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Using first-principles total-energy calculations, together with simulations performed with a
Frenkel-Kontorowa model, we show that it is energetically favorable for the top layer of the (100)
surface of Au to transform from the ideal square lattice of the (100) surface of a fcc metal to a slight-
ly distorted and contracted hexagonal-close-packed arrangement. The ground-state configuration
from our simulation agrees well with experimental observations. The reconstruction is shown to be
unfavorable in Ag, which is isoelectronic to Au. The difference in behavior is because the two-
dimensional Au layer gains much more energy upon contraction than its Ag counterpart.

I. INTRODUCTION

The structure of gold surfaces has been studied exten-
sively using different experimental techniques. ' ' It has
been known for many years that the low-index surfaces of
gold reconstruct. In particular, the Au(100) surface ex-
hibits a complex reconstruction pattern. The ideal un-
reconstructed (100) surface of Au should be a square lat-
tice, but experiments indicate that the ground state of
this surface corresponds to a contracted hexagonal-
close-packed overlayer on top of a square substrate. Ear-
ly low-energy electron-diffraction (LEED) ' and He-
scattering measurements of this surface indicated a
(1 X 5) reconstruction. Later LEED measurements
resolved the splitting in the LEED spots, suggesting a
(20X5) rather than a (1X5) superstructure. Other
LEED studies suggested a larger c(26X68) unit cell.
Bining, Rohrer, Gerber, and Stoll, using scanning tun-
neling microscopy, proposed a

X 0
Z Y

unit cell, where X=24+3, Y=48 or 43, depending on
temperature, and —5 ~Z ~0, implying an additional ro-
tation of the overlayer over the substrate. A recent study
of the temperature dependence of the Au(100) surface
structure' found a distorted hexagonal structure for 970
K & T (1170K and a rotated distorted hexagonal struc-
ture for 300 K & T (970 K. This perplexing surface lay-
er trans'formation is not restricted to Au, the (100) sur-
faces of other 5d fcc metals show similar reconstructions:
Ir(100) exhibits a (1X5) pattern, and Pt(100) shows a
series of closely related patterns with quasihexagonal unit
cells, two of them have (5X 1) and (5X20) structures.

On the other hand, the isoelectronic 4d fcc metals Rh,
Pd, and Ag do not show any reconstruction on their (100)
surfaces.

On the theoretical side, the Au surface reconstruction
has been studied successfully by Ercolessi, Parinello, and
Tossatti using a "glue model, "' and by Dodson using the
embedded atom method. ' These are simulations with
the Au-Au interactions represented by empirical classical
potentials. In this paper, we will present theoretical re-
sults from a different point of view. We put more em-
phasis on understanding the driving force of the phenom-
ena, and in particular, why the reconstruction occurs in
5d fcc metals but not in the 4d metals, using Au and Ag
as prototypes. To this end, we pursue the problem using
first-principles total-energy techniques as much as possi-
ble. The 6rst-principles calculations give us insight at a
microscopic level, and at the same time provide us with
sufficient information that allows us to extrapolate our re-
sults to the more complex phenomena using simple mod-
els. A short version of this paper has been published pre-
viously. '

This class of surface reconstruction, which involves the
transformation of the top layer to a different symmetry,
cannot be studied by ab initio calculations alone. The top
layer is in principle incommensurate with the underlying
layers. Mapping the problem into a commensurate sur-
face cell results in a huge unit cell, much larger than
what we can handle with computers currently available.
Even if we can handle tens of thousands of atoms in 6rst-
principles calculations and hence treat the problem in a
brute-force manner, we will probably be overwhelmed by
excessive numerical information and may not be able to
identify the key driving force behind the transformation.
It is thus a necessity to combine ab initio calculations
with modeling techniques in order to give a comprehen-
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sive description of the phenomena.
For the observed transformation to occur, the top layer

must transform to a hexagonal structure and the energy
gained in the process has to be larger than the energy loss
caused by the loss of registry (sometimes called the
"mismatch" energy) with the underlying layers. So in the
first step, we study carefully the energetics of a mono-
layer for both Au and Ag. We will show that for both a
monolayer in isolation and a monolayer on top of a jelli-
um slab, the ground state is a contracted hexagonal-
close-packed structure for both Au and Ag; however, the
gain in energy upon contraction is substantially bigger for
the Au monolayer. The mismatch energy can be estimat-
ed by computing the energy of the system as the top-layer
atoms are displaced (in the absence of contraction) la-
terally to various different surface sites. The results from
the first-principles calculations are used as input data into
a two-dimensional Frenkel-Kontorowa-like model to
search for the ground state of the system. We will show
that it is energetically favorable for the (100) surface of
Au, but not for Ag, to reconstruct.

The rest of the paper is organized as follows: The
first-principles calculation procedures are described in
Sec. II; the energetics of Ag and Au monolayers in isola-
tion and on top of jellium slabs are presented in Secs. III
and IV, respectively. In Sec. V we present first-principles
results of the top layer occupying different positions with
respect to the substrate. The mapping of our first-
principles results onto a two-dimensional Frenkel-
Kontorowa (FK) model and the simulation using the FK
model is described in Sec. VI. Finally, Sec. VII is a sum-
mary of the paper.

II. FIRST-PRINCIPLES CALCULATIONS

We used in our calculations nonlocal ionic pseudopo-
tentials generated using the norm-conserving scheme of
Hamman, Schluter, and Chiang. ' The total energies are
calculated within the local density functional formalism'
with the Hedin-Lundqvist form' of the local exchange-
correlation energy. The wave functions are expanded by
means of an efficient "mixed-basis*' set consisting of
plane waves with kinetic energy (k+G) up to 12 Ry
plus a set of localized Bloch functions centered at the
atomic sites to describe the d orbitals. For Au, we use a
Gaussian to describe the radial part of the localized orbit-
als, and for Ag, due to the fact that the 4d states are more
tightly bound than the Au 5d states, a numerical function
is used for the radial part of the local orbitals. Numerical
functions are more flexible and hence can better represent
the local orbitals. The number of plane waves needed for
convergence is then reduced, leading to smaller Hamil-
tonian matrices and hence less computation time. The
shape of the local orbitals are determined variationally
and details can be found in a previous publication. ' The
charge density for Au is expanded with approximately
2300 plane waves corresponding to a cutoff energy of ap-
proximately 110 Ry. For the case of Ag, we use approxi-
mately 8000 plane waves for the charge-density expan-
sion corresponding to a cuttoff energy of 256 Ry. For
most of the calculations 15 k points are used in the irre-

ducible wedge of the surface Brillouin zone (SBZ), and
some results are checked with larger k-point sets. This
method has been used in previous investigations of the
structural properties of bulk Au and Ag (Ref. 21) and the
reconstruction of the (110) (Ref. 22) and (111) (Ref. 23)
surfaces with excellent results.

III. Ag AND Au MONQLAYER

On the reconstructed Au(100) surface the topmost
(100) layer contracts and transforms to a hexagonal-
close-packed arrangement, while deeper (100) layers
remain in the bulk structure. Experiments studying the
growth of a thin film of Pt on a Pd(100) substrate have
shown that the addition of a single monolayer of Pt is
sufficient to produce a (5X1) reconstruction pattern.
Also the contractions of all the (100) surfaces of the 5d
fcc metals develop from an in-registry structure into a
compressed structure. All these results suggest that the
atomic interactions in the top surface layer play the dom-
inant role in this class of reconstruction. Thus, it is
reasonable to study, as the first step, the behavior of a
single (100) layer by itself.

The total energy of the two-dimensional monolayer is
calculated with the "supercell" technique, which re-
gains periodicity in the direction perpendicular to the
surface of the monolayer by repeating the monolayers in
the (100) directions, with the layers separated by a dis-
tance large enough that the influence of their mutual in-
teraction is small for the quantities in which we are in-
terested. Here we are interested in the relative energy of
the monolayer as a function of the density and symmetry
of layer. We found that a separation of 15.5 a.u. between
two consecutive monolayers is large enough for our pur-
pose. We have repeated the calculation with a smaller
separation of 10.9 a.u. , and results are almost identical.
In our studies of Au and Ag monolayers, total energies
are calculated for both square and hexagonal structures,
and for each structure we varied the lattice area per
atom. The results are fitted to a "universal binding
curve, " which have the form

E (a) =bE((a),
with a=(a —a )/l, g(a)=(1+a)exp( —a), where AE,
a, and l are scaling parameters. The value of AE is the
cohesive energy per surface atom (the energy with respect
to the free atom), ' the quantity a is a scaled length, a is

the equilibrium lattice constant, and l is a scaling length
related to the curvature of the total-energy curve at the
equilibrium point. In Figs. 1(a) and 1(b), we plot the en-
ergy change for the Au and Ag monolayers (for both
square and hexagonal symmetry) as a function of the per-
centage reduction of surface area per atom. The "zeros"
in the contraction correspond to the area per unit atom
on an ideal (100) surface, and the energy gain is with
respect to the energy of the square rnonolayer at that
area. The calculations were done with 15 k points in the
irreducible SBZ. We check the k-point convergence by
repeating the calculation with 36 k points in the SBZ,
and results are compared in Fig. 2 for the case of a
hexagonal-Au monolayer. The nearly identical results in-
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FIG. 1. Energy change per atom for square and hexagonal
monolayers as a function of the percentage contraction of sur-
face area per atom for (a) Au and (b) Ag. Zero corresponds to
the area occupied per surface atom on the ideal (100) surface.

dicate good k-point convergence. We observe from Fig. 1

that for both Au and Ag monolayers, the hexagonal
structure gives the lowest energy, and the minimum of
the energy occurs at a surface density higher than that on
an ideal (100) surface of the fcc structure. It is interesting
to note that at the ground state, atoms in the monolayer
are closer together than the atoms on a (111) face (the
most compact surface of a fcc structure). The area per
atom on the (111) planes is 13.4% smaller than that of

the (100) planes. This calculation shows that there is
indeed a strong inclination for the top layer itself to
transform to the close-packed configuration observed in
experiments. This is true for both Au and Ag, but is
clear from Fig. 1 that Au contracts more and gains much
more energy in the process. The area of contraction for
Au is approximately 25%, larger than the 20% in the
ground state of Ag. Ag gains about 23 mRy per atom in
contracting and transforming, while Au gains more than
60 mRy per atom, or about 2.5 times more energy than
Ag.

It is important to know the reason why the Au layer
gains more energy than Ag in the transformation process.
Since the d shells in the noble metals are nominally filled,
the importance of the d electrons has not been taken seri-
ously in the reconstruction of the Au(100) surface. We
found that the d electrons actually play a crucial role in
determining the energetics of the problem, in particular,
the difference between Au and Ag. The 5d electrons in
Au have wave functions more extended than the 4d elec-
trons in Ag, and the d bands in Au are closer to the Fer-
mi level. The d electrons in Au thus contribute to the
bonding and cohesion much more than Ag through hy-
bridization with the s band. The stronger bonding from
the 5d electrons manifests itself in the bulk properties: 5d
fcc metals have larger cohesive energies and stiffer bulk
moduli than the corresponding 4d metals. Stronger
bonding is also responsible for the fact that the 5d metals
have almost the same equilibrium volume as their respec-
tive 4d counterparts, even though they have bigger cores.
Ho and Bohnen showed that increasing the d part of
the Au pseudopotential by 5%, thereby making the d
states more tightly bound and less reactive, the cohesive
energy and the bulk modulus of Au became much closer
to those of Ag. We repeat the hexagonal-rnonolayer cal-
culation using this modified Au pseudopotential, and re-
sults are shown in Fig. 3. We can see that once the d
states in Au are drawn artificially closer to the nucleus by
making the d part of the pseudopotential deeper, the en-
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FICx. 2. Energy change per atom for the Au hexagonal mono-
layer as a function of the percentage contraction of surface area
per atom for two difFerent numbers of k points.

FICx. 3. Energy change per atom of the Au hexagonal mono-
layer as a function of the percentage area contraction using a
nonrelativistic pseudopotential, and a pseudopotential with the
d part increased by 5%. The results with the scalar relativistic
potential are shown for comparison.
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ergy gained by the Au monolayer when contracting is re-
duced. The more extended nature of the 5d states and
the stronger bonding through hybridization can be traced
further to relativistic effects and the bigger core of Au.
The bigger core of 5d metals forces the d states further
away from the nucleus; the relativistic effects lower the
energy of the s states and enhance hybridization. In a
previous calculation ' we have shown that the bulk prop-
erties of nonrelativistic Au bear a close resemblance to
the properties of Ag. To illustrate this point further, we
study the energetics of the Au hexagonal rnonolayer us-
ing a nonrelativistic pseudopotential. In Fig. 3 we can
see that the energy gained by the Au rnonolayer during
contraction is substantially reduced when the calculation
is done with a nonrelativistic rather than the scalar rela-
tivistic pseudopotential. In fact, the curve obtained for
nonrelativistic Au is very similar to that of Ag.
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FIG. 4. The surface energy of jellium calculated with the slab
geometry compared with the results in Ref. 28.

IV. Ag AND Au MAN@LAYERS QF JELLIUM

lzl &~/2, (2)

where n is constant, and a is the thickness of the jellium
slab. The ionic potential due to this jellium background
is the Coulomb potential due to the repeated slabs (super-
cell geometry) of this uniform charge. The d band is
nominally full in noble metals, so directional effects in the
d bonding are small. A jellium slab of appropriate charge
density is hence a reasonable representation of the
influence of the substrate. The r, value of the jellium slab
should be chosen so that atoms placed on top of the jelli-
urn slab experience a similar environment as those placed
on top of a real substrate. In this respect, r, can be deter-
mined in two ways. (i) Take the charge density in inter-
stitial positions, midway between two nearest neighbors
in the bulk. This method gives r, =1.8 and 2.0 for Au
and Ag, respectively. (ii) Put a monolayer over a jellium
slab and vary the charge density of the jellium until the
charge profile averaged along the (100) direction (solved
self-consistently) on the monolayer matches that of the
top layer in the real slab calculation (monolayer on real
Au or Ag). This gives r, = 1.6 and 1.7 for Au and Ag, re-
spectively. Results for both choices of r, will be present-
ed below.

As a check, we first compute using the slab geometry
the surface energy for a few jellium densities and com-
pare with the values found by Lang and Kohn in Fig. 4.

In the monolayer calculations we have presented, the
Au layer transforms by itself, but in reality, the top layer
on Au(100) has a substrate of atoms underneath. It is im-
portant to investigate the effect of the substrate on the
transformation of the top layer. The best way to include
the substrate effect without losing the translational sym-
metry (so that the conventional first-principles techniques
can be applied) is to substitute the Au (or Ag) substrate
by a jellium slab, in which the positive ionic charges are
spread uniformly and have density,

n+ (r) =n, lzl ~ a/2

The agreement is good. We than repeat the calculation
of the energetics of a monolayer, now placed on top of a
jellium slab, with jellium densities chosen as described
above. The distance of the monolayer from the jelliurn-
slab edge is determined by energy minimization. The cal-
culations were done for the cases of square and hexagonal
Au and Ag monolayers on jelliurn, and the energies are
calculated as a function of the area of the surface unit
cell. The total energy of the system now includes the
self-energy of the jelliurn, which needed to be subtracted
because we are primarily interested in the intralayer in-
teraction under the influence of the substrate, not the en-
ergy of the substrate itself. The results are then fitted in
the form of the universal binding curves and plotted as
energy change versus percentage area contraction of the
layer, using the ideal (100) surface as a reference, in Fig.
5(a) for Au and 5(b) for Ag, respectively.

In Figs. 5(a) and 5(b), the jellium densities for both Au
and Ag are taken to be r, =1.9, which is chosen accord-
ing to the first method (interstitial density). When we
compare Fig. 5 with Fig. 1, we notice that for all cases
considered, the energy gain due to contraction is smaller
than the energy gain when the monolayer is in isolation.
Except for an overall reduction in the energy scale, the
jellium results are qualitatively similar to those of the
monolayer: The hexagonal structure is more energetical-
ly favorable than the square for both Au and Ag, and Au
gains more energy in contraction.

In Fig. 6 we plot the relative energy change as the Au
and Ag hexagonal monolayers contract with r, =1.6 for
Au and r, =1.7 for Ag (i.e., r, is chosen using the second
method to determine the jellium density). The results are
again qualitatively the same, showing that our con-
clusions are not dependent on the exact value of r,
chosen.

We have checked the k-point convergence of the
monolayer on jelliurn calculations by increasing the num-
ber of k points from 15 to 28 for the case of Au mono-
layer of jellium with r, =1.6. The curve with less k
points is more noisy, but the two fitted curves are virtual-
ly indistinguishable.
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FIG. 5. Energy change per atom for square- and hexagonal-
Au monolayers on top of jellium (r, =1.9) as a function of the
percentage area contraction for (a) Au and (b) Ag.

In the above calculations, the thickness of the jellium
slab is 11.6 a.u. (corresponding to the thickness of three
layers of Au or Ag), and the size of the unit cell in the
(100) direction is about 31.0 a.u. To see the dependence
of our calculations on the thickness of the jellium, we re-
peated the calculation with a slab thickness of I3.5 a.u.
(three and one-half layers of atoms) for the case of Au
with r, =1.6, and the results are pretty much the same

(see Fig. 7).

FIG. 7. The energy change per atom for hexagonal-Au
monolayers on jellium {r,=1.6) as a function of the percentage
area contraction per atom for two different thicknesses of the
jellium slab.

V. SLAB CALCULATIGNS

For the top layer of the (100) surface to undergo a con-
tractive reconstruction to a hexagonal-close-packed
structure, the energy gained by contracting must be
greater than the energy it loses due to a loss of registry
with the underlying layers (the "mismatch energy"). This
mismatch energy was not present in the monolayer-
jellium calculations because the jellium substrate is uni-
form. Atoms on the ideal (100) surface are all positioned
at the lowest-energy fourfold site. After the transforma-
tion to a denser hexagonal arrangement, this will no
longer be true, so the mismatch energy is basically the en-
ergy for the top-layer atoms to occupy general surface
positions rather than the lowest-energy fourfold sites. To
take this effect into account, we express the interaction
energy between the atoms on the top layer and the under-
lying substrate in terms of a periodic potential depending
on the positions occupied by the top-layer atoms; then,

mismatch g V( i ) r

0.04
V(R)= g WGe'G'

G

(3)
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where the G's are the two-dimensional (2D) reciprocal
lattice vectors of the (100) surface and R,. =(x, ,y,. ) &s the
position of an atom on the top layer. Terminating this
equation beyond the lowest order, we obtain
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FIG. 6. The energy change per atom for hexagonal-Au and
-Ag monolayers on jellium (r, =1.6 for Au and 1.7 for Ag) as a
function of the percentage area contraction per atom.

where a is the lattice constant of the 2D square substrate
lattice. The constant 8'can be obtained from the energy
difference between the energy of top-layer atoms at the
lowest-energy fourfold site [R =(0,0)] and the highest-
energy site [R = (a /2, a /2) ], which is the atop site. The
calculations are again done with the repeated slab
geometry. The slabs are five layers thick, separated by a
vacuum of about 15.5 a.u. The total energy of the slab
with the surface layer atoms occupying the fourfold site
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[E(fourfold)] and the slab energy with the surface layer
atoms at the atop site [E(atop)] are calculated. The con-
stant W is then given by W =

—,
' [(E(atop) —E (fourfold) ],

where the factor —,
' takes care of the fact there are two

surfaces in a slab. For both the ideal geometry and the
slab with its surface layer shifted, all the interlayer dis-
tances are fully relaxed until the forces are negligibly
small. This is important because the relaxation is large
for the case of the surface layer at the atop site (see Table
I). The values of W are found to be 36.8 and 39.3 mRy
per surface atom for Au and Ag, respectively. A plot of
this potential energy for Au according to Eq. (4) is shown
in Fig. 8. Our results indicate that Au actually has a
slightly smaller mismatch energy than Ag, while it gains
quite a bit more energy than Ag on contracting. This is
the reason why Au(100) reconstructs and Ag(100) does
not.

From the ideal fully relaxed slab calculation, we can
also obtain the surface energy of the (1X1) surface,
which is also an important factor in determining the en-
ergetics of the transformation. We have E, = ,'(E(slab—)
—nEi, „~„), where E, is the surface energy per surface
atom, n is the number of layers in the slab, E (slab) is the
total energy of the fully relaxed slab, E&„&k is the energy
per atom in the bulk, and the factor —,

' is again due to the
existence of two surfaces in a slab. We found E, =51.5
mRy per surface atom for Au and E, =42.9 mRy for Ag.
This gives surface energy values of 1.33 J/m for Au, and
1.11 J/m for Ag. The values agree well with the surface
tension values given by Somorjai (y=1.41 J/m for Au
and y = 1.14 J/m for Ag ).

We repeat the calculations for Au with a seven-layer
slab and find 8'=36.5 mRy and E, =52.3 mRy, respec-
tively, in good agreement with the results obtained with
the five-layer-slab calculations. In Table I we show the
percentage change of the interlayer distances in the fully
relaxed geometry with the top layer occupying the four-
fold site and the atop site, respectively. The differences
between the five- and seven-layer-slab results are again
small. It can be seen from Table I that relaxation is small
when the top-layer atoms occupy the fourfold sites, but
there is a 30% outward relaxation if the top-layer atoms

FIG. 8. A three-dimensional plot of the interaction energy
between the substrate and the top-layer atoms for Au(100).

TABLE I. Change of interlayer separations in percentage of
the inner layer separation for di6'erent sizes of the slab for
Au(100) with the top-layer atoms at the fourfold site and atop
site. Positive numbers indicate an increase in the interlayer sep-
aration.

Five layers
of Au

Seven layers
of Au

fourfold
—2.4

0.0

atop
32.8
0.0

fourfold
—2.1

0.0

atop
29.0

—1.0

To investigate in more detail the competition between
the intralayer forces and the substrate potential in deter-
mining the structure of the top layer, we employ a simple
model in which we express the energy of the system as a
sum of two terms depending on the coordinates of the
top-layer atoms:

E =pe(R; —R )+ g cos x, +cos y,
8' 2' 2'

I J a ' a
EJ E

where R; = (x;,y; ) is the position of the ith surface atom,
and a is the lattice constant of the unreconstructed (100)
surface.

The first term describes the in-plane interaction of the
rnonolayer in the presence of the substrate, while the
second term includes the effect of the registry imposed by
the substrate. The values of 8'were determined for both
Au and Ag in Sec. VI. In the first term the two-body po-
tential functions (e) are determined by fitting to our hex-
agonal monolayer on jellium calculations (with r, =1.9
for both Au and Ag). This model is very similar to the
model originally proposed by Frenkel and Kontorowa, '

(FK) although the original formulation was one-
dimensional, and the interaction (e) was taken to be har-
monic springs with a unique force constant. The
ground-state structure of the system is determined by a
competition between the intralayer strain energy (first
term), which favors a contracted layer, and the substrate
potential (second term), which tries to pin the atoms in
registry with the underlying uncontracted layers. In the
ground state, the atoms will rearrange in such a way that
there is an equilibrium between the strain energy and the
potential energy so that the total energy is minimum.

occupy the atop sites. Since both of these sites are occu-
pied on the reconstructed Au(100) surface, a corrugation
of the top layer is expected. This corrugation can be es-
timated by the difference in the heights of the top-layer
atoms at the fourfold (lowest) position and the atop site
(highest) position. Our calculations give a peak-to-peak
corrugation of about 0.6 A, which agrees with the experi-
mental value of 0.5 A found by Rieder et aI. using He
scattering. The average position of the top layer above
the second layer should also be quite a bit higher for the
reconstructed surface than for the unreconstructed (100)
surface.

VI. FRENKEL-KONTORO%'A SIMULATION
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While the one-dimensional FK model can be solved
analytically in the continuum limit, ' to find the ground
state of the two-dimensional case we have to use numeri-
cal techniques. In our calculations, a 2D mesh of 61 X 61
atoms is used. Molecular dynamics can be used to find
directly the ground-state configuration, but since we want
to monitor the surface energy change as the top layer
contracts, we go through the slightly more tedious pro-
cedure of finding the lowest-energy configuration for a
series of fixed surface densities. The atoms in the 2D
mesh are placed in an initially perfect hexagonal arrange-
ment, with the average surface density constrained to
correspond to a given contraction. This can be done con-
veniently be fixing the boundary atoms while letting the
other atoms relax. The positions of the atoms R s are re-
laxed by a steepest-descent procedure until we reach a
configuration that gives a local energy minimum. At
each step, we calculate the forces acting on each particle,
and the atoms are displaced in the direction of the forces
by an amount proportional to the magnitude of the
forces. The proportionality constant k is chosen so as to
minimize the total energy of the mesh. We repeat this
procedure until the force on each atom is zero.

From our model simulations, we can obtain the energy
change per surface atom as the top layer transforms from
a square arrangement in registry with the substrate to a
contracted hexagonal arrangement. However, since the
density of atoms on the surface changes in the process,
the proper quantity that governs the reconstruction is the
change in surface energy. The change in the total surface
energy for a given amount of contraction can be written
as

D (q) =N Id (q)+qF., ]/(1 —q),

where q is the fractional decrease in area per surface layer
atom (q =0 at the ideal surface), d(q) is the energy
change per surface atom as the top layer transforms from
square to hexagonal obtained from our simulations, E, is
the surface energy of a fully relaxed (1X1) surface, N is
the total number of atoms on the unreconstructed sur-
face. This equation can be obtained directly by compar-
ing the total surface energies of the system before and
after a contraction, keeping the definition of d(q) in
mind. The term containing E, resolves the fact that
when the top layer contracts and gains an amount of en-
ergy d (q), a total of Nq atoms from the substrate will be
exposed. The denominator resolves an increase in the
surface density by 1/(1 —q) in the final product. Alterna-
tively, the denominator can be regarded as a renormaliza-
tion factor: While the top layer contracts, exposing some
underlying layer atoms, the exposed atoms can also con-
tract to further reduce the surface energy. The process
can go on and on, leading to a total renormalization fac-
tor of 1/(1 —q).

Once d(q) is found, Eq. (6) can be used to find the
change of the surface energy as a function of q. Results
are ploted in Fig. 9 for Au and Ag. It is energetically
favorable for Au to reconstruct but not for Ag. The area
contraction for Au is around 21%%u~, which agrees very
well with experiments (20%). The atomic arrangements
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FIG. 10. The reconstructed Au(100) surface as given by the
Frenkel-Kontorowa model. The solid circles indicate the posi-
tion of atoms in the reconstructed top layer. The intersections
of the lines show the atom positions in the second layer.

in the minimum-energy configuration is shown in Fig. 10.
The Au layer is basically hexagonal, distorted somewhat
by the underlying potential.

Recent x-ray diffraction experiments, ' in agreement
with earlier studies, ' ' found that the hexagonal top
layer of Au(100) is slightly rotated with respect to the
substrate. The Frenkel-Kontorowa-type model used in
our simulations can in principle handle any kind of sur-
face layer transformation, but in practice, it is good for
determining transformation of a local length scale and is
not practical for the study of rotation domains of mesos-
copic (or macroscopic) scale. This is because the simula-
tion cell employed has to be significantly larger than the
domain size, unless we already know beforehand the
domain size and the domain wall structures. Rotational
transformations are also very likely to possess many local
minima, and more computationally intensive schemes
like simulated annealing have to be used for the simula-
tion if one wishes to pursue this problem further.
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VII. CONCLUSIONS

We have applied first-principles calculations together
with modeling techniques to show that it is energetically
favorable for the top layer of Au(100) to reconstruct,
changing from a square lattice to a contracted
hexagonal-close-packed structure, while the top layer of
Ag(100) does not. We found that the main driving force
behind the Au(100) reconstruction is the strong tendency
for the top layer to go to a more compact arrangement,
so strong that it can overcome the energy loss by losing
registry with the substrate underneath. For Ag, the top
layer is also hexagonally inclined, but the energy gained
in such a transformation is not large enough to overcome
the substrate potential, so the surface stays unrecon-
structed. This difference is due mainly to a stronger par-
ticipation of the d orbitals in the bonding of Au than Ag,
which in turn can be traced to the fact that Au has a
higher atomic number and therefore a bigger core and
stronger relativistic efFects. These difFerences are not
specific to Ag and Au. Hence it is not surprising that

similar reconstructions occur in the (100) surfaces of the
5d fcc metals Ir and Pt but not in the corresponding (100)
surfaces of the 4d metals Rh and Pd. We believe that this
class of reconstruction, involving the transformation of
the top layer, can happen whenever the top layer favors
an arrangement difterent from its substrate and the in-
tralayer interactions are dominant over the interlayer in-
teractions. Metal overlayers of one kind over another are
prime candidates for such reconstructions. Ag on
Cu(100) (Ref. 32) may be another example.
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