energy from
"running away. " The increased electron energy reduces
the effective capture probability since the electrons must
now lose significantly more energy to become trapped.
The electrons, however, also have longer paths while
traversing SiOz films, which allows each electron more
"passes" at a single trap (see Fig. 12 in Ref. 24) and thus
increases the effective capture cross section. Since these
two effects affect the capture probability with opposing
field tendencies, one or the other of these phenomena will
tend to dominate in the high-field regime. For the
Coulombic traps, these effects are presented in the follow-
ing paragraphs of this section. For the neutral traps, a
more detailed discussion is presented in Sec. VI.

Figure 5 shows a comparison between the experimental
data and two different Monte Carlo simulations. The
classical Monte Carlo model includes the effects of elec-
tron heating and treats the traps as ideal Coulombic po-
tential wells. In this model, the electron motion is fol-
lowed classically inside the potential well and electrons
are considered trapped when their energy falls about
10ficvLo (iricvLo =0.153 eV, the optical phonon energy)
below the local potential maximum around each trap.

In an attempt to avoid the difficulty of treating elec-
trons classically when they are confined only a few
nanometers away from the Coulombic center, we have
also employed a quantum-mechanical model (referred to
as the QM Monte Carlo model) which describes the elec-
tronic states in the well as Stark-shifted, hydrogenic lev-
els for Coulombic-attractive potentials, ' as described
in Appendix A. We should stress the fact that we have
no knowledge of the detailed structure of the potential
very close to the As core. Thus the electronic wave
functions in the deep bound states might be poorly ap-
proximated. Fortunately, as long as the decay of the
electrons from excited states to the trap ground state is
faster than any other process involved, a detailed
knowledge of the energy levels of the trap core is not
needed to compute the sticking probability. (The stick-
ing probability 5„ is the probability that an electron
entering the trap at E„will be finally trapped into the
ground state of the trap, as explained in Appendix A. )

We should also note that a significant statistical noise
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affects the accuracy of the QM Monte Carlo results,
mainly because of the long simulation time required to
perform the ensemble average of the trap distributions, as
explained at the end of Appendix A: the data shown in
Fig. 5 obtained from the QM Monte Carlo model should
not be considered more accurate than a factor of 2.
Despite this, quantum-mechanical effects exhibit a quali-
tative trend which is well within our confidence level,
showing a smaller cross section than predicted by the
semiclassical model as well as faster decay at large elec-
tric fields.

A schematic diagram of the quantum-mechanical
treatment of the Coulombic trap is shown in Fig. 6. This
figure demonstrates, qualitatively, the processes that are
included in the QM Monte Carlo simulation. Shown
schematically (not to scale) are the Stark-shifted hydro-

( i,E2, . . . , E„) where the electrons aregenic levels ~ E E
bound into localized states. The trap level E, is defined
by the Poole-Frenkel lowered potential maximum dmum, an

is e lower limit of the pseudocontinuum of states
defined in Appendix A, and is the highest level we consid-
er as a "localized" quantum level. Finally, we include the
transitions from any localized state to any other via pho-
non and photon interactions as well as transitions

'

t
e conduction band via quantum-mechanical tunneling

for all states except the ground state of the trap.
Figures 7(a), 7(b), and 7(c) show the detailed structure

of the excited and bound states of a Coulombic trap for
the F=3X10 V/cm (the low-field case), 1.7X10 V/cm
F—F,h), and 5 X 10 V/cm (the high-field case), respec-

tively. For the structure shown in Fig. 7(a), the electrons
are not hot and their average energy is within a few kT of

the Si02 conduction-band edge. For this case, the trap-
ping probability is determined mostly by the gross
features of the Coulombic trap (i.e., the volume shrinkage
and the Poole-Frenkel lowering of the trap depth) and
tunneling from the bound states into the Si02 conduction
band. For the high-field case IFig. 7(c)j, the average elec-
tron energy is now ))kT with respect to the SiOz
conduction-band edge. In this high-field regime thereregime,
are three phenomena which directly affect the capture
cross section: ~i~ the increasing average electron energy
(which decreases cr with increasing E), (ii) the longer
effective path length (which increases cr with increasing
F), and (iii) the increasing quantum-mechanical tunneling
probability (which decreases o. with increasing F). One
must also note that even though 0. decreases more rapidl

„h than for F &F,h, the volume shrinkage of the
e rapi y

trap still occurs in the high-field regime. Therefore the
three phenomena mentioned above are those that could
cause the "change" in the o-F characteristic for F & F,h

(i.e. , the increase in n from ——' to —3) S th 1ince e onger
electron path length is the only phenomenon that in-
creases o., it is evident the either the "hot" 1 te ectron is-
tribution or the increased tunneling (or both) cause the
increase in the exponential factor n for F)Fth.

In Fig. 8, we show the probabilities associated with
quantum-mechanical tunneling from the bound excited
states of the trap, thermal reemission into the conduction
band and the sticking probability of the traps as a func-
tion of the externally applied field. It should be noted
that even for low fields, the tunneling probability is still
significant and for larger fields this probability ap-

Vext —eFz

Normal collis
into broadened

Z

Quantum tran
Plane wave = = Loc

g BI1d

Quantum
transitions

ollisions

Interlevel
Transitions

FIG. 6. Schematic diagram of the trarap potential under the influence of an externall a lied ele
sible electronic transitions that occur within the tra fr

y app ie e ectnc field. Shown here are the pos-
ccur wi in t e trap from interactions of electrons with phonons and photons.
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proaches one. The structure shown in the electron trap-
ping probabilities shown in Fig. 8 (particularly for the
thermal reemission probabihty curve) is not an artifact
but results from the movement of the Stark-shifted levels
with increasing electric fields. Finally, it should be
stressed that the transition of the sticking probability
from low to high fields is extremely sharp and large (ap-
proximately five orders of magnitude) and is due to the
disappearance of excited bound states in the Coulombic
well connected to the continuum via phonon emissions.
Quantitatively this transition occurs at the heating
threshold of the electron distribution. This must be
viewed as a fortuitous accident which makes us unable to
separate clearly the role of electron heating from the
structure of the excited states in the trap.

For the case of the Coulombic centers, we have found
the low-field capture cross-section dependence on the
electric field results from volume shrinkage, Poole-
Frenkel lowering of the potential barrier, as well as from
quantum-mechanical tunneling from the shallow excited
trap states into the SiOz conduction band. For F)F,h,
the e8'ective electron path length increases, relative to the
low-Geld case, which could make the reduction in o. as a
function of the increasing field less pronounced. We
must also include the effects of QM tunneling in this re-
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gime, as the tunneling probability approaches 1 for
F)F,h. Therefore we surmise that the value of n for
F)F,h results from the increasing average electron ener-

gy compounded by QM tunneling from the bound states
of the trap into the SiOz conduction-band edge.

VI. EXPERIMENTAL RESULTS
AND DISCUSSION —NEUTRAL CENTERS

FIG. 8. In this figure the trapping probabilities associated
with quantum-mechanical tunneling and thermal reernission of
trapped electrons are shown as a function of the average electric
field. Also shown is the eff'ective sticking probability of an elec-
tron to the traps over the same field regime. For the case con-
sidered here involving the level E*, the tunneling probability
(T ) is the probability that an electron at E* will tunnel from
this state into the Si02 conduction band. Likewise G* is the
probability that an electron at E* will absorb a phonon and be
reemitted from the trap. The sticking probability is the proba-
bility that the an electron entering the trap at E* will be
trapped into the ground state of the trap. Similar probabilities
(not shown here) are calculated for each bound state E, where
an electron may initially enter the trap. These probabilities are
stored in look-up tables and are used in the MC simulation once
an electron enters the trap at any energy level E .
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Arsenic-related trapping sites are amphoteric and are
able to trap both electrons and holes. ' ' For studying
Coulombic centers in Si02, holes were trapped on the
As-related sites, producing Coulombic-attractive centers
for electrons. For the neutral traps, the experimental
procedure is simpler since the avalanche injection of
holes is not required. For both the Coulombic and the
neutral traps, similar analytical techniques were used.

The general solution to Eq. (4) yields an exponential
time dependence of the trapped charge, ' which when
combined with Eq. (8) gives

FIG. 7. Electronic structure of the Coulombic trap potential
well for (a) F =3X10' V/cm (the low-field case), (b) 1.7X10
V/cm (F-F,h), and (c) 5X10 V/crn (the high-field case). The
Stark-shifted bound and excited levels of the trap potential well
are also shown. In the low-field regime (a), the average electron
energy is within a few kT of the conduction band edge while for
F & (1—2) X 10 V/cm the electrons are hot with respect to the
conduction-band edge.

hV =g V, 1 —exp
l

(14)

where V;=ex%;/e, „, r, =(Jo, /e) ', and X, and o, are
the density and cross section of the ith type of trap, re-
spectively. This assumes, of course, the presence of a
number of different types of traps. If a fit using Eq. (14)
is performed, the values of V; will yield the density of
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each particular trap. In our case„one dominant neutral
trap could be distinguished from the midgap voltage shift
characteristic. The density of the neutral centers was
determined from a exponential fit of the measured
midgap voltage shift. It was found that the density of-
neutral centers measured (after correction for the posi-
tion of the trapped charge centroid) was comparable to
the implanted As+ ion Auence.

Figure 9 shows a typical example of the midgap volt-
age shift as a function of time for the neutral traps. Since
the trapping rate of the neutral centers was generally
much smaller than that of the Coulombic centers, the dis-
placement current was small and the voltage turnaround
phenomenon was not seen. As shown, the midgap volt-
age shifts to higher positive voltage as the electrons are
trapped on the neutral sites. The average electric field F
increases as expected as the density of trapped charge in
Si02 film increases.

After the determination of the density of the neutral
traps using Eq. (14), the neutral capture cross section o.„
was calculated using Eqs. (7) and (8) in a similar manner
to the procedure used for the Coulombic traps. Figure 10
shows o.„as function of F. Also shown in this figure, for
comparison, is a classical Monte Carlo calculation
which assumes a dipole 1/r potential for the neutral
trapping center and neglects tunnel detrapping. The er-
ror bars shown for the experimental data represent the
mean-square error of F and o.„ for a large number of data
points (-240). A quantum Monte Carlo simulation for
the neutral trapping centers was not attempted due to the
immense computation time that would have been neces-
sary to acquire reasonable trapping statistics.

The most striking feature of the experimental data
shown in Fig. 10 is that o.„ is approximately constant
with F ranging from 5X10 V/cm to 6X10 V/cm. The

classical Monte Carlo model (see Appendix B) predicts a
slow rise in o„once the field becomes larger than the
electron-heating threshold. The potential well for the
neutral traps is much sharper than that of the Coulombic
well and as such shows little or no change in o „resulting
from volume shrinkage of the trap. It is not surprising
that the low-field values of cr„appear independent of F.
As mentioned in Sec. V, for F)F,h the conduction elec-
trons become hot and their transport becomes dispersive
due to the large-angle electron scattering interaction
cause by the nonpolar acoustic-phonon modes. As a re-
sult, their effective path length increases. The classical
Monte Carlo simulation includes the electron heating
effects, and for F)F,h shows o. increasing. However, the
experimental data are relatively constant (see Fig. 10).
The difference between the experimental data and the
classical simulation is not a result of the longer path
length nor a result of the hot electron distribution. Only
QM tunneling is not included in the model and since tun-
neling would cause a decrease in o.„(for a given F), it is
probable that this is the reason for the differences be-
tween the Monte Carlo model and the experimental data.

Other work on neutral traps in Si02 include x-ray in-
duced centers, ' electron-beam-induced defects, so-
called "intrinsic" centers, ' and "hot-electron" induced
centers. ' ' Generally, no strong field dependence of the
neutral cross section has been noted independent of the
technique used to induce these traps. However, the mag-
nitude of the neutral cross section has been found to vary
from o „—1 X 10 ' to 1 X 10 ' cm depending upon the
nature of the defects. For the electron beam irradiated

Experimental data
~ — Monte Carlo

—16

I I

4 8

Time (10 sec)

FIT+. 9. Typical midgap voltage shift 6 V
g and applied volt-

age shift AV, characteristics during internal photoemission of
electrons from the Al gate and their subsequent trapping on the
neutral As-related sites in the Si02 film as a function of time.

0

.V3

2
K0

0
0 4 6

Average Electric Field (10 V crn )

FIG. 10. Capture cross section as a function of the average
electric field for the neutral traps. Included are the results from
the classical Monte Carlo (Ref. 28) calculations (~ ) where tun-
nel detrapping has not been included. The error bars shown for
the experimental data ( ) are the mean-square error of the
average electric field and the capture cross section over a large
number of data points ( -240}.
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samples, an exponential dependence of o„on the aver-
age electric field was found ranging from o., —1X10
cm at 5X10 V/cm to o„-2X10 ' cm at 3X10
V/cm. Although this variation is not large, an exponen-
tial fit seems to be appropriate for these data. Intrinsic
neutral centers' in Si02 have been reported with cross
sections as small as o., -6X10 ' cm .

It is obvious that the neutral trapping centers generat-
ed by different means (i.e., intrinsic, irradiation, field
stressing, ion implantation, etc. ) should not necessarily
show the same capture cross sections since the micro-
scopic details of the sites are probably different. Al-
though a small field dependence of o.„ in one case has
been reported, other results' ' (including the
present work) do not show this trend. The main con-
clusions that may be drawn in terms of the neutral
centers is that the capture cross section is smaller and the
field dependence is less pronounced than that of a
Coulornbic site. The lack of a strong field dependence is
probably due to the much shorter effective range of the
potential of the neutral trap.

teristics was somewhat limited. In this study, the depen-
dence of trapping sites upon particular growth and pro-
cessing conditions was eliminated. Thus a more complete
and controlled set of data has been realized together with
the best theoretical treatment of this problem to date, in-
cluding carrier heating and quantum effects which have
been neglected or not considered important in the past.
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APPENDIX A

In this appendix, we describe the approach taken to ac-
count for the quantized states in a Coulombic well and
how this model has been incorporated into a Monte Car-
lo (MC) simulation (referred to as "QM Monte Carlo" in
the text).

VII. CONCLUSIONS

In MOS capacitors, trapping centers were introduced
using ion implantation of As+ into the Si02 film. With
the avalanche injection of holes from the silicon, Coulom-
bic trapping centers were produced on the As-related
sites. Using photoinjection of electrons from the gate
contact, and measuring the transient midgap voltage
response, the capture cross section of the Coulombic
centers have been determined for average electric fields
ranging from 2X10 to 3X10 V/cm. In this range, o.

varies from —10 ' to —3 X 10 ' cm . A threshold in
the average field (F,h) is found for the cr Fcharacteris-tie
below which the power-law exponent is found to be
—1.5. Above F-1.2X10 V/cm, the power-law ex-
ponent is found to be —3.0. The low-field dependence is
attributed to Poole-Frenkel lowering of the potential sur-
rounding the trap in the direction of the field. However,
quantum-mechanical tunneling is also significant for
F~10 V/cm. Beyond F,h, electron heating becomes
significant, and together with tunneling from bound and
excited states of the trap potential into the conduction
band of the Si02 is primarily responsible for the change
in the power-law exponent of the 0-F characteristic.

Since the implanted As+ produces centers that are am-
photeric and subsequently trap both electrons and holes,
similar experimental and analytical techniques were used
to determine the neutral capture cross section (o „) as a
function of the average electric field. It was found that
cr„ is approximately constant at —(1—2) X 10 ' cm for
an average electric field in the range of 5 X 10 to 6X 10
V/cm.

In this experiment, the same trapping sites have been
used to determine the field dependence of two different
site potentials; namely Coulombic-attractive and neutral
centers. With the use of ion implantation, the position
and density of the sites could be controlled with great ac-
curacy. In past studies, traps were induced through pro-
cess variations and thus knowledge about their charac-

1. Quantum states in a Coulombic well

The potential of a Coulombic-attractive (positive)
charge of a trap at z =z, in an externa1 electrostatic field
of strength F, along the z direction, is given as

2

V(z) = eFz ——
4vre, „/z —z, [

(A 1)

With reference to Fig. 6, the local maximum of the po-
tential is at

2

Zmax =Z& +
4~@,„

1/2
1

F1/2 (A2)

F 1 /2 (A3)

We use second-order perturbation theory to describe the
Stark-shifted eigenvalues and the localized electronic
eigenstates on the potential (Al) following the procedure
of Beckenstein and Krieger. The eigenvalues are la-
beled by quantum numbers (ni, n2, m), with
n =n, +n~+ ~m ~+ I replacing the "usual" principal
quantum number n obtained in a spherically symmetric
case (F =0). The energy of a level (n i, n2, m ) is given by

1 FE„=E,—Ry,„+3n(n, —n2)—
n

4

+ [17n —3(n, n2)—
'2

—9m +19j2 F
P (A4)

where E, is the local maximum of the potential (see Fig.
6) and

In the following, we will find it useful to define the "bar-
rier lowering" term

3/2
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2

Ry„=
8~@,„a

=2.96 eV,
where E„' ' are the eigenvalues for the level n in the un-

perturbed case E„' '=E, —Ry„/n, and, as usual,

4~% c.„=1.13 A,
e me1

q„, (r, e, y)=Z„, (r)r, (e,y),
with

(A6d)

I e1P = = 523 MV/cm .
(4rre, „)'fi

Here m, 1
is the free electron mass, which we use as an ap-

proximation to the electron efT'ective mass at high energy,
e,„ is the high-frequency permittivity of the oxide
(=2.15'„„), e is the magnitude of the electron charge,
A' is the reduced Planck constant, a is the Bohr radius,
and Ry,„ is the ionization energy (Rydberg) in the unper-
turbed case. The eigenfunctions corresponding to the
levels given by Eq. (A4), g„„,are treated according to
degenerate perturbation theory in the perturbing Hamil-
tonian —eEz. They are linear combinations of the hydro-
genlike wave functions g„& (r, 8, $):

(0)
Oooo=it'ioo ~

(A6a)

(r, ~, P)= g y„i' '
$„1 (r, &,P), (A5)

n, l, m

the coeKcients y being obtained from degenerate pertur-
bation theory. We shall be using levels only up to n =3.
Explicitly, for the first eigenvalues and eigenfunctions
(expressing the eigenvalues to first order for simplicity)
we have for n = 1,

—2R„i(r)=
(na) ~

1/2
(n —l —1)!

n (n + l)!
l

2I"

na
e

—v/naL 2l +1
n —l —1 na

1/2

(&,P)=( —1)

1/2
(l —m)!

X Pi ( cosO)e ™~
(l +m)!

F+F g, (A7)

where F + is the field at the classical turning point of the
state with principal quantum number n*. The condition
(A7) implies that the highest level we shall consider as a
localized quantum level of the trap has an energy

The functions L "(x) and P"(p) are the associated
Laguerre and Legendre polynomial, respectively. Since
perturbation theory fails at high "radial" quantum num-
bers, " we shall use the scheme above only for levels with
n (n* such that

for n =2,
1E 2

' —3aeF, 4100
= —( Coo+ 610)

2

(0)E 2 ~ 0001 0211

(0)
2 ' 0001 4211

1
E2 '+3aeF 4010 ~—(Coo ilj210)v'2

and for n =3,

(0) 1E 3 9aeF 0200 t(310+ 4300+ 4320
2 2 2

E3 —', aeF,

E(o) 9 geF3 2

= 1
0101

= —( Aii + it'321 »
2

1
~101 3/ ~311 ~3212

E(o)
3

E(o)

E(o)
3

0002= it'322 ~

1
4110 ~ ( 4300 30320 )v'2

~002 ~322

1E3 ' + —'aeF, $011= (Q ——g )

1E3 '+ ,'aeF' ~011 ~—311 ijj321v'2

(O) 1 3/3 1E3 + 4020 4310 1( 300 it(320
2 2 2

(A6b)

(A6c)

1E"=E,—b$ 3/2+ — =E,—31.4 meVF'~
v'2 (A8)

The field F is expressed in MV/cm in the last expression.
This corresponds to a quantum number n * given by

1 Ryo 2. 32
n

F1/4 (A9)

with F again in MV/cm. States with energy E, )E )E*
will be treated as a pseudocontinuous band of plane
waves of full width AE*=E, E*. Note tha—t (A9) im-
plies that for F ~ 1.23 MV/cm only one bound state ex-
ists in the well, which results in a sharp drop of the abili-
ty of the trap to capture electrons, as mentioned in the
text.

We now have to consider the following processes (Fig.
10): (i) thermal (i.e., phonon-assisted) transitions between
localized state (1M~v, 112+—v), where p and v denote the
sets of quantum numbers (n i, n2, m); (ii) thermal transi-
tions between localized states and the band at E*; (iii)
thermal transitions between localized states and the
three-dimensional continuum; (iv) thermal transitions be-
tween the pseudocontinuum at E' and the three-
dimensional continuum; (v) tunnel detrapping from local-
ized and quasicontinuum states; (vi) optical transitions.
Thermal processes (iii) and (iv) correspond to (temporary
or virtual) trapping and detrapping processes. A process
(v) corresponds to the total tunnel detrapping (or field
ionization) of the trap. Optical processes are only
significant when involving deep localized states.
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2. Thermal transitions

We have considered phonon processes assisted by both
acoustic and optical phonons, starting from the nonpolar
Hamiltonian:

ing for the three acoustic branches has been introduced
in (A12). Moreover, because of the larger contribution of
large-q phonons in (A12), we have ignored the dispersion
of the phonons and have considered only zone-edge
modes. Similarly, for the polar transitions:

&q'(r, t) =i fi

2PCOq

1/2 —i(q.r+co t)
e ~ Cq, (A 10)

where p is the density of the crystal, co is the frequency
of a phonon with wave vector q, and C=3.5 eV is the
coupling constant (deformation potential) for the
electron-acoustic phon ons interaction, and from the
Frohlich Hamiltonian

LO(P v)

2
g ~e coLO

4m

nLo
X '

1 + LO

x f dql&ple (A13)

AE„+DE
(bE +bE, ) +(bE —bE, +ficoLo)

. eG —i(q ~+~„~)rt=i e
q

(A 1 1)

with

ALLOG=
4 E'0

for the interaction between longitudinal-optical (LO)
phonons and electrons. Here e and ep are the optical
and static permittivity, respectively, and coLo is the fre-
quency of the LO phonons, having ignored their disper-
sion. The various transition rates have been calculated
using the Fermi golden rule, but accounting for the finite
lifetime of the levels by replacing the energy-conserving 6
function with a Lorentzian. The "width" of the level is
determined self-consistently as described below in Sec.
A 5. Thus we have for the transition rate between the
quantized levels p and v

r~c(p E*)
3 + Ci ( 2m )3/2( E e

)
1 /2 bE

SENT P)COA $3

n
X '

1+nA

AE„+DE*
X (bE„+bE*) +(bE„bE*+fico„)—
x f "dqq'I&i*le "'Ip&I', (A 148)

rLo(p

g*e co (2m ) (E*)' b,E*
16~4X3

The thermal transitions from a localized level

(ni, n2, m )=p and the pseudocontinuum at E* are given

by

1

r~c(V~v)
3g C2

X '

4~2p ~ 1+nA

(A12)

AE„+AE

(bE +bE„) +(bEq bE +ficoq )—
x f "dqq'I&pie "lv&l'

0

nLo
X '

1+nLo

(A14b)

AE„+DE*
X

(bE„+b,E*) +(bE bE*+A'coLo)—

X dq k* e 'q'p

(the upper symbols corresponding to absorption, the
lower symbols to emission) where g„ is the degeneracy of
the vth level, co A is the acoustic-phonon frequency at the
edge of the Brillouin zone (BZ) (co„=c,qBz, c, being the
sound velocity and q~z the wave vector at the edge of the
BZ), p& is the density associated to the heaviest ion in

the Wigner-Seitz cell, nA is the phonon population, and

AE„ is the width of the pth level. A factor of 3 account-

where g
* is the degeneracy of the state n * and

I

lt* ) is an
approximation to the state at E*, assumed to be a plane
wave, normalized to the trap volume, with a wave vector
k ~ For k* we take the expectation value
1 lfi& n * I pin

* ), where p is the momentum operator and

In
* ) is the first-order eigenstate at E* given by Eq. (A5).

Finally, the thermal emission rates to the three-
dimensional continuum are given by

3/2( 2(bE )1/2
= 0( E„I

—A'co ~ )
r~c(p~k) " (2irfi) p co„

1+

f dqq'I&&le "' p&I'

E —E —Ace
2 1/2

k p E —E —Acek p A

AE„ AE„

1/2
(A15a)
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=8(iE„i—A'coro)
1

rLo p~k
17m e co (bE )'

el LO p

(2m @') 1 1

E'~ Ep

n Lo

X f dq f (kate "'fp) /'

2 l /2
Ek —Ep —

AcoLO Eg —Eq —
AcoLQAE„AE„ 1/2 (A15b)

3. Optical transitions

The optical transitions can be computed in the usual
way from the Fermi golden rule and in the dipole approx-
imation. ' Thus

r, ,(p~v) 3A4c '~e.„
(A16)

where c is the speed of light, and r is the position opera-
tor. Similarly,

1

r, ,(E* +E„)—e (E* E) E—*~~~gE*

3A c ~e,„A'

where ~k) is a plane wave and 6)(x) is the step function.
Similar expressions hold from the transitions from the
pseudocontinuum at E'. The matrix elements occurring
in (A8) —(A13) can be easily, but tediously, evaluated
from the expressions (A6a) —(A6c).

So, while it would be possible, in principle, to account for
the transitions between trap states in the MC simulation
of electron transport, this would require unreasonably
long simulation times: for example, tunneling processes
may require 10 sec, so that we would need carry on the
simulation for at least 10 sec to determine whether an
electron has been finally trapped in the ground state of
the Coulombic well. In order to restrict the simulation
times to the usual Monte Carlo time scale ( —10 ' sec),
we have chosen to proceed as follows.

In a Coulombic well in the presence of an external field
only a finite number, K, fully localized states exist below
the energy E*. Let us order them in increasing energy
and label them by the ordinary index i, running from 1 to
K. Let us assume for now that electrons may be trapped
by entering the band at E* and possibly cascading into
the ground state (i =1), assumed to be stable under tun-
nel detrapping and phonon emission. The occupation N,
of each level will be given by the first-order kinetic equa-
tions:

(A17)

4. Tunnel detrapping

1

7 ( ]n, pn, m)

1

In n2!(nz+ fm /)!J( —,'n g) 13P'

We have followed Yamambe et ah. to obtain an ex-
pression for the rate of tunneling out of a localized level.
Converting from their units, we obtain

dN,

dt

dN,

K

+g +4*,
~=2 r (E,~E*)

N; + + g ', (A19)
r (E+~E ) . r (E,~E,).

JWl

r, (E*-E,),=, r„(E,-E;) '+g

2X exp 3(n, n2 ) ——
(3n g)

4e m, l

(4me, „) R'

where

(4~e,„) fi F=—,
e'rn '

el

P,"'=n, + —,'~m~+ —,
' .

(A18)

where r '(E, E) is the tot—al interlevel rate for transi-
tions assisted by both thermal and optical processes, and

is the total rate for leaving level i via tunneling,
thermal, and optical processes to other levels. We shall
also assume that N; &&1, so that we shall not have to
worry about the degeneracy of the levels. This is a
reasonable assumption, as only one electron at a time will
attempt to enter a given trap at the same time in a real
situation. Finally, N* is the supply function of electrons
attempting to enter the trap via the band at E per unit
time. This is provided by the MC simulation, as we shall
describe below. At steady state (i.e., for time scales much
longer than @* '),

S. Monte Carlo simulations

The major difhculty in treating the electron trapping
process in a Monte Carlo (MC) simulation is the wide
difference of time scales between the electron-transport
phenomena and some of the processes described above.

dN; =0 (i =2,K) .
dt

Solving the system (A19) above with (A20), we obtain the
steady-state values N, for N; and we can define the fol-
lowing quantities as t ))+*
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r (E* E—i),.
2 rp(E;~Ei)+g

(sticking probability),

T*= +g
&,(E*), , r, (E, )

( tunnel-detrapping probability ),

r h,„,„(E*—+3d continuum)

( thermal-reemission probability ),

which satisfy the obvious condition S*+7*+G*=1.
The probabilities defined above express the conditional

probability that an electron, having entered the pseu-
docontinuum at E*,will be trapped into the ground state
of the Coulombic well (S*), will be thermally reemitted
from any level (G*), or leave the trap via tunneling out of
any level (T*).

The variables S*, 1 *, and 6* are obviously functions
of the field acting on the Coulombic w'ell, as the number
of levels K and the energies E',E„.. . , Ez are functions
of the external field. In a completely analogous way, we
can consider the sticking (S, ), tunnel-detrapping (T, ),
and thermal reemission (G, ) probabilities for an electron
entering the vth level, v labeling the states (n&, nz, m), by
considering a system analogous to Eqs. (A19), the supply
function N now "feeding" the vth level.

For the numerical implementation of this scheme in a
MC simulation, we proceed as follows.

(i) We solve the system (A19) (and the analogous sys-
tems with the supply function feeding other localized
states) for a set of external fields in the range 0.1 —10
MV/cm by computing the scattering rates, as described
in the preceding sections, and employing, for the widths
b.E, the lifetimes extracted from the system (A19) at
steady state. This self-consistent approach is handled by
iterations. We store in look-up tables the variables S,(F),
T,(F), and G, (F), together with the energies bE*(F) and
b,E (F), and the scattering rates into the trap levels.

(ii) We distribute a random ensemble of Coulombic
traps in the simulation volume (typically 10 nm X 10
nm X d,„, d,„being the SiOz thickness) according to the
experimentally determined density and depth distribution
of the traps. After solving the Poisson equation for this
ensemble of traps and with boundary conditions deter-
mined for the average field F, we determine the local field
at each trap. We should stress that this local field Fj„ is

quite different from the experimentally measured F, as
the proximity of other Coulombic wells strongly distorts
the environment of each trap

(iii) We use our "conventional" MC algorithm to
simulate electron transport in SiOz in the field obtained
from the Poisson solution with the particular trap ensem-
ble selected. The only additional process we include are
the scattering into the pseudocontinuum at E and into
the localized states of each trap. The rate at which elec-
trons enter the levels E* and E provides a statistical

APPENDIX B

To describe the model potential for neutral traps in
Si02, we have followed Lax and have employed the di-
pole potential

eH1&(r)=—
2 4m@„r

(B1)

where r is the distance from the center of the trap and H
is the dipole induced by an electron on a defect center of
polarizability cz:

4~@„r

where E is the magnitude of the (dipole) electric field.
Lax gives a rough estimate of the polarizability a in
terms of the polarizability a~ and ionization energy RyH
of the hydrogen atom in vacuum:

m„Ry„
A —CXH m* Ry„

2

(B3)

where m, &
is the free electron mass and m * is the

effective mass in the solid. For Si02, using m *=m„, and
the value for aH given in Ref. 36, we have

V(r)=—

with

r4 ' (B4a)

2
=41.5 eVA1 cxe

2 (4~e,„)
(B4b)

evaluation of the supply functions N' and @ in Eq.
(A19). Once an electron enters the level E„we consider
it trapped, thermally reemitted, or field ionized according
to the probabilities S (F„,), G (F„,), and T (F„,), re-
spectively, corresponding to the particular trap. We ob-
tain these values from an interpolation using previously
generated tables. Tunnel and thermally reemitted elec-
trons are reintroduced into the simulation.

(iv) After a sufficient time, the simulation is halted and
a trapping probability is obtained by dividing the number
of trapped electrons by the total number of injected parti-
cles. Dividing this trapping probability by the areal trap
density, we obtain the cross section for electron trapping
for this particular trap ensemble

(v) Finally, we repeat the procedure for different en-
sembles, as the small number of traps simulated intro-
duces large statistical variations. An ensemble average of
the capture cross section is taken at the end.

We conclude by noticing that, the simulation being
quite CPU intensive, the "quantum Monte Carlo" data
shown in Fig. 5 are affected by a large noise, the standard
deviation being on the average twice the value of the
cross section. Nevertheless, the order of magnitude and
the qualitative behavior of the data in Fig. 5 are unlikely
to be affected by the poor statistics.
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