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Sticking coefficient of light particles on surfaces
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We consider a theoretical treatment of particle-surface scattering in which the sticking coefficient
and scattered intensities are simultaneously calculated to arbitrarily high orders in perturbation
theory. We present model calculations through third order in perturbation theory, including all
two-phonon contributions, for the cases of H2 and D~ interacting with a Cu(100) surface and the
case of Ne interacting with a Ru(001) surface. The direct scattering into the bound states gives rise
to structure which can be observed both in the sticking coefficient and in the specular intensity.

I. INTRODUCTION

One of the most important processes occurring at a
gas-solid interface is the capture and subsequent sticking
of incident atoms or molecules. Recently, there has been
considerable interest in both the experimental measure-
ment' and theoretical interpretation ' of the sticking
of very light atoms and molecules in which quanturn-
mechanical effects play a significant role.

If the gas molecules are massive, the theoretical treat-
ment can be completely classical and the sticking, at least
conceptually, is a straightforward process of energy loss
upon collision or multiple collision with the surface. "
For light atoms a quantum-mechanical approach must be
used and the situation is not so simple. A problem arises
because the sticking problem is unlike the usual scatter-
ing theory treatment of the collision process. In a typical
scattering problem the particle is initially prepared in a
continuum state of the unperturbed potential in the re-
mote past. The perturbing potential is then adiabatically
switched on, allowing the interaction with the scattering
center to occur, after which the interaction is again slow-
ly switched off. Consequently, after a large time has
passed, the particle amplitude is typically described as a
linear combination of all the states of the unperturbed po-
tential. The fractional probability in each final state or
the transition rate from initial to each unperturbed state
can be readily calculated. ' In particular, one might as-
sume that the probability of transition from an initial
continuum state to a negative-energy bound state can be
interpreted as the trapping or sticking coefficient for the
given bound state. This implies that a "stuck" particle
would be defined as one that remains an infinitely long
time localized near the surface. However, in any situa-
tion corresponding to possible experimental conditions,
the perturbing potential is always present near the sur-
face, and a particle localized near the surface must con-
tinue to make further transitions. This can be viewed
somewhat differently by considering the evolution of a
particle initially prepared in a bound state of the unper-

turbed potential. The probability amplitude of such a
particle near the surface should decay with time, and will
eventually disappear from the neighborhood of the sur-
face and go into the continuum states. Otherwise stated,
there are no particles that remain in bound states an
infinitely long time. Thus it is difficult to define unambi-
guously the quantum-mechanical sticking coefricient, and
consequently its theoretical definition must be operation-
ally defined in order to match the manner in which the
sticking coefficient is measured experimentally.

Prompted by recent experiments measuring the stick-
ing coefFicient of Hz, D2, and Ne on metal surfaces, we
consider in this paper a general theory for the scattering
of a particle from an incident beam into a negative-
energy surface bound (adsorption) state. The theory
developed can simultaneously be used to calculate the
sticking and the elastic or inelastically scattered intensi-
ties, and all can be related by the unitarity relation. The
theory is developed to all orders of phonon exchange, and
model calculations are carried out that include not only
the distorted-wave Born approximation but the higher-
order single-phonon and double-phonon processes. The
phonon distribution used is that of a Cu(100) surface, and
the calculations for H2 or D2 beams at energies too small
to excite molecular rotational states show structure simi-
lar to that seen in the measurements of sticking; this
structure is also apparent in the specularly scattered in-
tensity. The model potentials used in these calculations
are ones that have been used previously to explain the
elastic diffraction and thermal attenuation of beams of H,
H2, and Ne scattered from a variety of clean copper sur-
faces. The calculations are extended to the case of stick-
ing of Ne at a Ru(001) surface and the results agree favor-
ably with recent experiments.

II. THEORY

For the theoretical description of atom-surface scatter-
ing we consider an incident particle of mass m and initial
wave vector k, interacting with a potential V(R, z, u).
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Using a standard notation, R and z label space coordi-
nates parallel and normal to the surface, respectively, i.e.,
r=(R, z). The inliuence of the thermal vibrations of the
crystal atoms on the interaction potential is taken into
account through the phonon displacement operator u.
Anticipating a treatment based on distorted waves, or
two-potential theory, we write the total interaction po-
tential V(R, z, u) as the sum of a static term and a term
depending on the thermal displacement:

V(R, z, u) =U(R, z, u)+ (( V(R, z, u) )),

w(k/, k, )=((gw/, ))

and clearly if k& is chosen to be a continuum state this is
an experimentally measurable quantity. Using the Van
Hove transformation, this averaged transition rate can be
written as the Fourier transform of a time-ordered corre-
lation function

w(k~, k;)= f dt e' ~ ' ((Tit, (O)T/, (t))) .

where the double brackets stand for the ensemble average
over vibrational states of the crystal. We will also assume
for the calculations done here that (( V)) is spatially
averaged over directions parallel to the surface and hence
is a function of z only (i.e., (( V)) is the zero spatial
Fourier component of the vibrationally averaged poten-
tial). We adopt the two-potential formalism with
U(R, z, u) and (( V(R,z, u) )) the perturbing and distort-
ing potentials, respectively. Then the transition operator
for this problem is

T=u+vG+T, (2)

$2
H, = — V'+ (( V))+H',

2m
(4)

where H' is the unperturbed crystal Hamiltonian. We
denote the eigenstates of H' corresponding to the eigen-
values E„' by ln ). Then the eigenstates of the distorting
Hamiltonian are simple products:

where for the state P, b(z) describing particle motion nor-
mal to the surface, the labels c or b signify continuum or
bound states of (( V)), respectively. The energy eigenval-
ue corresponding to the state of Eq. (5) is

(fi /2m)K +e, „+E„',
where e, b is the energy associated with normal motion in
the potential (( V)), and we note that e„ is both nega, tive
and discrete.

The transition rate between an initial state i and a final
state f of the Hamiltonian Ho due to scattering by the
perturbation v is given by the usual expression

le;l &(E/e +Ej Ep Ef ) . .

The sum of w&; over final crystal states and the ensemble
average over initial crystal states gives the transition rate
w (kf k ' ) between incident particle state k, and final par-
ticle state k&

with the Green function given by the distorting potential:

G+ =(E,~+E Ho+i E)—

where E~ and E are, respectively, the incident particle
energy and the initial crystal energy, and the distorted
Hamiltonian is

Now let us consider the situation in which the final
state is kb, a bound state of the potential. The third com-
ponent of kb corresponds to the negative discrete energy
in the bound state of (( V)). In this case the reAection
coefficient cr~, obtained by dividing w(kb, k, ) by the in-
cident normal Aux j; =fik;, /m can be interpreted as the
sticking coefFicient or trapping coefficient into the bound
state b for the given incident conditions. The problem
with such a definition, as noted in the Introduction, is
that for an exact calculation on a totally isolated system,
O.

b, will be vanishing. This is because no particles will

remain in the bound state for an infinitely long time.
What is needed is to tailor the calculation to the exper-

iment so that their conditions match closely. For exam-
ple, in the experiments of interest, the residence times
in the bound states at low surface temperatures are long
compared to the collision time, which is of the order of a
phonon vibration period —10 ' s. The sticking
coefficient is measured by monitoring the change in work
function in the limit of low coverages, or by thermal
desorption measurements. Thus from an experimental
standpoint, it is clear that the incident molecules may be
captured in the attractive well at the surface, if not for
infinite times, at least for times long compared to a typi-
cal experiment. This suggests that from the correspond-
ing theoretical standpoint, the appropriate calculation
would be to assume that a particle is captured (or stuck)
once it has been scattered into a bound state. This as-
sumption is certainly valid for situations in which the
sticking probability is small, since if the probability of
entering a bound state is small, according to detailed
balancing arguments the probability of escaping is also
small; hence the lifetime in the bound state is long, imply-
ing that subsequent desorption is a slow process.

In this work we calculate the sticking coefficient within
the distorted-wave formalism by making the perturbation
expansion of the T matrix of Eq. (2) to higher orders:

T=v+vG u+uG+vG v+-

The Born approximation gives the direct transition
from an initial continuum state to all the bound states
through a single inelastic interaction with the potential.
In this case the definition of the sticking is unambiguous.
For the higher-order corrections to T we calculate the
probability that the particle ends up in a bound state
after several interactions with the potential in which en-
ergy can either be gained or lost. In actual calculations
with the models described below, the expansion of T was
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made through third order, and all terms involving single-
or double-phonon exchange were included. Results for
the distorted-wave Born approximation show that the
sticking is small and comparable to the experimental
values, and hence, according to the arguments above, the
perturbation approach is valid. The higher-order correc-
tions, although in some cases significant, as particularly
in the scattering of neon, constitute a smaller correction
to the Born approximation for very low crystal tempera-
ture.

We would like to point out that it is often useful to use
the optical theorem, i.e., the statement of unitarity in the
scattering process, in order to relate the elastic scattering,
inelastic scattering, and the sticking. The optical
theorem is usually stated in the following form, which
can be obtained directly from the T matrix in Eq. (2):

X«n(n„)+1» . (14)

Here M is the crystal atom mass and Qb is the dimension-
less energy exchanged:

face, the scattering from it is fully three dimensional in
the sense that the incident particles are scattered into a
range of final angles, depending on the exchange of ener-
gy. Also, this potential exhibits phonon-associated reso-
nances with the bound states.

As an example of a calculation, we present here the
distorted-wave Born approximation, taking for the dis-
torted potential the thermal averages of V in Eq. (13):

2

;=(2 )', , &l&P p( —2y )P;&l', 2m 2mD
'

p, M

T Tt= —2i rrTt—5(Ef' E,' H—o)T—. (10)

In the present case, it is convenient to anticipate the fact
that the repulsive molecule-surface potential is short
ranged. in space with a scale parameter y. We can then
define a dirnensionless T operator according to

2' T,
/2~2

and after taking the diagonal matrix element of (10) with
respect to the distorted states, the optical theorem takes
the form

1= 1 — F" + '
m + Fb

(12)

This is clearly a statement of unitarity and the three
terms on the right-hand side are, respectively, the
reQection coefficient into the specular beam, into inelastic
continuum channels (and other elastic diffraction chan-
nels if the perturbing potential is chosen to be periodic),
and into the bound states. Following the above discus-
sion, the last term is proportional to the sticking
coeKcient. Therefore, if the sticking has a maximum for
a given set of incident conditions, the sum of intensities in
the elastic and inelastic channels should be a minimum.
Thus one can immediately link extrema found in the
sticking coefticient to structure in the inelastic and elastic
intensities.

III. CALCULATIONS

The potential that we have used for the actual calcula-
tions is a vibrationally corrugated exponential repulsion
representing the repulsive exchange forces near the sur-
face, together with an attractive part:

V =D exp[ —2y(z —u ) ]exp( —2y (( u » ) —f(z), (13)

which has been used successfully for the calculation of
the thermal attenuation of the specular beam intensity on
Hat metal surfaces. ' ' Note that although this poten-
tial is one dimensional in the sense that it does not con-
tribute to the transfer of momentum parallel to the sur-

The phonon distribution function or spectral density
p(A) is taken equal to that of four atoms belonging to the
unit cell of the (100) face of an fcc crystal, with the force
constants chosen to rnatch those Cu. The attractive po-
tential is usually taken to be 2D exp(——yz ), which leads
to a Morse potential for (( V», although we have also
used attractive potentials with a 1/z asymptotic behav-
ior consistent with the known form of the van der Waals
force in order to ascertain that the short-range attractive
force of the Morse potential does not give spurious re-
sults [an exponential attractive potential is convenient be-
cause it leads to an analytic form for the necessary matrix
elements in (14)].

With these choices the model is of the same form as
that which has been used to calculate the thermal at-
tenuation of He and H2 from smooth Cu surfaces, ' and
the potential model is also identical to the zero-order
Fourier component of the corrugated potential used to
calculate diffraction peak intensities for He and H2 scat-
tered from Cu(110) and from vicinal stepped surfaces. '

The only remaining parameters are the well depth D and
the range parameter y, and these are chosen to be
D=30.9 meV and g=1.14 A ' for the case of H2 and D2
on Cu(100), as has been recently determined. ' Actually,
two values for D were tested: the value 30.9 meV corre-
sponds to the well depth given in Ref. 19, while a slightly
larger value of 34.5 meV gives a closer rnatch to the mea-
sured values of the lowest bound-state energies. This
small difference in well depth made no significant change
in calculated values for the sticking coeKcient over the
range of incident conditions of interest.

Although we have explicitly exhibited only the
distorted-wave Born approximation in Eq. (14); with the
potential of Eq. (13), all contributions of higher order in
the perturbation series for o.

, can be thermally averaged,
term by term. Detailed discussions together with calcula-
tions for inelastic scattering into the continuum states
have been given elsewhere. In the numerical calcula-
tions discussed in Sec. IV, we have carried the develop-
ment far enough to include all single- and double-phonon
transfers, regardless of whether the phonons are virtual
(leading to no net energy transfer) or real (producing a
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net exchange of energy between particle and surface). At
large temperatures, this is equivalent to saying that we
calculate all terms in o.; proportional to T and to T .

The temperature dependence can be seen, for example,
from the distorted-wave Born approximation of Eq. (14),
which is a process involving transfer of a single real pho-
non. The temperature dependence is contained in the
Bose-Einstein factor n (0& ), which, for kz T ))A'Qb,

behaves as ksTIAQ, b All . single-phonon processes with
a first-order dependence on T are contained in Eq. (14).
Two real phonon processes proportional to T come from
both first- and second-order perturbation theory. Single-
phonon processes of order T arise from the interference
between first-order and second- or third-order perturba-
tion theory, and these contributions involve the exchange
of a virtual phonon as well as the real phonon exchange.

IV. RESULTS

For molecular hydrogen scattered by the copper (100)
face, Fig. 1 gives the variation of the sticking coefficient
o.; as a function of normal incident energy E; and for a
surface temperature of 10 K. The present calculations
are shown in both the distorted-wave Born approxima-
tion and with all corrections due to double-phonon ex-
change.

Also shown in the same graph are the experimental
points and two different calculations of Andersson et al. ,
the distorted-wave Born approximation (DWBA) and a
forced oscillator model. The DWBA of Andersson et al.
shows some sharp structure in o.; at low energies, which
arises directly from a sharp structure in their phonon
spectral density. This structure is not apparent in our
calculations because we use the phonon spectral density
of four surface atoms, as has been shown to be necessary
for describing scattering into the continuum. ' ' ' ' This
structure also does not appear in the forced oscillator
model of Andersson et al.

Our calculated curves lie somewhat below the experi-
mental points. They could be made to lie much closer to
the experimental points by decreasing the number of sur-
face atoms over which the phonon spectral density p(Q)
is calculated; however, we have chosen to retain the same
spectral density that has proven to be satisfactory for pre-
vious calculations. ' '

A very interesting feature of our calculations is that,
viewed as a function of increasing energy, o.

, initially has
a maximum and then shows a globally decreasing behav-
ior, but with some clearly superimposed oscillations of
small amplitude. The origin of these oscillations is the
fact that different bound states contribute most strongly
to the sticking at different incident energies. Figure 2
demonstrates this behavior. A plot of the contribution of
the individual bound states to the total sticking is shown.
As a function of increasing energy each bound-state con-
tribution rises to a single maximum and then decreases.
The maximum contribution to o.; comes from the
bound-state levels in the rniddle, with the highest and
lowest levels contributing very little. However, the posi-
tion of the maximum for each bound-state contribution

0.3
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FIG. 1. The sticking coefticient as a function of incident en-

ergy for a beam of H2 incident normally on a Cu(100) surface.
The present calculations are the following: DWBA;
—- ——., with all two-phonon contributions. The experimental
points and . . - -, DWBA; ———,FOM (forced oscillator
model), are from Ref. 4.

increases in energy with the order of the state. The oscil-
lations in the sticking coefficient of Fig. 1 can be directly
related to the maxima appearing in the individual
bound-state contributions in Fig. 2. The behavior of the
individual contributions shown in Fig. 2 refIects the simi-
lar and well-known behavior of the matrix elements that
couple bound states to continuum states. Our calcula-
tions show that this behavior persists in the transition
matrix, even when it is calculated to higher order. We
emphasize that the oscillations in these calculations are
an effect of the matrix elements of the interaction poten-
tial. They are not due, as discussed above, to sharp peaks
in the phonon spectral density, nor are they due to reso-
nances with the bound states.

Figure 3 shows the behavior of the specular peak inten-
sity for three different surface temperatures. The global
behavior is a decrease in specular intensity with increas-
ing incident energy, as would be expected from a crude
Debye-Wailer picture of the thermal attenuation. How-
ever, clearly superimposed on this global behavior is a
series of oscillations that are the mirror images of the os-
cillations in o, , i.e., a maximum in o.; corresponding to a
minimum in the specular, and Vice Versa. This behavior is
a direct result of unitarity as expressed by Eq. (12). Simi-
lar structure appearing in the elastic diffraction intensity
due to bound-state transitions has been obtained by
Cxoodman.

Figure 4 is similar to Fig. 1, except that it is for the
sticking of Dz on Cu(100) at T=10 K. Again we see that
superimposed on the general decreasing behavior, as a
function of incident energy, are the small oscillations due
to the individual bound states. This behavior is similarly
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FIG. 2. The partial sticking coefficient contributions o„;
from each bound state n of the potential, as a function of in-
cident particle energy, for the double-phonon calculation of Fig.
1.
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FIG. 3. The specular intensity for the double-phonon calcu-
lation of Fig. 1, as a function of incident particle energy, and for
three different surface temperatures.

apparent in the specular intensities, as in the case of H2
above.

The attractive part of the Morse potential used here is
short ranged and does not describe well the correct sur-
face van der Waals attraction. In order to check our re-
sults, particularly with respect to the oscillating struc-
tures, and show that there are no artifacts due to the
Morse potential, we have carried out completely numeri-
cal calculations with two other potentials exhibiting the
correct long-range dependence. One of these is the
"shifted Morse hybrid potential, " which smoothly joins
a 1/z-' long-range tail into the Morse potential; and the
other is the "saturated potential, " which consists of the
same exponential repulsion as Eq. (13) but with f(z) a
function with 1/z dependence at large z but saturating
to a constant near the surface in such a way that gives
bound states at the correct energies. Each of these poten-
tials shows oscillating structure in both the specular in-
tensity and in o.;, which is very similar to that of Figs. 1,

20 30 40 50

e; {meV)

FIG. 4. Same as Fig. 1, except for D2 incident on Cu(100).

with no=2.44, n, =1.69. Then the exchange of parallel

3, and 4. Similar results have been obtained for a poten-
tial in which the repulsive part is generated by a pairwise
summation of atomic potentials.

The importance of the multiquantum contributions can
be seen in Figs. 1 and 4 by comparing the distorted-wave
Born approximation to the two-phonon contribution. At
very low incident energies, the two-photon terms are rela-
tively unimportant, while for increasing incident energies
they can cause as much as a third of the total sticking.
The multiphonon contribution is more important in the
case of deuterium in Fig. 4, a direct result of the fact that
the two-phonon contribution is proportional to the
square of the mass ratio I /M. The calculations of An-
dersson et al. shown also on Figs. 1 and 4 indicate an
even greater importance of multiphonon contributions.
Their calculations are carried out using a semiclassical
forced-oscillator model. The present calculations, al-
though limited to two-phonon contributions, are fully
quantum mechanical, as necessitated by the very low en-
ergies of the incident particles.

It is also of interest to consider the sticking of neon on
the Ru(100) surface in view of the recent experiments of
the Ne interaction with metal surfaces. In these experi-
ments a beam of neon strikes a ruthenium (001) surface at
a temperature of 7 K and the sticking coefficient is mea-
sured. The incident beam is not monoenergetic, but has a
distribution in incident normal energy, with the interest-
ing peculiarity that particles with velocity parallel to the
surface, much larger than the perpendicular velocity, do
not strike the surface. Consequently, the incident beam
can be considered as a beam ensemble of particles moving
normally to the surface with a distribution of normal ki-
netic energies that is well approximated by

no
I exp( E, /k~ TG ) —exp(——~,E, /k~ TG]dE J

k~ TG
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momentum is certainly limited, a favorable circumstance
in view of the comparison with the present calculation.

In the absence of a precise determination of the Ru-Ne
potential. , we take, in the calculation, the potential deter-
mined by neon scattering experiments on copper (110).
This leads us to ascribe to the Morse-potential' parame-
ters the following values: 8= 12.2 meV and g=1.9 A
We present in Fig. 5 the results of calculations of the
sticking coefIicient of a monoenergetic beam of Ne in-
cident on both Cu and Ru surfaces. Figures 6 and 7 give
a comparison with the experimental results for Ne stick-
ing on Ru by including the energy distribution of the in-
cident beam. For the phonon spectral density of the
Ru(001) face we use that of the Cu(100) face corrected for
the Ru bulk Debye temperature of 415 K and atomic
mass of 101 a.u. For the scattering of He and H2 from
Cu(100) surfaces it has been found necessary to take the
spectral density of four atoms, and we have done the
same for Ru.

Figure 5 illustrates the evolution of the sticking
coefficient as a function of normal incident energy when
the surface atomic mass is increased from 64 a.u. (Cu) to
101 a.u. (Ru), and then when the Debye temperature is
raised from 350 K (Cu) to 415 K (Ru). Also shown is the
single-phonon contribution given by the distorted-wave
Born approximation. At this very low surface tempera-
ture of 7 K the two-phonon contribution is relatively
small, but at higher temperatures multiquantum contri-
butions become much more important because of the
large mass ratio m /M.

The calculated values are practically the same as the
experimental data (Figs. 6 and 7) for incident energy
greater than 60 K. Below this energy the calculated
values are lower than the measured quantities and the
di8'erence increases as the beam temperature decreases.
This discrepancy can be due to the shape of the copper
spectral density in the low-energy phonon region, which

0.08 0.000

0.06 0.003

cr, 0.04 0.002

0.02 0.001

200

Ts (K)

600

FIG. 6. The sticking coefficient of Ne on Ru(001) for the ex-
perimental conditions of Ref. 3 as a function of incident gas
temperature. The points are a representative sample of the
data, the dashed line is the calculation of Ref. 3, and the solid
line is the present calculation.

certainly does not match correctly those of the ruthenium
atoms of the (001) face. In this region the spectral densi-

ty is proportional to the square of the frequency, and in-

spection of the transition-rate expression shows that this
quantity is very sensitive to the proportionality
coefficient. A more refined calculation would include the
Ru spectral density calculation.

On the other hand, the observed discrepancy can be
due to the chosen potential, which is well known for
copper but could be slightly di8'erent for ruthenium. In
particular, it is important to know the bound-state ener-
gies in the middle of the well with su%cient precision.
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FIG. 5. The sticking coefficient as a function of incident en-

ergy for Ne on Cu(100), m=64 a.u. , and OD=350 K; for Ne on
Ru(001), m =101 a.u. , and OD =415 K; and for Ne on an inter-
mediate system with m =101 a.u. and OD =350 K. The surface
temperature is 7 K. The dashed curve shows the DWBA
single-phonon contribution for m = 101 a.u. and OD =415 K.
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FIG. 7. Same as Fig. 6, except that the sticking coefficient is

plotted as a function of inverse incident gas temperature. The
inset is an enlargement of the region around the origin.
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This is because in the low-incident-energy regime the
transition rate is the highest for these bound states (see
Fig. 2). A scattering experiment carried out in the same
manner as those done on copper is certainly the best way
to determine precisely all the bound-state energies.

Despite this discrepancy the present theory clearly
confirms that the sticking of neon should be considered in
the framework of quantum mechanics, as pointed out in
previous work. As diffraction phenomena have been
also observed in a scattering experiment, it appears that
in the range of low incident energy, neon atoms should be
considered as quantum particles. In this way the sticking
coeKcient is obtained as the sum of transition rates over
the bound-state energies of the potential.

Although not explicitly exhibited in the present calcu-
lations, the sticking coefficient vanishes at very low in-
cident particle energies, as has been noted previously.
This predicted sharp decrease to zero in o.; occurs typi-
cally at energies below 0.1 meV, well below the presently
measured range.

V. CONCLUSIONS

We have considered the sticking of small molecules, on
atoms in the quantum-mechanical regime. For several
different potential models we have calculated the transi-
tion rates and sticking coefficients both in the lowest-
order or distorted-wave Born approximation and to
higher orders, proportional to the square of crystal tem-
perature, including all double-phonon transfers, either
rea1 or virtual. The results are compared with experi-
ments for the sticking of H2 and D2 on Cu(100) surfaces
of Ne on Ru(001), and are compared with other calcula-
tions.

We find that the sticking coefficient is a relatively
smoothly varying function of the incident energy of the
particles, but for systems such as H2/Cu or Dz/Cu in

which there are just a few bound states, there is some os-
cillatory structure in o.;. This structure can be directly
related to the strongly peaked energy dependence of the
probability of transition from the incident beam into the
different bound states. This structure, although not
clearly resolved in the present experiments, should be
equally observable in the energy dependence of the specu-
lar beam, as a result of the unitarity of the scattering pro-
cess.

The observability in the specular intensity of structure
arising from enhanced or decreased sticking is an in-
teresting suggestion for future experiments. Because en-
try into the bound states is a phonon-mediated process,
the probability of capture by a bound state increases with
temperature. This implies that not only will the overall
sticking probability increase with T, but also the struc-
ture in o.; will be enhanced. Furthermore, at larger T
higher-order effects become more important, and more
channels for bound-state capture become probable. The
major experimental problem is that at higher tempera-
tures the residence time on the surface for a light-
physisorbed molecule becomes too short to make accu-
rate measurements of the sticking. The calculations
presented here and the arguments based on unitarity
seem to indicate that, at higher temperatures, capture
into the physisorption bound states can be monitored
through careful measurements of the specular beam, even
under circumstances under which the residence time of a
physisorbed particle is short.
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