
PHYSICAL REVIEW B VOLUME 43, NUMBER 18 15 JUNE 1991-II

Electronic and optical properties of strained Ce/Si superlattices
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We present a comprehensive theoretical study of short-period (Ge)„/(Si) strained-layer
superlattices (SLS's) on Si and Ge [001] substrates, and the "free-standing" case, based on ab
initio calculations. In order to compensate for the error in the excitation energies inherent
to the local-density approximation, we add ad hoc potentials on the atomic sites. With this
correction the calculated transition energies compare favorably with quasiparticle calculations
and experiment. Special emphasis is placed on the orthorhombic nature of the SLS's with
both n and m even, as reflected in both the energy-band structure and the dielectric response
eq(ur), which is different for all three polarizations along the main axes. The effects of various
substrates are examined for the occurring interband transitions, and in some cases reduced to
a simple deformation-potential ansatz. A similar approach is taken for the splitting of the top
of the valence band due to the internal uniaxial strain, which obeys a simple Vegard-type law;
it is shown that confinement eR'ects are negligible up to the values considered, i.e. , n+ m = 12.
The SLS s with a period of n+ m = 10 and sufticiently large strain in the Si layers have a direct
gap; the transition from the top of the valence band to the lowest zone-folded conduction band
at k = 0, however, is only dipole allowed for special cases, such as the superlattices with n, m
odd, i.e. , for systems with no inversion symmetry. The (Ge)s/(Si)q SLS is predicted to be a
good candidate for optoelectronic devices. A reversal of the two lowest folded conduction states
(dipole allowed and forbidden, respectively) is obtained when going from the n = 4 to the n = 6
case. Recent experiments on 10-monolayer SLS's are discussed in the light of our results.

I. INTRODUCTION

Ultrathin (Ge)„/(Si) strained-layer superlattices
(SLS's) grown on Ge, Si, and Ge Siq buffers along
the [001 direction have recently attracted considerable
interest. This is due to the mu1titude of design pa-
rameters that can be controlled during:he growth with
molecular-beam epitaxy, such as the period of SLS's
(n+m), the [Ge]/[Si] ratio (n/m), and the strain distribu-
tion within the two layers, which is—under pseudomor-
phic growth conditions —governed by the substrates (Ge,
Si, or Ge~Si~ e buffers). Thus, the electronic and opti-
cal properties of these SLS's can be changed significantly
and tailored to specific needs. Even more intriguing is
the possibility to obtain a quasidirect band gap based on
two indirect semiconductors, as has been conjectured by
Gnutzmann and Clausecker. Satpathy, Martin, and Van
de V,'alle4 have studied the electronic structure of Ge/Si
SLS's by means of ab initio pseudopotential calculations.
They suggested that an absolute conduction-band min-
imum is obtained for (Ge)„/(Si)„, n = 5, 6, when the
SLS's are matched to Ge or Geo qSio q. Further support
for a direct band-gap material based on Ge/Si SLS's with
a period of 10-monolayer (ML) grown on Ge has been
given by Pearsall et al. In their experimental electrore-
Qectance geometry, however, they could not excite the
p, polarization geometry, at which the direct transition is
believed to occur. Zachai and co-workers found strong

photoluminescence in 10-ML period Ge/Si SLS s in the
range 0.7 to 0.9 eV, when the Si layers are strained. The
details of their interpretation, are, however, still under
debate. Both the electroreflectance and the photolumi-
nescence measurements of the 10-ML SLS's present ex-
cellent experimental results, but further understanding
has to be achieved on the basis of ab initio calculations.

The calculations reported here are performed within
the local-density approximation (LDA) by means of
the self-consistent (relativistic) linear-muKn-tin-orbitals
(LMTO) method. Like all methods based on the
LDA, it suffers from the well-known "band-gap problem, "
i.e. , the calculated excitation energies are notoriously un-
derestimated. We correct for this error by including ex-
ternal potentials self-consistently in the calculations.
These ad hoc potentials have been determined for the
bulk materials and are transferred to the SLS's. This
correction allows us to compare directly the excitation
energies with recent experiments. %'e have shown earlier
that the structure of the calculated dielectric function
agrees well with spectroellipsometric measurements.

M"e will present LMTO calculations of the band struc-
ture and dielectric function of Ge/Si SLS's with varying
strain distribution, i.e. , different substrates. The impor-
tance of the strain introduced in Ge/Si superlattices on
their electronic band structures has been pointed out by
various workers over the last years. Recent LMTO
calulations2 of deformation potentials (DP s) in Si and
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Ge have confirmed that the LMTO method gives reliable
results for bulk materials under uniaxial and hydrostatic
pressure, if compared to experiments. We thus have good
reason to expect that this also holds for our SLS's calcu-
lations, both for the the zone-folded direct transitions at
the I' point of the SLS's s as well as interband transitions
at higher energies, which determine the linear optical re-
sponse of the SLS's.

Special emphasis is placed on the symmetry-related
properties of these SLS's. In (Ge)„/(Si) SLS's with
both n, m even, the Ge—Si bonds are all oriented paral-
lel to one plane. ~ This means that those SLS's only have
orthorhombic and not tetragonal symmetry. Thus, the
dielectric function s2(u) is different for all three polariza-
tions along the main axes, i.e. , the SLS's are biaxial. The
dominant anisotropy is of course given by the stacking ef-
fect along the growth direction, whereas the anisotropy
perpendicular to the c axis is relevant for thin SLS's. It
has been neglected in previous work.

The paper is organized as follows. After a short in-
troduction of the method we use for our band-structure
calculations in Sec. II, we give a description of the sym-
metry properties and microscopic structure of the [001]
SLS's considered in Sec. III. The consequences of the or-
thorhombic symmetry on the band structure and the di-
electric response of the (Ge)2/(Si)2 SLS will be treated
in Sec. IV. After a detailed discussion of the effects of
the substrate on the optical properties of Ge/Si SLS's
in Sec. V, the following section will concentrate on the
conditions for obtaining quasidirect transitions in SLS's
with a periodicity of 10 ML and dipole-allowed matrix
elements, and compare recent experiments with the cal-
culations. Finally, the paper ends with some concluding
remarks in Sec. VII.

ically reasonable. We correct for the error in the band
gaps introduced by the use of the LDA by the inclu-
sion of extra ad hoc potentials placed at the atomic sites.
These sharply peaked potentials are chosen so that the
gaps at three symmetry points (I', X, I.) of the bulk ma-
terials Si and Ge match the experimental data. ~2 Al-
though being of empirical nature, this procedure is in
the spirit of the LDA. The empirical self-energy correc-
tions are added as external potentials to the Hamiltonian
thus participating in the self-consistent iteration scheme.
The correction potentials were determined for t;he two
bulk constitutents Si and Ge and then included in the
self-consistent calculations for the SLS's, without altering
them. This procedure has proven to yield very accurate
results for the two bulk materials under strain, and for
other superlattices. Although recent first-principles
quasiparticle band-structure calculations by Hybertsen
and Schluter~5 with the self-energy interaction treated
by the GW approximation may be physically more ap-
pealing, our method has the advantage of being compu-
tationally not quite as involved as theirs. Thus we can
present here calculations of a wide range of Ge/Si SLS's
as a function of multidimensional parameters, such as
periodicity and strain distribution.

For the calculation of the complex dielectric function
s2(~), the self-consistent eigenvalues and wave functions
(expressed in terms of the one-center expansions) are
used. Details of this method are published elsewhere.
The k-space integration is performed by means of the
tetrahedron method " based on a sufFiciently la, rge num-
ber of k points in the irreducible Brillouin zone. For the
SLS s investigated in this work, typically 500—700 points
were used.

II. METHOD OF CALCULATION

The LMTO method which we use for our calculations
is described in detail elsewhere. The self-consistent po-
tentials are created with a scalar relativistic Hamiltonian,
including the "combined correction term. "9 2s Spin-orbit
interaction is treated as a perturbation. Similar to the
calculations of zinc-blende-type semiconductors, we in-
clude empty spheres, that is, atomic spheres with no nu-
clear charge, located at the tetrahedral interstitial sites
in order to obtain a close-packed structure.

In the atomic-sphere approximation (ASA), the sum
of the sphere volumes (including empty spheres) has to
equal the cell volume. This requirement, however, says
nothing about the ratio of the atomic radii. In our calcu-
lation, we determined the sphere radii in the Si and Ge
layers separately by calculating the volume of the two
cuboids containing either all Si atoms or all Ge atoms.
The plane separating the two cell parts (cuboids) was
chosen to be in the middle of the Ge-Si interface. This
procedure guarantees, that for sufFiciently large SLS's
grown on Si, the radii of the Si atoms and their empty
spheres correspond to the Si bulk values, which is phys-

III. SYMMETRY AND STRUCTURE

The symmetry properties of (Ge)„/(Si) SLS's grown
along the [001] direction have been studied in detail. " z~

The extension to ot, her growth directions is not
straightforward. 2 Of particular interest to our study is
the differentiation between tetragonal and orthorhombic
symmetry. The latter occurs only if both indices n and m
are even. In this case all Ge—Si bonds are oriented along
t, he y direction as depicted in Fig. 1, whereas along the z
direction only Si—Si and Ge—Ge bonds occur. The unit
cells of these SLS with z (n.+ m) = even are simple, biax-
ial orthorhombic [space group D&& (Pmma)], while those
with

2 (n+ m) = odd are body centered [space group Dz&
(Imma)].

If one of the indices n, m is odd, a fourfold rotation
perpendicular to the layers exists, i.e., the symmetry be-
comes tetragonal. For (n+ m) = even, the same condi-
tions for a simple [space group D&& (P4m'2)] and body-
centered [space group D&& (P4m2)] tetragonal unit cell
hold as in the orthorhombic case.

Figure 2 shows the corresponding Brillouin zones of
t, he SLS s inscribed in the parent zinc-blende Brillouin
zone (BZ) in order to illustrate folding effects and to fa-
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FIG. 1. Unit cell of the (Ge)2/(Si)2 SLS. The direction of
the glide vector of the (001) glide planes is taken to be the x
axis. Thus all Ge—Si bonds are oriented parallel to the yz
plane in this case. Note that, the 2: —y axis is rotated by 45'
with respect to those of the bulk with cells of Si and Ge.

and expanded perpendicular to the interface by

ky ky

FIG. 2. Brillouin zone of superlattices (thick line) embed-
ded in the parent zinc-blende Brillouin zone, for which the cor-
responding k points are shown in bold. (a) Primitive BZ for

z (n+ m) = 2 (even); (b) body-centered BZ for -(n + m) = 3
(odd).

miliarize the reader with the notation of the points of
high symmetry. Note that the N point of the body-
centered BZ [Fig. 2(b)] corresponds to the folded I point
of the diamond BZ, and that the X point of the diamond
BZ is referenced as M in the primitive orthorhombic BZ
[Fig 2(a)].

The investigation of the microscopic structure of Ge )Si
SLS's has been very active during the last years. 29

Van de Walle and Martin ~ were the first to suggest on
the basis of total-energy ab ini]io calculations, that the
tetragonal distortions of the layers grown pseudomorphi-
cally on Si [001] substrate are in good agreement with the
predictions of macroscopic elasticity theory. The strain
is then fully confined in the Ge layers which are biaxially
compressed by the lateral strain

where a;, a~~, and a~ are the equilibrium (bulk) lattice
constants of the strained material (i = Ge), of the sub-
strate (Si), and the lattice spacing perpendicular to the
interface, respectively. Commensurate growth ensures
that the lattice constant parallel to the interface aII re-
mains the same throughout the structure. The extension
along the growth direction is governed by the elastic re-
sponse of the strained material and can be calculated
via

(3)

where Cii, Ciq are the elastic stiA'ness constants of the
strained material.

The strain tensor & can be decomposed into a hydro-
static and a uniaxial component:

O O ) (I O 0)
0 eII 0 = ~y, 0 1 0
0 0 ~&) (0 0 1)

( —1

+~„,'0
( o

o 0)
—1 0

O 2)
(4)

The hydrostatic part rh, has I'p symmetry and shifts
various direct and indirect band gaps, without split-
ting essential degeneracies, whereas the uniaxial, trace-
less component e„(I'i2 symmetry) splits the valence-
band top (VBT) at k = 0 and introduces an anisotropy
among the k

& and I(:, directions, thus splitting previ-
ously degenerate bands. In the case of strained Ge layers
on Si substrate (a; = a~„a~~ = as; ), we obtain for the
tetragonal distortion A = 7.3%, and r~ ———.1.65%, e

2.35% (A = 3e„).
This macroscopic strain consideration, however, covers

only the spacing of the strained layers and leaves the
important question for the interface spacing (separation
between the Ge and Si layers) open. Also, for short-
period SLS's, the individual interlayer spacings do not
have to be constant for all layers, but may vary slightly.
While Van de Walle and Martin took for the interface
spacing d(Ge—Si) the average of the layer spacings of
the two cubic bulk materials, Hybertsen and Schliiter
fixed the Ge—Si bond length to be the average of the
cubic Si—Si and the strained (expanded) Ge—Ge bond
length.

Recent valence-force-field (VFF) calculations,
based on ah initio and experimental force con-
stants, and self-consistent total-energy pseudopotential
calculations give a more detailed picture of the indi-
vidual interlayer spacings. They are presented in Table
I together with the results we obtained by relaxing the
SLS structures with a valence-force-field scheme, us-

ing the experimental force constantsss n, and p for Si-Si,
Ge-Ge, and the geometric average for the Ge—Si bonds.
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TABLE I. Tetragonal oistortion A = (a~/a~~ —1) in percent of the various interlayer spacings for (Ge)„/(Si) SLS pseu-

domorphically grown on [001] substrate (as;, free standing a, and ao, ). In the present work, the geometry was obtained by
minimization of the strain energy in a valence-force-field scheme, using the experimental force constants o(Si-Si) = 48.50 N/m,
a (Ge-Ge) = 38.67 N/m, n(Ge-Si) = 43.31 N/m, P (Si-Si) = 13.81 N/m, P(Ge-Ge) = 11.35 N/m, and P (Ge-Si) = 12.52 N/m,
and lattice parameters (for a~~) as; = 5.431 A, ao, = 5.657 A, and a = 5.531 A (free-standing case).

n=2 Present work

From Ref. 31

From Ref. ].6b

+s
—0.27
—0.26

—0.27

A (Si-Si)

—3.50

—3.43

aGe
—7.39
—7.71

—6.51

&s

3.65

3.74

2.96

6 (Ge-Si)

—0.18

+Ge

—3.53
—3.60

—3.26

+si

7.54

7.49

6.31

A (Ge-Ge)

4.26

3.23

0.29

0.30

0.23

Present work

From Ref. 31

From Ref. 16

From Ref. 30

From Refs. 14 and 15

0.03—0.14'
—0.11

0.05

—0.01—0.15'

0.0—0.6'
0.0

—3.18—3.35'

—3.14—3.30'

—2.90

—7.05—7.24'
—7.56—7.39'

—6.21—6.37'

—6.9

3.64

3.66

2.98

2.7

0.39

—0.17

—3.54

—3.60

—3.24

—3.4

7.26
7.42

8.05
7.38

6.06
6.20'

5.5
5.2'

3.96
4.13'

2.92
3.12'

4.2

—0.03
0.15'

0.22—0.02'

—0.06
0.11

0.0

VFF with experimental parameters.
VFF with ab initio parameters.

'Occurs twice due to symmetry.
"LDA total-energy calculation.
'Macroscopic elasticity theory, confirmed by LDA.

Values are given for commensurate growth of (Ge)„/(Si)„
SLS's on three different substrates with the lattice con-
stants, as;, aG„and a. The latter refers to the "free-
standing" case, i.e., the state the SLS would adopt for a
minimum of elastic energy. In general, the results com-
pare well, confirming, that the Ge—Si bond length at
the interface is approximately the average of the strained
Si—Si and Ge—Ge bond lengths.

One should point out that the Keating model, as used
in the present context here and in other works, is sim-

ply a harmonic model in which explicit linear terms in

(r —io)~ are not included. While anharmonic terms are
not expected to give large deviations from the calculated
parameters the neglect of linear terms could. Although
the Keating model is often used to determine equilibrium
lattice parameters, one should realize that one does not
have any control over the possible eKect of explicit linear
terms. Existing ab initio total-energy calculations,
however, lead to poor agreement of the lat, tice constants
a~ with those calculated from the elastic constants. This
is related to an underestimated lattice mismatch between
bulk Si and Ge in the ab initio calculations. Thus, the
lattice constants a~ derived from simple elasticity theory,
which are exactly reproduced by the Keating model (see
Table I), compare better to channeling experiments.
For this reason we use Keating model parameters in our
calculations while we emphasize the need for experimen-
tal determination of the interlayer spacings.

We obtain for the (Ge)4/(Si)4 SLS a small "overshoot"
of the Ge-Ge distances in the two Ge layers next to the
interface with respect, to the central Ge plane, in contrast
to the Si side, where the situation is reverse. The abso-

lute magnitude of these differences, however, is extremely
small (&0.003 A) and shifts the energies by ( 20 meV,
if compared to calculations for geometries without oscil-
lations.

Table II shows the results of our valence-force-field
calculations for the interlayer spacing of 10-ML SLS's
(n+ m = 10, 4 ( n ( 6). Note how the symmetry of the
SLS's is reflected in the displacement values. The diff'er-

ence of the displacements obtained for smaller SLS's as
described in Table I are marginal.

IV. ANISOTROPY OF ORTHORHOMBIC
SUPER.LATTICES

Equipped with the formalism described in Sec. II, we

performed fully relativistic band-structure calculations of
various SLS s for different strain distributions. Results
for the (Ge)q/(Si)q SLS on Si [001I substrate are de-
picted in Fig. 3. The calculated lowest transition of the
[(Ge)2/(Si)2]/Si SLS is clearly indirect (Ez ——0.90 eV at,

0.95M), while the lowest direct transitions at I' occur at
1.36 and 1.55 eV; their matrix elements are two orders
of magnitude below that of the unfolded Eo transition at
2.49 eV. This system is of particular interest as it is the
shortest-period Ge/Si SLS with orthorhombic symmetry.
We see in Fig. 1 that all Ge—Si bonds are oriented par-
allel to the yz plane, whereas parallel to the zz plane
Si—Si and Ge—Ge bonds alternate. For a Geqi., Sinai SLS
(k, t = 1,2,3, . . ., ) the proportion of Ge—Si bonds parallel
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TABLE II. Tetragonal distortions (compare Table I) for (Ge)„/(Si) SLS's (n+ m = 10) as
calculated within the valence-force-field scheme. a refers to the free-standing case, with a = 5.509 A
(n = 4), a = 5.531 A (n = 5), and a = 5.554 A. (n = 6).

II

(«)~/(») s

asi

0
0.01—0.14

A(Si-Si)

—2.52—2.49—2.65

aGe

—7.08—7.06—7.23

asi

3.64

A(Ge-Si)
a aG,

1.10 —3.54

asi
A(Ge-Ge)

7.26 4.68
7.42 4.84

aGe

—0.03
0.15

(Ge)s/(Si)s

(Ge)s/(»)4

0.01—0.14

0.03—0.14

—3.19
—3.35
—3.90
—4.07

—7.06—7.23
—7.05
—7.24

3.64

3.64

0.39 —3.54

—0.34

7.28 3.98 —0.01
7.42 4.13 0.15

7.29 3.25 0
7.28 3.24 —0.01
7.42 3.39 0.15

Occurs twice due to symmetry.

(a) [(Ge)zl(Si )z] lSi

*
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FIG. 3. (a) Fully relativistic band structure of the
[(Ge)q/(Si)2]/Si [001] superlattice along lines of high symme-
try. (b) Details of the band structure along certain directions
that demonstrate the orthorhombicity of the (Ge)2/(Si)2 SLS.

to the yz plane amounts to 2/(k+ I) and thus decreases
with increasing periodicity.

Because of its nonsymmorphic space group (Dzh), a
group theoretical analysis shows that all bands are dou-
bly degenerate (not counting the spin degeneracy) at the
X and U points, but not at the Y' and T points. In the
tetragonal primitive BZ, the X and Y points are equiv-
alent, just as the U and T points (the latter are called
R). At the Y and T points, the valence bands split up
by typically 0.5 eV [see Fig. 3(b)]. Note that the highest
valence band is folded back at the boundary of the BZ
when compared to that of the zinc-blende structure. Ex-
cept for the k-space region very close to the edge of the
BZ, the valence states remain basically unaffected, re-
flecting the similarity of the valence states in Si and Ge
bulk materials. This is not the case for the conduction
bands. The difference is most pronounced for the 8 like
lowest conduction states due to the relativistic downshift
with increasing mass. A difference of 0.1 —0.2 eV can be
observed in the two lowest energy bands ("original" and
folded one) with s character along the two inequivalent
directions in k space for the [(Ge)2/(Si)2]/Si SLS. The
effects of the anisotropy in the bands can readily be ob-
served in the imaginary part of dielectric function, sq(u),
which is presented in Fig. 4 for all three polarizations
along the main axes. It should be mentioned that simi-
larly to bulk materials the calculated magnitude of the Eq
transition is strongly underestimated, when compared to
experiments. This is due to excitonic and other many-
body effects, which are neglected in the calculations.
The major anisotropy in s(u) originates from the differ-
ent strain distribution along the z and z, y axes, which
has complicated effects on the critical points and their
matrix elements. The main difference between the p~ &

and p, occurs in the energy range from 3 —4.5 eV at
the critical points E~ and E2, and not so much above
and below these energies. This is in good agreement
with earlier semi-ab initio linear combination of Gaussian
orbitals (LCGO) calculations. ~2 The authors of Ref. 22
have pointed out that the gross features of the (z, y) —z
anisotropy can be explained in terms of strained bulk ma-
terials. They estimated the ratio sz'/sz '"" with a simple
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[(Ge)2/( Si )z]/Si;,30-
GeSi strained

30-
62

X X,)tg

ZZ
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10- to-
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Energy (eV)

10 4 6
Energy (eV)

10

FIG. 4. Imaginary part of the dielectric response sz(u) for
the [(Ge)q/(Si)q]/Si SLS for the three principal polarizations.

FIG. 5. sq(cu) of the zinc-blende-like compound "GeSi"
with the total (averaged) strain calculated for a SLS on a Si
substrate

tight, -binding argument to be 1.15. We see in Fig. 4
that this ratio is a complicated function of the energy
and varies from 1.0 to 1.4. The ratio of the integrated z

up to an energy of 10 eV amounts to 1.08.
In contrast to the strained bulk calculation we used

a difI'erent approach to relate the anisotropy in the 3—4-
eV region to a tetragonal distortion: we transferred the
averaged strain of the Ge and Si layers to the zinc-blende
like "GeSi" compound, i.e. , a (Ge)q/(Si)q superlattice.
The dielectric response of this material which contains
macroscopically the same strain as the (Ge)„/(Si)„SLS
is shown in Fig. 5. This now is a truly tetragonal system
and thus has only two polarizations for s2(u). The in-
crease in the oscillator strengths for the zz polarization
in the energy range from 3 —4 eV is quantitatively in
good agreement with that of the [(Ge)2/(Si)q]/Si SLS.
The structure in the dielectric response of this complex
system is of course much richer than that of the simple
"GeSi." A clear diAerence can be observed below 2.7 eV,
where GeSi has no structure, but [(Ge)2/(Si)q]/Si shows
strong absortion from a multitude of bands.

Although the (z, y) —z anisotropy arising from the
tetragonal distortion is rather large, the orthorhombic
z —y anisotropy is small, and the integrated difference
of the (z —y) amplitudes is zero. The (z —y) difference
occurs mainly between 4.2 and 5.2 eV and can readily
be explained on the basis of the band structure shown
in Fig. 3(b). Although most of the contributions to the
large E2 peak at 4.4 eV originate in transitions from
the VBT (vl, counting from the VBT downwards) to the
lowest conduction band (cl, counting upwards) at zM
in k space, there are also contributions from the v2, v3
bands to c2 at &X, Y and from v3 to c2 at 3U, T. The
difI'erence in band energies and joint density of states
is reQected in a shift of the position and strengths of c
for the two polarizations. This also holds for the energy
region around 5 eV, which contains contributions from
v2 to c4 transitions at k 4U, T.

Similar efI'ects can be observed in all orthorhombic

(Ge)zy/(Si)qt SLS's. With an increasing number of
bands, however, the analysis and the assignment to spe-
cific interband transitions becomes more diFicult. We
thus concentrated on the "simple" case (Ge)2/(Si)2. The
splitting at the BZ boundary for larger orthorhombic
SLS's will be discussed in Sec. V. We should, however,
keep in mind that even for these larger systems the difI'er-
ence in the conduction states cl and c2 can reach values
up to 0.3 eV, and thus are, together with the splitting of
the valence states at the BZ boundary, not negligible in
all cases.

V. EFFECTS OF THE SUBSTRATE

The [(Ge)4/(Si)4]/Si [001] SLS is the SLS that has
been investigated the most since the electroreflectance
measurement by Pearsall and co-workers. Its electronic
structure has been calculated by various methods
over the last years. We present its energy-band structure
as calculated with the LMTO method together with its
counterpart on a Ge substrate in Fig. 6. Notice the split-
ting of the bands at the Y and T points, similar to that
found for the 2 x 2 structure.

Note that in order to keep the X point as that where
all bands are doubly degenerate we must define the z
direction of real space such that the glide vectors of the
(001) glide planes are along z. This has the effect of
rotating the Ge—Si bonds of Fig. 1 [(Ge)q/(Si)z] by 90'
around z.

The uniaxial strain component e„splits the VBT I8
doublet of the bulk correspondingly in the case where
the Si layers are strained [Ge substrate, Fig. 6(b)], the

2, 2~) (vl) state is now above that of the 2, 2) (v2).
This implies that, transitions originating from the up-
permost valence state at k = 0 will be mainly z po-
larized, and not z or y as in the Si substrate case.
The energy difI'erence between the v2 and v~ amount to
0.10 eV for the [(Ge)4/(Si)4]/Si, and to —0.18 eV for the
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FIG. 6. Energy-band structure of the (Ge)4/(Si)4 super-
lattice for pseudomorphic growth on (a) Si [001] and (b) Ge
[001] substrate along lines of high symmetry.

[(Ge)4/(Si)4]/Ge. A detailed analysis of these splittings
will be given in Sec. V B.

Table III shows the dipole-allowed transition energies
of the (Ge)q/(Si)4 SLS's for three different substrates (Si,
Ge, and free standing). In the case of the Si substrate, the
LMTO results are compared to electroreflectance data
by Pearsall et al i.and quasiparticle calculations (QP)
by Hybertsen and Schliiter. i5 As can be verified in Table
III, the zone-folded (ZF) and Eo direct transition ener-
gies at k = 0, as well as the transitions, that can be
assigned to the strain-split bulklike E~ gaps agree within
0.1 eV in this comparison. This cleary demonstrates the
validity of our assumption, that the the adjusting exter-
nal potentials can be transferred from the bulk materials
to the corresponding atomic postions in the SLS's. Both

the LMTO method with adjusting potentials and the Qp
calculations give equally good results in the calculation
of excitation energies in SLS's. We should, however, keep
in mind, that all of these calculations assume an idealized
system, namely an infinitely extended SLS with a sharp
interface. The sample prepared by Pearsall et al. con-
sists of a quantum-well structure of Si and 4 —5 periods
of (Ge)4/(Si)q SLS. The additional confinement, effects
of such a system could explain that the calculated values
are almost systematically 0.05 eV above the measured
ones, although such small absolute values are beyond the
limit of accuracy of the calculations [the transverse mass
at the X point of bulk Si (0.2mp) is much smaller than
the longitudinal mass]. The transitions from the VBT
to the lowest ZF band are dipole forbidden in all three
substrate cases. The first allowed direct transitions have
calculated matrix elements that are 3—4 orders of magni-
tudes below that of the Eo transition.

In addition to the energy range previously reported
in the literature we list transitons up to 5 eV in Table
III, and extend the discussion to other substrates than
Si. We have shawn earlier that transitions in the range
above 3.3 eV and below the E2 edge can be ascribed
to superlattice transitions, such as these which originate
from the I", direction. These transitions, howevt r, are
very weak.

The E~-like transitions around 3 eV are much stronger.
The calculated energies are around the value reported
for the Ei gap of tlie zinc-blende like "GeSi" material, i2

namely, 2.8 eV. Due to the difII'erence of 1.2 eV be-
tween these transitions in the two bulk materials Ge and
Si and the variety of strain-split, and folded bands, they
split into various components in the case of the SLS, and
thus become rather broad. This is illustrated in Fig. 7(a),
where the average of the c& and z&" dielectric responses,
is plotted (the difference between e2 and P~" is even
smaller than in the n = 2 case, so that we can concen-
trate on uniaxial anisotropy due to the diA'erent substrate
and the tetragonal distortion). Thus, the sz'(u) func-
tions for SLS's grown on Si as well as Ge substrates are
presented in Fig. 7(b). In contrast to the case af the Si
substrate, where the amplitude of the c2' in the energy
range from 2.5 —4 eV is significantly larger than that
of sz '"", as discussed in the case of the (Ge)2/(Si)2 SLS,
the situatian reverses far the Ge substrate. The magni-
tude of the enhancement of z&

'"" over zz' in that energy
range also reaches up to 45%%uo. Note that the germanium
Ey-like edge seen in Fig. 7 at 2.3 eV shows a sign of
the (a, y) —z anisotropy in agreement with that which is
predicted by the uniaxial stress in the Ge layers, i.e. , a
decrease (increase) of its magnitude for lateral compres-
sion in z, y (z) polarization. According to the data in
Ref. 39 we predict that this edge should be lower for z, y
than for z polarization.

The E2 transitions exhibit pronounced bulklike peaks
with weak satellites. This is because the bulk Si and Ge
E2 transitions nearly fall together. The peaks of all crit-
ical points are shifted upward in energy for Si substrate.
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[(Ge)4/(Si)4]/Si(001)
L M TO QP expt. '

0.99 0.85 0.76Eg

ZF
ZF

1.29
1.78

1.24
1.76

1.25
1.70

1.30
1.75

1.03
1.43

TABLE III. Transition energies of (Ge)4/(Si)4 superlattices. The LMTO results are compared

(if possible) to quasiparticle calculations (QP, see Ref. 15) and electroreflectance data. . ZF refers to

transitions that arise as a result of zone folding at k = 0. The transitions between the E~ and E2

peaks are referred to as superlattice ("SL") transitions. Note that the [(Ge)q/(Si)4]/Si at k = 0

transitions originate from v2 and thus are p, p~ polarized, in contrast to the transitions of the

[(Ge)4/(Si)4]/Ge and free-standing case, which are p, polarized and stem for vi.

(Ge)4/(Si)4 free standing [(Ge)4/(Si)q)/Ge(001)
LMTO LMTO

0.84

Ep

Eg

SL

2.43

2.27,2.43
2.65

2.84,2.91

3.23

3.47
3.68
3.84
4.19

4.39
4.62
4.76
4.90

2.40

2.50
2.55
2.88

3.18,3.20

3.24,3.28

2.20,2.38

2.60
2.82
3.04

3.22

2.31,2.48
2.68
2.68
3.01

3.26

3.40
3.60

3.79,4.08
4.22

4.37
4.58
4.78
4.90

2.37
2.51',2.65

2.88
3.10

3.19

3.42
3.62,3.75

3.98
4.19

4.29
4.49
4.65
4.89

Present work.
Quasiparticle calculations, Ref. 15.

'ElectroreAectance, Ref. 1.
Dominant, bulklike transition.

A. Hydrostatic strain

If we neglect confinement efFects and average the split-
ting of states due to the uniaxial strain, the simplest
ansatz for the hydrostatic energy shift of the transition
E; in a (Ge)„/(Si) SLS under different strain conditions
of the Ge and Si layers (i.e. , for different a) is

aGeeGe +( n m &siess
I n+m * " n+m ' ") (5)

Here, a; are the corresponding deformation potentials for

This can be explained in terms of a hydrostatic compres-
sion of the Ge layers, which in combination with negative
values for all hydrostatic DP's a(E;) = dE/din V results
in an shift towards higher energies.

The peaks in z&' are sharper than those of c2 and
e~&". This holds especially for the peaks at —2.8 eV (Ge
substrate) and 3.3 eV (Si), which stem from vl to cl
transitions along the R—M line.

Due to the complicated efFects of the strain, it is not
easy to compare the transitions of SLS's with difFerent
substrates. Nevertheless, we think it, is important to try
to account for some difFerences in terms of simple linear
deformation potential theory. While this might be an
oversimplification for some states, it is an approach that
works well for the transitions which remain "bulklike, "
as, for example, the E2 transitions. is Strain effects can be
separated into hydrostatic and pure shear components.

the E; transition. This approach implies an equal con-

tribution of each Ge and Si atom to E; (this is justified
below). This energy difference should only be valid for
SLS's of the same period on diferent substrates, as the

predictions would become distorted due to difFerent con-

finement efFects for difFerent periods. This can be demon-

strated for the Eo transitions of the (Ge)„/(Si)„, n = 2, 4

SLS, which diA'er by 0.06 eV.
Using the DP's from Ref. 20 and Eq. (5), we obtain

EEo ——0.58 eV, when we compare the [(Ge)q/(Si)4]/Si
to the [(Ge)4/(Si)4]/Ge case. This compares rather fa-

vorably with the value we obtain from the LMTO calcu-
lation: LEo ——0.50 eV, after averaging over the split I y5

bands. Let us briefly consider effects of confinement on
the electronic states involved in the Eo transition: the

states are moderately confined in the Ge layers. In
the Si substrate case, the VBT (vi) is 62Fo confined in
the Ge region, while in the Ge substrate case, we obtain
54Fo. The s states that map onto the I'2 conduction band
of the bulk materials also show such weak confinement
effects (61'%%uo for Si, 56'Fo for Ge substrate, respectively).
Such rather small efFects are negligible for most purposes.
For a detailed treatment and discussion of confinement
efFects, see Ref. 15. Our results are basically the same.

The E~ transitions are complicated by the variety of
peaks explained earlier. The complexity involved does
not allow a simple treatment in terms of DP's. This holds
only partly for the E2-like transitions. The shift of these
transitons due to the hydrostatic compression, however,
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is relatively small, as the relevant DP's are only about
one third of those of the Ep gap. The shiA of the E2
transitions from Ge to Si substrate obtained from our
LMTO calculations (AE2 —0.10 eV) compares reason-
ably with that predicted by Eq. (5) (0.18 eV).

The sum rule for s'g(u) should yield N„, the density
of valence electrons, which contribute to all transitions
below uM.

1

2'
In order for N„ to represent the total density of valence

electrons, the integration limit ~M has to be chosen such
that the oscillator strength of the valence electrons is ex-
hausted, while that of the core electrons does not yet
play a role. For ~M ——13.6 eV and using the c2's from
our LMTO calculations, we find values of N„ that corre-
spond to —3 electrons jatom (instead of 4), which is also
what we obtain for the bulk materials. Of considerable
importance, however, is the extrinsic nature of N, and
thus the ra/io of the /V„'s obtained for the SLS's on Si
and Ge substrate, which should equal the reverse ratio of

B. Uniaxial strain

The eKects of strain on the VBT of diamond and zinc-
blende materials have been studied in detail by Pollak
and Cardona. ss For the shift of I'is bands at k = 0 with
respect to the weighted average they obtained:

&o bEooi+ + -( &o ~ b.p6Eopi'
6 4

+ 9PE2 )i/2

~E001+
4

—~( &o+ &o~Eooi

+2PE2 )i/2 (7)

the corresponding unit-cell volumes, i.e. , 1.052. This is

exactly the LMTO result, if we average over all three po-
larizations. The individual ratios for z2 '"" and z2 yield
1.03 and 1.10, respectively. This difference is probably
due to the finite cutoff for wM in combination with the
enhanced magnitude of r&' in the 2.5—3-eV region.

&o
jV

3
~@001

2

(Ge )s/(8 i )s30-

20-

10-

on Si
-------- on Ge Ap is the spin-orbit splitting of the threefold degener-

ate I'vis band into the —,+-) (v2) and the 2, +2) (vl)
quadruplet and the z, + 2) (v3) doublet due to spin-orbit
coupling in the absence of strain and bEopy the strain
splitting. Under the condition of no confinement in ei-
ther of the Ge or Si layers at the VBT, a simple Vegard-
law-type combination of the spin-orbit splittings in Ge
(Ep ' 0.30 eV) and Si (Ap' 0.04 eV) has been sug-
gested for the SLS's:

4 6
Energy (eV)

(Ge)s/(Si)s30-
! on 5

-------- on Ge
!

20-3
IV
N

CQ

10-

4 6 8 10
Energy (eV)

FIG. 7. Comparison of sz(ur) for (Ge)4/(Si)4 on Si and on
Ge [001] substrate with (a) averaged polarization perpendic-
ular to the growth direction and (b) polarization along [001j.

~Ge ~Sl
n+m. o n+m (8)

The additional splitting due to the strain can be treated
in the same way. Thus, for a uniaxial strain along the
[001] direction, the energy term bEppi can be expressed
by

('-)Epos = 6~ac&„'+ 6~s &„'.
n+m " n+m

Here, bG, and bs; are the uniaxial DP's for Ge and Si,
respectively. The theoret, ical values are given in Ref. 20,
together with a discussion of additional relativistic ef-
fects. e„' and e„' are the uniaxial strain component from
Eq. (4) in the Ge and Si layers, respectively.

We have calculated the valence-top splitting for n =
m using Eqs. (7)—(9); in this case, all E„'s predicted
for n = 1, 2, 3, . . . , are equal. They are shown together
with the values obtained from our LMTQ calculations for
three diA'erent substrates as a function of lateral strain
in the Si layers (e ') in Fig. 8. The lines calculated with

II

Eqs. (7)—(9) indicate a cross over of the v2 and the vi
states for es' 2.3%%uo. All LMTO values (points) agree

II

well with the analytical results even up to at least n = 6.
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(Ge)~/(Si)~ SLS's as a function of lateral strain in the Si
layers (cii'). The solid lines represent the result of Eqs. (7)—
(9), and the symbols the results of the LMTO calculations.

FIG. 9. Relative p contributions of the VBT (averaged
over vq, v2, and va) for various Ge/Si SLS's. The ticks sep-
arate individual layers. The interface between the Si and Ge
region is indicated by the vertical line.

This can be explained by analyzing the prerequisite for
Eqs. (8) and (9), namely the equal spread of the wave
functions in the Ge and Si layers, as demonstrated in
Fig. 9, where the relative contribution of the p states
(the rest is negligible) to the valence-band top, averaged
over the three v1, v2, and v3 bands, is displayed. The
portion confined to the Ge layers increases from 54'%%uo to
only 62%, when going from n = 2 to 6. The splitting of
the VBT should be of importance for the interpretation
of recent Kronig-Penney type models " performed for
10-ML SLS s, which will be described in more detail in
the next section. The values calculated with this model
for these SLS's are shown in Table IV. They agree, in
general, rather well with our LMTO calculations and the
DP ansatz, although the Kronig-Penney values given by
Pearsall ef at. are a little larger than the other values.

VI. DIRECT-GAP SUPERLATTICES

Recent electroreflectance (ER) and photolurnines-
cence (PL) experiments Ge/Si SLS's with n+ m = 10
have stimulated interest in the question of whether qua-
sidirect transitions are possible in this material. The
10-ML system is especially suited for obtaining a direct

transition as it is expected that the minimum of the con-
duction band, which occurs at 0.83X in Si, is folded
back to k = 0 for a total periodicity of ten.

A. EfFects of strain and composition

Besides the proper periodicity, another requirement
has to be met in order to obtain a quasidirect transi-
tion; the proper strain distribution and thus a~~. This is
because the uniaxial strain along the [001] direction splits
the formerly sixfold degenerate minima along the cubic
4 direction into two equivalent [001] and four [010], [100]
minima by the amount

(10)

Here, =„ is the relevant DP, which is positive for both
Si and Ge.2e Thus, enough tensile strain in the Si lay-
ers is needed to lower the minima of the twofold states
(which are folded back to I') below those of the four other
states. This eKect is demonstrated in Fig. 10, where the
band structures of (Ge)s/(Si)4 SLS's on three different
substrates are presented. In all these cases, the folded
back minima map exactly to I', but only in the case of
the Ge substrate and in the free-standing case this mini-

TABLE IV. Splitting of the top of the valence band (E, —E„,) in eV.

Ge a/ Si 4
Ge4/Si a
Ge 4/ Si a

4.2
4.2
1.4

I MTO

0.13
0.22

—0.04

DP theory

0.15
0.25

—0.05

Kronig-Penney

0.19, 0.13'
0.21'

C

'From Eqs. (7)—(9).
From Ref. 5.

'From Ref. 7.
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mum is lower than the ones occurring along the 4 (I'—X)
direction. Due to confinement effects, the splitting bE~
of these states is somewhat larger than what would be
expected from a simple DP argument, such as applying
Vegard's law to Eq. (10). In addition, bE~ does not vary
much with the compositon of the 10-ML SLS's. This is

demonstrated in Fig. 11, where the direct (Er 1 ) and the
"competing" indirect transitions are plot ted as a function
of composition and strain. The symbols in the middle of
this plot (i.e. , with 1.4'%%uo & cii' & 2.3%) represent LMTO
results for the free standing case (see Table II); the lines
connecting the points are just meant as a guide to the
eyes. The energy of the quasidirect Ep p transition on
Ge substrates decreases with increasing Si content (m)
almost linearly [0.05(m —n) eV], but remains constant

for Si substrates. This is consistent with a 85% con-
finement of the ZF conduction-band minimum (CBM) in
the Si layers. These states have almost 50%%uo s character,
and the remaining half is equally divided into p and d
contributions.

In all cases, the lowest conduction bands along the I'—8
direction disperse upwards, in contrast to the (Ge)4/(Si)4
system (Fig. 6, compare also Fig. 3). The most dramatic
variation of indirect gaps with composition is found for
the Ep ~ gap. It shows a linear behavior with increasing
Si content both for the Si [- 0.14(m —n) eV] and the Ge
substrate [ 0.06(m —n) eV].

For completeness, we show in Fig. l2 the band
structures of the free-standing (Ge)s/(Si)s and the
(Ge)4/(Si)s SLS, which gives in conjunction with

[( Ge )6 /(Si )4j / Si (Ge) /(Si) free stand.
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FIG. 11. Transition energies of various 10-ML SLS s as a function. of lateral strain in the Si layers. ~ denotes the direct

transition energies, in contrast to the competing indirect transitions which are also displayed.

Fig. 10(b) a good impression of how a change of n/m
affects the eigenvalues. Except for the I'—N direc-
tion, where all bands vary noticeably, the changes are
marginal. This refIects the similarity of the bulk band
structures in Si and Ge along all lines of symmetry, ex-
cept for the I'—N line.

B. Matrix elements and optical response

I . Symmetry, order, and transitions

So far, the conditions for obtaining direct transitions
have been derived, regardless whether the lowest direct
transitions are optically allowed or not ~ This issue can
only be addressed after a group theoretical analysis of the
symmetry properties of the zone-folded bands has been
presented.

The 10-MI SI,S's with n, m even are rather s11Tlllar to
the (Ge)4/(Si)q SLS, for which a detailed group theoret-
ical discussion is given in Ref. 4 (point group D2h, ). In
contrast ta the Bouckaert-Smolukawski-Wigner (BSW)
notation for the irreducible representations of the point
groups used in that paper, we shall use the standard
Koster notation for the symmetry analysis in this sec-
tion. In order to facilitate a comparison of the two no-

tations, the BSW symbols are given in brackets after
Koster's in Fig. 13.

While the (Ge)4/(Si)4 and the 10-ML SLS's with

n, m =even share the same point group (D2p, ), the sym-
metries of the states folded back to the I' point vary
due to the difFerence in periodicity and BZ (primitive
and body centered, respectively). In the primitive BZ
of the (Ge)4/(Si)4 SLS, the points (2x/a)(0, 0, 2) and

(2n/a)(0, 0, 1) of the diamond BZ are folded back to the
I' point of the superlattice BZ, while in the orthorhom-
bic 10-ML SLS's, these are the points (2'/a)(0, 0, &) and
(2n. /a)(0, 0, s). In the cubic BZ, the lowest conduction
bands alang the [100] directian (A) have Aq symme-
try. When the compatibility relatians to the Dqq (D2q

for n, m =odd) point group are calculated, they become
states with I &, I's (1 q, I's) symmetry. Thus, the two 4t
points given above for the cubic HZ will be folded back
into four states of the superlattice BZ. In addition, the
next conduction states of the cubic (2n/a)(0, 0, ~s) point
(Az states) lie only slightly higher (= 0.3 eV) than the
higher upper folded A~ states. This is demonstrated in

Fig. 13, where the energy bands near the I' point with

their symmetry labels are shown for three free-standing
10-ML Ge/Si SLS's (4 ( n ( 6). The compatibility re-
lations for the states in this figure are given in Table V.
For the convenience of the reader, the dipole-allowed op-
tical transitions to the lowest conduction states are also
indicated in Fig. 13 (see Table VI). In this context, there
are three especially intriguing points.

(1) Neglecting the slightly difFerent strain states of
these SLS's (each of them is free standing, but with dif-
ferent a~~ and n, rn) and confinement effects, one might
naively expect the Eo transition of these SLS's to obey
a simple Vegard-type law based on the Eo transitions of
the constituting bulk materials Si and Ge, which vary
considerably (4.2 eV and 0.89 eV, respectively). Rela-
tivistic effects, however, to which s-like conduction states
are especially sensitive, shift these 0.15 eV below the
"Vegard's-law" value.

(2) As described above, we consider four low-lying
states originating from the zone-folded, cubic Aq and two
from the folded E2 state (the other two Kz 's are beyond
the range of I'ig. 13). The compositional dependence of
the cubic I z s-like state (I s in the D2h, group, see Table
V) is rather large, as discussed above. In the (Ge)q/(Si)6
SLS, it, occurs at 2.6 eV as c7 after the six zone-folded
states, whereas in the (Ge)s/(Si)4 SLS, it ranks as c4 at
2.0 eV, separating the zone-folded states. The energies of
the higher lying bands originating from cubic I'&z states
should not be very well represented by our calculation, a
shortcoming of the external potentials used in our calcu-
lation, well known from our bulk calculations.

(3) Most interesting, however, is the reversal of the two
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F1G. ].2. Band structure of the free-standing (a)
(Ge)»/(Si)s and (b) (Ge)s/(Si)s superlattice along lines of

high symmetry. See also Fig. &0(b).

lowest, almost degenerate conduction states, when going
from the n = 4 to the n = 6 SLS. This means that for
the (Ge)»/(Si)s SLS, the CBM has I s symmetry and
thus the transition from the VBT to that state is dipole
allowed, whereas it is forbidden for the (Ge)s/(Si)4 case,
just as in the (Ge)4/(Si)» SLS (see Fig. 13). The mag-
nitude of the allowed matrix element, however, is 3 —4
orders smaller than that of the bona /de Eo transition
at 2.6 eV. its small value prevents us from giving de-
tailed numbers other than just the order of magnitude,
since our calculation diverges for lc ~ 0 (an artifact) and
the matrix elements should depend on k. The extrapola-
tion method we use, calculating the matrix elements at
various points very close to k = 0, has its natural lim-
itations. Nevertheless, we have been able to determine
t, hat the matrix element of the direct-gap transiton in
the Ge5Si5 SLS is only 1 —2 orders below that of the Eo
transitions, and thus rather sizable. This is because the
Dqd point group, in contrast to the D2g group, lacks a
center of inversion. The first allowed direct transition of
the (Ge)s/(Si)» SLS, i.e. , the one to the second conduc-
tion state, also has a matrix element only approximately
equal to two orders of magnitude below that of the Eo
transition.

The reversal of the I'3 and I'& states for I = 4 com-
pared to I, = 6 has its origin in the magnitude of the con-
tribution of the s character in the two additional Si lay-

ers, which is almost vanishing. Since the electronic states
are strongly confined in the Si region, the relative confine-

ment per Si layer decreases with increasing m. Curiously,
the higher of these two states shows somewhat higher
confinement (additional 2—

3%%uo) than the lower state in

both SLS's, contrary to what one might expect. This bal-

ance is so delicate that even weak coupling with higher
states can reverse the predicted sequence. We should,
however, keep in mind t,hat these two electronic states
are separated by only 0.04 eV, which is close to the limit

of accuracy of our calculation.
Finally, it should be mentioned that the order of the

lowest ZF conduction states does not change with varying
substrate, in contrast to the crossing of the v2 and v~

state at the VBT top in conjunction with a change of
polarization of the lowest direct transitions, as discussed
in Sec. V.

TABLE V. Compatibility table between relevant states at I' and A in the diamond and in the
(Ge)„/(Si) superlattice structures [Koster's notation (Ref. 43)].

Cubic

r2s
rI
r„

n, m even n, m odd

I'5, I'3
r1
rg, r3
I'1, I'3

r„r.
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TABLE VI. Dipole-allowed transitions of the (Ge)„/(Si) superlattice at k = 0 in Koster s
notation (Ref. 43). For a more detailed analysis of these transitions, including spin-orbit interaction,
see Ref. 4.

(Ge) „/(Si)
n, m even

n, m odd

Point group Polarization Allowed transitions

I+ - I, ; r+ - I, ; r+ - r, ; I+ - r,
I'i, I'2, I'3, I'4

I'g ~ I'3, I'4 ~ I'2, I'5 ~ I'5

2. Linear optical response

Figure 14(a) shows the dielectric response of what we
believe to be the best candidate for optoelectronic ap-
plications, the strain-symmetrized (Ge)s/(Si)s SLS. The
onset of the absorption due to the allowed direct tran-
sitions at 1.1 eV in c&

'"" is magnified by a factor of
1{),thus allowing us to compare the calculated oscillator
strengths. The 5 x 5 structure on the Ge substrate has
slightly smaller matrix elements for p, polarization than
the free-standing one, but in addition has to cope with
the problem of critical thickness.

The calculated linear optical response of the type of
SLS that has been grown by Pearsall et aI,. is displayed
in Fig. 14(b). As this SLS is on the Ge substrate, the
quasidirect transitions from the VBT are p, polarized,
which is easy to discern in the blow up. The spectra of

both of these SLS's show a rich structure. For a detailed
analysis of these structures in a symmetrically strained
(Ge)4/(Si)s SLS in terms of interband transitions and a
comparison to experimental data, see Ref. 13,

8. Comparison with experiment

Table VII shows a comparison of recent experimental
results on 1Q-ML SLS's grown on various substrates and
our LMTO calculations of the direct transitions. Let us
first discuss the electroreQectance and photoreAectance
data of Asami and co-workers s for Ge/Si SLS's on the
Si [001] substrate. The periodic structure has been re-
peated only six times, i.e., the samples grown can be
described as [(Ge)„/(Si) ]s, thus we have to be care-
ful when comparing our calculations, which are based
on infinitely repeating structures. As demonstrated in

r;(r3)

r3(r3,Ep)

r3 (rc»

I ) (l2)

r) (I ),Ep)
r}+(r})
l 3 (I 3,Ep)
r3(r3)

~4 (r2)—r2(r;)

r3 (I 2)

r3 (r4;)

r) (rj)

r3 (r3)
r)+(r) )

r3(rj)

(x, y) (x,y) (z) (x,y) (z}

0—

(Ge} /(Si) (Ge)5/(Si )5

"free standing"
(Ge} /(Si)

FIG. 13. Symmetry and order of the energy levels at the I' point of the three 10-ML SLS's covered in the text. Note
that we use Koster s notation (Ref. 43) for symmetry labeling, with the BSW notation (Ref. 42) added in parentheses. The
dipole-allowed transitions are given for clarity only for the four lowest states, the rest can be supplemented using Table VI.
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the preceding sections, these SLS's have an indirect gap
at 0.95 —1.05 eV. The experimental data show two
transitions below the direct ones, of which one could in
analogy to the (Ge)4/(Si)& case be assigned to the lowest
indirect transition. The other peak has been observed
for the first time [analogous to the (Ge)4/(Si)4 sample,
in which the authors of Ref. 45 found a similar peak
that has not been reported in Ref. 1] and on the ba-
sis of our theoretical calculations no explanation can be
given. The measured spectra of both the (Ge)4/(Si)s and
the (Ge)s/(Si)4 sample are very much alike, a fact that
suggests that there must be a considerable amount of
interface diA'usion. While our calulation reproduces the
lowest direct transitions quite well (disregarding the re-
versal of the lowest allowed and not allowed transitions,

that accounts for most of the change of the transitions
energies, which would otherwise be almost identical) the
higher-lying folded transitions have not been detected ex-
perimentally. In addition, the shift of the rather strong
Eo peak with composition could not be verified either.
Such a shift, however, has to occur independently of the
type of calculation, and the fact that such a strong fea-
ture could not be detected experimentally leaves serious
doubts as to whether a direct comparison of the experi-
mental results with the calculations are valid at all.

Turning to the electroreAectance experiment by
Pearsall ef al. on the [(Ge)s/(Si)4]/Ge sample, it should
be mentioned that in their geometry they could not excite
the lowest direct transition, which occur in p, polariza-
tion. The lowest transitions for both p, (at 0.86 eV from
vi) and p &

polarization (at 0.99 eV from v2) are for
bidden, as the CBM has I'i symmetry. This finding is
in contradiction with the statement by Pearsall, based
on empirical pseudopotential calculations by Gell. i The
first calculated, allotoed transition in p & polarization oc-
curs at 1.09 eV and is in good agreement with the exper-
imental result of 0.96 eV. It can also be argued, that a
small perturbation, such as misalignment or roughness at
the interface, may suKce to transform a forbidden tran-
sition into an allowed one. In that case, we would have to
compare the experimental 0.96 eV with 0.99 eV. Anyway,
we always have to keep in mind that our calculations are
concerned with idealized SLS's, and ab initio studies of
interdiff'used SLS's models require an enormous compu-
tational effort, and can be considered to be still in their
infancy.

This also holds for the last experiment we want to
discuss, the photoluminescence measurement by Zachai
ef al. 7 on a strain-symmetrized (Ge)4/(Si)6 sample, one
of the most debated experimental results. In that case,
our calculations indicate that the lowest transition from
the CBM to the VBT is allowed (see Fig. 13). We have
pointed out earlier that the measured value of 0.84 eV
is well below the calculated energy of 1.1 eV, and sug-
gested that the observed peak could be related to defects,
in particular misfit dislocat, ions, which are contained at
high densities in the sample. Recently, there has been ex-
perimental support for this interpretation by Northrop et
aL4 A Canadian group, s however, found in their PL ex-
periments that neither zone-folding eAect nor misfit dis-
locations are needed in order to produce PL peaks similar
in shape and energy to the ones found in Ref. 7. The ex-
act origin of these transitions remains an open question.

4 6 8 10
Energy (eV)

FIG. 14. Linear optical response of (a,) the free-st, anding
(Ge)q/(Si)q and (b) the [(Ge)6/(Si)4]/Ge SLS. Note that the
energy region up to 1.5 eV has been magnified by a factor
of 10 in order to clearly observe the absorption due to the
(quasi)direct transitions.

VII. CONCLUSIONS

We have applied ab initio calculations with an ad ho|.-
correction to the LDA "band-gap problem" in order to
obtain the band structures and linear optical response
of a variety of Ge/Si superlattices. The results obtained
with this method are almost identical with the state-of-
the-art quasiparticle calculations, which have only been
carried out for one SLS. Also, to our knowledge, no such
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TABLE VII. Comparison of calculated and measured direct transitions in 10-ML SLS's. All
energies are in eU. The energies given here are from a fully relativistic calculation, including spin-
orbit interaction. The notation of the eigenstates, however, refers to the single group, i.e. , with
spin-orbit coupling neglected.

(Ge)4/(Si)s

(«)el(»)4

(«)s i(»)4

(«) l(»)s

equi' (%)
0.0

0.0

4.2

1.4

Experimental

1.22

2.10

1.25

2.10

0.96

0.84'
0.84'

LMTO

1.85

2.14

2.68

1.22

1.89

2.10

2.19

0.96
1.09

1.08'
1.12

Tr ansi tion

r+ -r; (&. „)
r4 —r3 (p*,v)

r.+ - ri (»*,v)

r.+ —r3 (Eo, p-, v)

r4 - rs (p-,.)

r+ —r; (». „)
r+ —I; (E., &, „)
r.+ —ri (&-,u)

r+-I; (&, )
r, -I;(p. „)
r', 4

—r. (p-,.)
r3 (&-,v)

Electroreflectance and photoreflectance, from Ref. 45.
Electroreflectance, from Ref. 5.

'Photoluminescence, from Ref. 7, see text.
Inclusion of spin-orbit interaction causes the v& state to be at the VBT and thus the lowest energy

also occurs in p polarization.
'Inclusion of spin-orbit interaction turns the I'4+ (I'2+) into the v2 (vq) state (E„)E„~, see Fig. 8).
The lower transition from vq then has a p component.

calculation which includes spin-orbit interaction or yields
the dielectric response has been reported.

Of special interest has been the anisotropy of the di-
electric response of the orthorhombic SLS's. While the
(z, y) —z anisotropy should be experimentally accessi-
ble once suKciently thick samples are available so that
spectroscopic methods such as ellipsometry can be ap-
plied, the detection of the z, y anisotropy will remain
elusive unless the perfection with which these SLS's are
grown reaches the point, where hundreds of periods can
be grown within a precision of only one ML per period.
The introduction of just one additional monoatomic step
is expected to destroy the (z, y) anisotropy, which has so
far been undetectable. In addition, interface diffusion
may deteriorate the optical anisotropy of otherwise per-
fect SLS's. The shift of optical peaks due to difference
in strain, as has been calculated in Sec. V, should stimu-
late further experiments. A clear downshift in energy of
photoluminescence spectra with increasing lateral strain
in Si layers (e ') has already been observed.

Further experimental evidence for the calculated split-
ting of the VBT due to the internal strain should be pos-
sible by means of electroreAectance and photoreAectance
experiments. It has been shown that a simple Vegard-
type law agrees well with our elaborate fully relativistic
calculations, after spin-orbit coupling has been included.

Conditions for obtaining (quasi)direct transitions have

been derived. The situation has shown to be rather com-
plex, especially the question of whether the lowest folded
back conduction states yield allowed transitions from the
VBT or not. We thus included a group theoretical dis-
cussion of the symmetry properties of these and various
other st, ates. Our statements concerning the matrix el-
ements had to be rather vague and could not be more
precise than their magnitude. Here, spin-orbit effects
play a minor role. They do cause some more transitions
to become allowed, but the magnitude of these additional
transitions is extremely weak. 4 Moreover, the fundamen
tat' transitions which concern us most will be unaffected
by this refinement.

Not all experiments we discussed in Sec. VI B showed
the entire features which we calculated. This may partly
be due to the fact that we are calculating an idealized
system that does not include essential effects such as in-
terface mixing. Also, some of the measurements have
been done under different conditions, such as tempera-
ture. Our calculations do not include temperature shift.
The experimental results are also clearly affected by the
quality of some samples, which still has to be improved
for a direct comparison with calculations. Almost identi-
cal experiments performed on samples of different source
and thus different method of growth, preparation, or
thickness —or even only of a different series of the same
source —often do not yield identical results. We realize
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how diflicult it is both to grow these SLS's and to inter-
pret relevant experiments.

On the other hand, ab initio simulations of some defi-
ciencies of the samples, such as interface diAusion, have
already been repor ted. Further theoretical progress
can be expected from such calculations, which represent
an elegant but computationally demanding approach of
modeling "real" systems.

Despite all these shortcomings, the overall agreement
of the experiments and our calculations is rather satis-
factory, most differences being smaller than {).1 eV. The
(Ge)q/(Si)q system has been predicted to be the most
suitable candidate for optoelectronic applications of all
SLS's studied here. The future will show whether such
devices are actually feasible.
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