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Using density-functional theory, the one-electron effective potential is matched self-consistently
to the image-potential shape outside the surface of semi-infinite jellium and of real, simple metals.
For real metals, the discrete-lattice effects are taken into account, following the variational method
of Monnier and Perdew. The image-plane position of semi-infinite jellium, of Al(111), and of the
{110)face of Li, Na, K, Rb, and Cs is determined. We find that for a given surface, the incorpora-
tion of the discrete lattice influences the location of the image plane much more strongly than the
nonlocal effects.

The application of density-functional formalism has
contributed to much progress in the study of the elec-
tronic structure of metallic surfaces. Lang and Kohn '

(LK) solved the Kohn-Sham equations' for the jellium
surface using the local density approximation (LDA) for
the exchange and correlation effects, and obtained the
electron-density profiles and the one-electron effective po-
tentials. They calculated also, within first-order pertur-
bation theory, the effect of the discrete-lattice potentials
on the surface energy and work function and image-plane
position. Although the LDA did not give the image-
potential behavior, —1/4x, of the effective potential far
outside the metal surface, it had very little inhuence on
the calculated work functions and surface energies. This
was due to the fact that the image-potential effect is im-
portant in a region where the electron density is very
small compared with the average value in the bulk metal.

The LK work was generalized later by Monnier and
Perdew (MP), who included the ionic lattice potential in
a variational, self-consistent way. Their calculation
brought considerable differences in calculated electron-
density profiles at a given crystal face compared with the
jellium profiles. It led also to improved calculated sur-
face energies and work functions. Another calculation-
al scheme was presented more recently by Serena, Soler,
and Garcia (hereafter referred to as SSG-I), who solved
the Kohn-Sham equations for a finite metallic slab, in-
cluding the local ionic pseudopotentials. Their results for
the work function were in rough agreement with those
obtained in the vanational self-consistent scheme.

In recent years the question of the validity of the LDA
has become more important for two reasons. Firstly, the
variational method, which does not assume a slow spatial
variation of the electron density, was developed and ap-
plied to metal surfaces, ' yielding surface energies larger
than LDA values. Secondly, a correct description of the
asymptotic limit (x~ oo ) of effective potential has be-
come crucial in the studies of the existence of image
states at metal surfaces" and evaluation of the tunnel
current across the surface barrier in scanning tunneling
microscopy. '

A number of improvements to the LDA have been
developed. None of them, however, seems to be fully sa-
tisfactory. For example, the Langreth-Mehl' nonlocal
correction leads to an increase in surface energies but
does not give the correct behavior of the potential far
away from the surface. ' Some other calculations' '
which reproduce the image potential at large distances
yield very controversial results for the position of the im-
age plane. On the other hand, Serena, Soler, and Garcia
(hereafter, SSG-II) have proposed' a simple computa-
tional scheme where the classical image-potential limit is
matched self-consistently to the local exchange-
correlation potential. This procedure leads to a small
reduction in the value of the image-plane position relative
to the LDA results.

In this Brief Report we apply the scheme of SSG-II to
recalculate the image-plane position for the semi-infinite
jellium in order to eliminate any finite-size effects which
might affect the original calculation for the jellium slab. '

The main purpose of this work is to extend the method of
SSG-II to the case of real, simple metals and calculate the
image-plane position at the most compact surface plane
of Al and alkali metals.

Our self-consistent procedure follows the MP scheme.
The electron density n (r) is constructed from the one-
electron wave functions which satisfy the Schrodinger
equation with the effective potential u,s[n(r)] being the
sum of electrostatic and exchange-correlation contribu-
tions. The electrostatic potential' in turn can be written
as P[ (rn)]+5 (ru) where [P[n (r)] is the sum of the po-
tential from the ions and the Coulomb potential from the
other electrons, and 5u(r) is the difference between
the potential of the discrete lattice and the potential
of the neutralizing positive background n+ (r). For
a semi-infinite metal filling the half-space x & 0,
n+(r)=ne( —x) where n =3/4mr, is the average elec-
tron density in the bulk and e(x) is the unit-step func-
tion. In the method of MP the lattice term 5u(r) is re-
placed by a simple parametrized function of the form
Ce( —x), where the optimum value of C =C was deter-
mined from the minimum of surface energy. In this way

43 14 695 1991 The American Physical Society



14 696 BRIEF REPORTS

LDA
Ref. 5 Ref. 17 This work SSG-II OFB

TABLE I. Positions xo (in bohrs) of the image plane ob-
tained in this work for the jeHium densities, compared with the
LDA (Refs. 5 and 17) and nonlocal results from Serena, Soler,
and Garcia (SSG-II, Ref. 17) and Ossicini, Finocchi, and Ber-
toni (OFB, Ref. 22).
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The latter expression results from the integration of the
spherical potential' produced by the local exchange-
correlation hole. The parameter b is determined from the
requirement of continuity of U„at xo to give
b = ——", v „,(xo ). The value of xo is calculated self-
consistently by solving at every iteration the Schrodinger
equation for a neutral surface and for a surface with a
small surface excess charge X. The center of mass x of
the induced surface charge was calculated after each
iteration from the expression

x =f x 5n (x)dx f 6n(x)dx, (3)

where 5n(x)=n (x)—nz(x) is the difference between the
electron-density profiles for a neutral and charged sur-
face, and used as xo to calculate the potential for the next

the self-consistent solution of the three-dimensional
Schrodinger equation can be reduced to the solution of a
one-dimensional problem.

Following the idea of SSG-II, the local exchange-
correlation potential v„,[n] in the metal,

v L, [n] =d I n E„,[n] J /dn,

where e„,[n] is the sum of exchange and correlation' en-
ergy per particle in an electron gas of density n, , is
matched at the image-plane position xo to the nonlocal
potential of the form
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FIG. 1. The effective one-electron potential U,~ with electro-
static (P) and exchange-correlation (v„, ) part for a jelliutn sur-
face with r, =2.07. The classical image potential is also shown
for comparison (dashed curve).

iteration. In this way the effective potential is matched
self-consistently to its image-potential-like form at large
distances.

The convergence of this self-consistent procedure was
controlled through such criteria as (i) the charge neutrali-
ty condition, (ii) the agreement between computed sur-
face dipole barrier P( ~ )

—P( —ac ) and the surface dipole
moment, and (iii) the Budd-Vannimenus theorem ' re-
lating the surface electrostatic potential to bulk proper-
ties.

For the jellium surface the calculated exchange-
correlation potential (Fig. 1) matches continuously the
classical image-potential form. The corresponding
electron-density profile is very similar to the LDA profile
calculated by LK. A consequence of this fact is the in-
sensitivity of the surface energies and work functions to
the use of the nonlocal potential. In the whole range of
metallic bulk electron densities considered, 2~ r, ~ 6, the
surface energy varies by not more than 2.5% and the
work function is within 0.02 eV with respect to the LDA
value. The results for the image-plane position computed
self-consistently from Eq. (3) which are listed in Table I

TABLE II. The work function (in eV) for the most densely packed plane of simple metals, obtained
in this work for the image-potential limit matched to the LDA. The LDA results from Serena, Soler,
and Garcia (SSG-I, Ref. 8) and nonlocal ones from Finocchi, Bertoni, and Ossicini (FBO, Ref. 23), and
Zhang, Langreth, and Perdew {ZLP, Ref. 14) are also shown.

2.07
3.28
3.99
4.96
5.23
5.63

Metal

Al
Li
Na
K
Rb
Cs

Face

(111)
(110)
(110)
(110)
(110)
(110)

Present
work

4.18
3.61
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TABLE III. The image-plane position (in bohrs) for the real,
metal planes obtained for the nonlocal potential of this work.
xo is the position relative to the jelliurn edge while x; is deter-
mined relative to the location of the first lattice plane in a metal
[see Eq. (4)]. The local values from Serena, Soler, and Garcia
(SSG-I, Ref. 8) are also given.
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FIG. 2. (a) The effective potential and its components for the
real, metal Al(111) face (C = —1.9 eV). The effect of the step
function C 8( —x) on the u,z curve is visible. The lower part
(b) shows the plot of corresponding electron-density profile
(solid line) and the induced surface charge density 6n (x) times
100 (dashed curve). The arrow indicates the position of the im-

age plane.

the Al(111) face. Since the matching of the LDA poten-
tial to the image-potential shape outside the metal affects
the effective potential at relatively large distances from
the surface, its effect on the surface energy is small.
Therefore, in this work we did not minimize the surface
energy with respect to the parameter C and the local
values of C =C determined by MP were used. Actual-
ly, the calculated surface energies at the most densely
packed plane of all metals considered are equal to the
LDA values given in Ref. 6. The work functions—
similarly, as for the jeHium surface —differ by -0.02 eV
from the local values. We have found also very good
agreement of our nonlocal work functions calculated
from the "change in self-consistent-field" expression
(Table II) with the local ones obtained in the slab model.
The value of the work function of Al(111) agrees also
with that calculated beyond the LDA. The relatively
large difference between the values computed by us and
those of Zhang, Langreth, and Perdew' is due mainly to
the different correlation energy functional used.

Let us consider now the effect of the crystal lattice
structure on the image-plane position. For a jellium sur-
face the image-plane position xo was determined from
Eq. (3) as the position of the centroid of induced excess
charge relative to the background edge. Then the
effective surface in a metal is located at

show very good agreement with the values determined
originally by LK (Ref. 5) in the LDA. ' Note that for
r, ~ 3 these are slightly higher than the numbers reported
by SSG-II for the LDA. For the higher bulk electron
densities the positions determined in this paper are closer
to the nonlocal results of Ossicini, Finocchi, and Ber-
toni for the semi-infinite jellium than to the nonlocal
ones calculated by SSG-II. The difference between our
results and those of SSG-II may stem from the difference
in geometry of the system considered. Another explana-
tion of this discrepancy may be that the positions xo
given by SSG-II and determined for the small excess
charge were not extrapolated to the zero-charge limit as
has been done in the present work.

In Fig. 2 we have displayed the nonlocal effective po-
tential and the corresponding electron-density profile for

x —xo+ d /2 (4)

in front of the first atomic layer, where d is the interpla-
nar spacing. If one employs in Eq. (4) the xo value for
the jellium, it leads to a strong dependence of x; on the
crystallographic orientation. This strong dependence,
however, is greatly reduced when xo is determined not
from a jellium calculation but from the one performed for
a real metal in the variational self-consistent scheme.
The resulting sequence of x; agrees with the sequence
obtained by SSG-I. It is completely reversed, however,
compared with the one resulting from the jeHium model
which gives the face-independent xo contribution. There-
fore, in a realistic calculation of x;, one should use the
xo values determined for a given metal face. The calcu-
lated change 6n(x) in the electron-density distribution
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induced by an electric field perpendicular to the Al(111)
face is displayed in Fig. 2. The curve was obtained for a
total surface excess charge X=5X10 . In Table III we
give the results for the image-plane position at the most
densely packed planes of Al and alkali metals compared
with the local results of SSG-I for the finite slab model.
Inspecting the numbers listed for xo in Table III and the
corresponding ones for jellium (Table I), it can be seen
that the discrete-lattice effects are much stronger on the
centroid of the excess charge than nonlocal effects. The
incorporation of lattice structure leads to substantial
changes in the position xo of the centroid. This is partic-
ularly visible for Li, Rb, and Cs for which the value of
variational parameter C representing lattice effects is of

the order of magnitude of the Fermi energy.
In conclusion the self-consistent matching procedure of

the LDA potential to the image-potential limit was ex-
tended to real, metal surfaces. The positions of the image
plane calculated for the semi-infinite jellium and real,
metal surfaces remain practically unaffected by the
matching procedure and agree well with those deter-
mined in the LI3A.
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