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Optical absorption spectra are exactly calculated for direct interband transitions in a one-
dimensional (1D) electron-hole system within the eA'ective-mass approximation. We employ a
modified Coulomb potential between an electron and a hole to avoid the well-known divergence
problem in the 1D system. The Sommerfeld factor, which is the absorption intensity ratio of the
unbound exciton to the free electron-hole pair above the band edge, is found for the first time to
be less than unity for the direct allowed transition in striking contrast to the three- and two-
dimensional cases. This feature can be understood in terms of anomalously strong concentration
of oscillator strength on the lowest 1D exciton state.

There is growing interest in semiconductor nanostruc-
tures having quantum confinement in more than one di-
mension such as quantum wires and quantum boxes not
only from the viewpoint of fundamental physics but also
from the expectation of their potential applications to
various optical and electronic devices. As for quantum
wires, an interesting optical anisotropy in the photo-
luminescence excitation spectra was observed, ' and a
stimulated emission from quantum-wire heterostructures
was successfully observed. Quantum wires offer a good
stage where electrons and holes are free to move in only
one spatial dimension (two-dimensional confinement). It
is very interesting and important to investigate physical
properties peculiar to the one-dimensional (1D) systems.
One of the most striking features of the 1D system is the
inverse-square-root divergence of the joint density of
states at the energy of the fundamental optical gap (the
band edge). This feature will be manifested most remark-
ably in optical properties. The singularity in the density
of states is expected to appear above the band edge, name-
ly in the interband absorption spectra. Thus it is of great
importance to study the linear absorption spectra both
below and above the band edge in order to clarify the
characteristic features of the 1D system. In this paper, we
examine analytically electron-hole envelope functions and
absorption spectra of a 1D electron-hole system in com-
parison with three- and two-dimensional cases, and clarify
for the first time peculiar behaviors of the Sommerfeld
factor, which is the absorption intensity ratio of the un-
bound exciton to the free electron-hole pair above the
band edge.

An ideal limit of the 1D electron-hole system, namely
the limit of infinitesimal wire cross section and perfect
confinement, has been treated as a "one-dimensional hy-
drogen atom" problem. Bound states of this system were
studied by Elliott and Loudon who clarified pathological
features of 1D excitons below the band edge. Recently,
Abe examined the oscillator strength of 1D excitons in
Peierls systems and found the concentration of oscillator
strength on the lowest exciton state. Contrary to the
bound states, there are few studies on continuous (un-
bound) states of a 1D electron-hole pair which contributes
directly to the interband absorption. Because there exist
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where p(x) is an envelope function of the pair and
a=(agk) ' with the bulk Bohr radius aii =eh /me .
Two independent solutions of Eq. (2) are given as

8'-;, igz(x)—= I (1+ ia)xe "~ [F(1+ia,2;x)
+.G(1+ia, 2;x)],

well-known singular characteristics in the 1D Coulomb
system, it is desirable to study the system rigorously
without the use of approximate tools, e.g. , variational
methods and WKB methods, to avoid ambiguities. There-
fore, we shall study an exactly solvable model for an
electron-hole system confined in pure one dimension with
a modified Coulomb interaction. Taking inorganic semi-
conductors into consideration, we employ the eAective
mass and envelope-function approximations in the band
picture.

The relative motion of a 1D electron-hole pair is de-
scribed by the 1D Schrodinger equation. The attractive
potential is assumed to be a long-range Coulomb potential
with a cusp-type cutoA z0~0, in order to make the
problem analytically solvable; that is

V~,„s(z)= —e /e(lzl+zp), (1)
where z is a relative coordinate of the electron-hole pair
and the dielectric constant is denoted by e. The dielectric
eff'ect arising from the diff'erence in the dielectric constant
between the quantum wire and the surrounding material
is not considered here. This is a standard model of an
ideal limit of semiconductor quantum wires. The feasibil-
ity of this model will be discussed afterwards.

Because attention is focused on the interband transi-
tion, the unbound wave function of the pair is relevant.
The energy of the interband transition has a continuous
spectrum and is positive (E &0); it is scaled by a wave
number k as F.=6k /2m (m is a re—duced mass). The
origin of energy F. is the band gap Eg of the material. In-
troducing an independent variable x—=2ik(lzl+zp), the
1D Schrodinger equation is reduced to the Whittaker
equation, i.e.,
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for j=1 (2) corresponding to the + (—) sign on the
right-hand side, where I (x) is the gamma function and
F(1+ia,2;x) and G(1+ia, 2;x) are two basis solutions of
the confluent hypergeometric equation. Explicit forms of
the solutions will be listed elsewhere. In the following,
Eq. (3) is abbreviated as W ' (x) and W (x), respec-
tively.

Corresponding to the twofold degeneracy of a level in
the continuous energy spectrum, there are two wave func-
tions with different parities, i.e., "gerade" and "un-
gerade. " Derivative of the former wave function at the
origin vanishes [deaf(0)/dz =0], while the latter one be-
comes zero at the origin [pk(0) =0]. Because our model
potential in Eq. (1) is symmetric with respect to z-0,
these two functions form a basis set of the problem. Only
the gerade component is relevant to the optically allowed
transition, whereas the ungerade component corresponds
to the forbidden one.

Normalization of the wave function of a continuous
state is of peculiar importance in calculating the absorp-
tion strength because the value of the wave function at the
origin (z =0) is required. We employ the k-scale normali-
zation which imposes the relation

yg(z)y& (z)dz =a(k k'). —

Hove singularity, i.e.,

pip(hen) = 6(@co E,—)2pp1

zA k

, t, 6(@co—Eg), (7)
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where 6(x) is the Heaviside step function. This is re-
Ilected in a free carri-er absorption spectrum, i.e. ,
~ ID, free() ~ (f )

Taking account of the attractive interaction [Eq. (1)]
between an electron and a hole, the absorption intensity
above the band edge is modified to

iv+E /R * ID(')Wt') —D")W'»I'
sc."(~)=c.e-

tw IDo" I'+ IDo" I'

where the photon energy is scaled by w =(Aro —Es)/Ry*
with Ry* =me /2h e, and
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m0Ry*

(9)
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Figure 1(a) shows optical absorption spectra above Eg for
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Then the normalized wave functions with gerade and
ungerade parities are written down as
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where Wo =—W ~ (2ikzo) and Doj —=dW (x)/
dxl„-zest,„for j= 1 or 2. Now we are at the position to
discuss the absorption spectra. %'e shall discuss separate-
ly two types of interband transitions, i.e., direct allowed
and direct forbidden transitions.

(a) Direct allowed transition —The optical. -absorption
coefficient for the direct allowed transition is defined as

K, (r0) =, l&fle'"'"sPli&Pp(pro),
cg moto
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where p(pro) is the joint density of states, rt' the real part
of refractive index, e the polarization vector of light, ' P
the total momentum of electrons, m0 the free-electron
mass, and m is the frequency of incident light. For the al-
lowed transition where &clsplv&~0, we have used

l&fle'"'"spit&l'=~o~'lef(0) I'I&el«lv&lz,

with a gerade wave function. Thus the intensity of the al-
lowed transition is proportional to the probability for
creating an electron and a hole at the same position. A
characteristic feature of 1D systems is the band-edge
divergence of the density of states p&D due to the Van
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FIG. l. (a) Absorption spectra due to a direct allowed transi-
tion are plotted by solid curves as a function of photon energy
w=(hi0 —Fg)/Ry* for several values of the cutoff length, i.e. ,
zo/as =2.0, 1.0, 0.5, 0.2, and 0.05 (from top to bottom). The
dashed curve indicates the free-carrier absorption spectrum
showing the band-edge divergence of the ID systems. Discrete
exciton absorption lines below Es (w (0) are not shown here.
(b) Sommerfeld factors for the allowed transition for the same
values of the cutoff as (a). These factors in any cases are less
than unity indicating suppressed absorption.
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various values of the cutoff zo/att. Absorption intensities
due to bound states below Eg are omitted here but will be
reported elsewhere. We find from Fig. 1(a) that the ab-
sorption strengths are smaller than the free-carrier ab-
sorption K,' ""for any value of zo and that the band-
edge singularity is removed. More remarkably, the small-
er the cutoff' zo is, the weaker the absorption intensity be-
comes. As the cutoff length decreases ultimately to zero
(zo 0), where the attractive potential approaches the
bare Coulomb potential, the interband absorption van-
ishes and the material becomes transparent even for the
photon energy above the band gap.

These anomalous features can be seen more clearly in
terms of the Sommerfeld factor. This factor, which is the
ratio of the absorption coefficient of the unbound exciton
to the free-carrier absorption, is given as
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where
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The results are illustrated in Fig. 2(a) for several values of
the cutoff zo. Contrary to the direct allowed case, the ab-
sorption becomes stronger than the free-carrier absorption
Kf' '""' for any zo. Therefore, the Sommerfe]d factor

rC) o(co)

I
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is larger than unity as shown in Fig. 2(b). As the cutoff zo
is reduced, the absorption intensity for the forbidden tran-
sition becomes divergingly large in contrast with the al-
lowed case. At the band edge, the Sommerfeld factor
diverges because K) "'"(0)=0.

To facilitate the following discussion, results of three-
and two-dimensional cases are briefly reviewed here. In

which is plotted in Fig. 1(b). The most striking features
are S,' (co) ( 1 for all A, co) Eg and S,' (0) =0 at the
band edge. Comparison with two-dimensional (2D) and
three-dimensional (3D) cases will be made later.

(b) Direct forbidden transition In th. —e case of forbid-
den transition, on the other hand, (cIapIv) =0. Here we

employ
2

l&fIe'"'"c&li&l'= h d((k (0)
2mo2 dz

with an ungerade wave function, where an explicit form of
I(cIMIv)I was given in Ref. 9. Then the absorption
coe%cient is calculated as
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FIG. 2. (a) Absorption spectra due to a direct forbidden
transition are plotted by solid curves as a function of w for
several values of cutolf, i.e., zo/ag 2.0, 1.0, 0.5, 0.2, and 0.05
(from bottom to top). The dashed curve indicates the free-
carrier absorption spectrum. Discrete exciton absorption lines
below Fg (w(0) are not shown here. (b) Sommerfeld factors
for the forbidden transition for the same values of cutoA' as (a).

isotropic bulk (3D) systems, the Sommerfeld factors for
allowed and forbidden transitions are S, =mac "/
sinh(xa) and Sj =(I+a )tccce '/sinh(na), respectively,
where ct=(attk) '=w 't . These are always larger
than unity indicating that the Coulomb attraction be-
tween an electron and a hole enhances optical absorption
for both allowed and forbidden transitions. This also
holds for the 2D system, where the Sommerfeld factors
are S, e '/cosh(xa) and Sj =(1+4a )e"/cosh(na).
This is the reason why the Sommerfeld factor has also
been called the "Coulomb enhancement factor. "

This is not the case in the 1D system. As seen in Fig. 1,
the Coulomb interaction between an electron and a hole
suppresses the allowed interband absorption intensity.
Moreover, the allowed interband absorption vanishes
completely in the case of the bare Coulomb attraction
(with zero cutoff, zo=0). These anomalous results can be
understood qualitatively by considering the absorption
due to bound states below E~. As Loudon pointed out,
the binding energy of the lowest exciton (which has an
even parity) in the 1D systems becomes very large and its
wave function becomes a 8 function. Therefore, the oscil-
lator strength of the lowest exciton state becomes very
huge and almost the entire oscillator strength concen-
trates on this bound state, resulting in a very weak inter-
band absorption. This is a remarkable feature of a purely
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one-dimensional Coulomb system in striking contrast to
the 3D and 2D systems.

In order to clarify inAuences of potential shape on the
absorption intensity, we have also investigated analyti-
cally a case of a short-range attractive potential, i.e.,
V,h,„&(z)= —Vocosh (z/() with parameters Vo) 0 and
g) 0. Global characteristics of the interband absorption
spectra are the same as those in the long-range case !.Eq.
(1)], namely, the Sommerfeld factor for allowed (forbid-
den) transition is smaller (larger) than unity for any pho-
ton energy h, to) Fs. Thus, these features can be con-
sidered as universal in the one-dimensional system.

Now we shall discuss the feasibility of the modified
Coulomb potential with a cusp-type cutoA' given in Eq.
(1). CutoA' has been introduced at first only to avoid the
diSculty of divergence and to make the problem analyti-
cally solvable, and several types of cutoff' have been em-
ployed. Among them, the potential in Eq. (1) is the
most effective in discussing the optical properties of a
semiconductor wire structure. The reason is as follows.
An eAective 1D Coulomb potential was estimated" in cy-
lindrical and square semiconductor wires assuming per-
fect confinement. Their results can be fitted very well by
Eq. (1) and the cutoA' zo is found to be proportional to the
cross-section size of the wires. Thus the cusp-type
Coulomb potential has the simplest form enabling analyti-

cal solutions and also describes rather well the actual po-
tential in the quantum-wire structures.

Last, we mention the observability in experiments. Not
only artificial 1D systems (inorganic semiconductor wires)
but also "natural quantum wires" are candidates for ob-
serving features peculiar to the 1D system in optical-
absorption spectra clarified in this paper. Organo-
polysilanes (Si-polymers) and polydiacetylenes are good
examples. In fact, they exhibit very strong exciton ab-
sorption and weak interband absorption, ' which can be
interpreted by considering our results.

In summary, the linear optical-absorption spectra of a
1D electron-hole system were studied analytically and
peculiar behaviors of the Sommerfeld factor were clar-
ified. This is in striking contrast to the 3D and 2D cases.
These new findings will be of great significance in the in-
terpretation of experimental results. Our 1D model sys-
tem is too simple to be applied to a strongly coupled
electron-lattice system. As far as semiconductor wire
structures are concerned, however, our model calculation
may serve as a standard model for the optical-absorption
properties.
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