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Cohesive energies of crystals
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We comment on the controversies that seem to exist about the experimental value of the cohesive
energy for silicon. We argue that this can be safely taken to be 4.62+0.08 eV/atom. We conclude
that, whereas in the case of diamond the cohesive energy predicted by recent variational quantum
Monte Carlo pseudopotential calculation is in excellent agreement with experiment, for silicon there
remains a discrepancy of 0.19 eV/atom. To clarify these points, we mention briefly some fundamen-
tal principles of the measurement of cohesive energies and explain how they can be obtained from
the thermodynamic tables.

In a recent paper, ' Fahy, Wang, and Louie described a
variational quantum Monte Carlo (VQMC) pseudopoten-
tial approach to the calculation of structural properties of
solids, and applied it to the calculation of the cohesive
energies of diamond and silicon. In the case of silicon,
referring to a number of different sources, they concluded
that the available experimental values for the cohesive
energy are widely scattered, from 4.55 to 4.90 eV/atom.
They suggested that it would be desirable if more accu-
rate determination of the cohesive energy for silicon
could resolve this apparent problem.

We have looked closely at the experimental references
of Fahy, Wang, and Louie, and discuss our findings by
considering three of them.

According to Fahy, %'ang, and Louie, ' Davis, An-
throp, and Searcy obtain 4.70+0.13 eV/atom for the
cohesive energy of silicon. However, this is in fact the
figure given by Davis, Anthrop, and Searcy as the
room-temperature enthalpy of formation for silicon,
AH29g K This is not the cohesive energy, since enthalpy
of formation, or heat of sublimation, is, by definition,
equal to the cohesive energy only at absolute zero of tem-
perature (see the Appendix). Using JANAF thermo-
dynamic tables, we find that (H p K H29g J5 K )g-

(Hp x HQ9g $5 K )„amounts to —0.045 eV/atom,
where HT is the standard enthalpy at temperature T, and

g and cr refer to the gas and the crystal phase, respective-
ly. Therefore, the experimental cohesive energy for sil-
icon according to Davis, Anthrop, and Searcy is equal to
4.66+0.13 eV/atom. This amount is much the same as
the cohesive energy given by Brewer, namely 4.63
eV/atom.

Now we look at the paper by Batdorf and Smits (Ref.
23 of Fahy, Wang, and Louie). Fahy, Wang, and Louie
extract the cohesive energy as being 4.55 eV/atom. This
is precisely the slope of the pressure on the logarithmic
scale versus inverse temperature (Fig. 2 of our Ref. 9), to
which Batdorf and Smits refer as the "activation energy
of evaporation. " This is, as explained in the Appendix,
far from being the cohesive energy. It would have been
the cohesive energy if the temperatures considered by
Batdorf and Smits were low, i.e., around 0 K, and not
about 1200'C —1350 C. Taking 4.55 eV/atom as the

cohesive energy for silicon neglects the temperature
dependence of the enthalpy of formation altogether. In
fact, if one uses the JANAF thermodynamic tables, in
which the Batdorf and Smits results have been used as
one of the sources to calculate the enthalpy of formation
for the silicon gas, to obtain the zero-temperature enthal-

py of formation (i.e., cohesive energy), one obtains
4.62+0.08 eV/atom. Hence, the Batdorf-Smits measure-
ments give a cohesive energy which is in excellent agree-
ment with the two earlier results mentioned above.

The third paper is by Zmbov, Ames, and Margrave. '

According to Fahy, Wang, and Louie, the cohesive ener-

gy given by these authors should be 4.77+0.13 eV/atom.
However, this is, in fact, what Zmbov, Ames, and Mar-
grave call their "best" value for the heat of sublimation
of silicon at 298 K, which corresponds (see above) to a
cohesive energy of 4.73+0.13 eV/atom, consistent with
4.62+0.08 eV/atom given above.

We emphasize that we attach weight not to any indivi-
dual experiment but to the careful analysis of all the ex-
perimental data (including all those listed in Ref. 1) per-
formed by the authors of the JANAF tables. These au-
thors have employed sophisticated procedures for
evaluating the sources of error in each experiment, in-
cluding internal consistency checks and fitting techniques
much superior to, for example, a simple average. Since
individual experimental papers use rather diverse values
of other thermodynamic quantities to convert their mea-
surements to the standard form, the procedure in the
JANAF tables of analyzing the raw data rather than the
final values of the enthalpy of formation (EH29g z) is
much superior.

En summary, we note that the error in the VQMC
cohesive energy of silicon (0.19 eV/atom) of Fahy, Wang,
and Louie is outside the error bars, though better than
the error in the local-density approximation cohesive en-
ergy (0.6 eV/atom) that they present for comparison.

Useful discussions with R. J. Needs, M. C. Payne, and
V. Yu. Milman are acknowledged. This work was sup-
ported by the Science and Engineering Research Council
(United Kingdom).
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APPENDIX

This appendix is devoted to the exposition of some
basic notions and principles regarding cohesive energies.
Although the constituent parts of the material given here
are standard, to our knowledge a practical presentation is
lacking in the literature. We restrict our considerations
to pure crystals.

The cohesive energy of a crystal in a specified thermo-
dynamic condition (referred to as the standard state; see
below) is the difference between the energy of the
dispersed gas of its constituent atoms (or molecules) at
absolute zero of temperature and the energy of the crys-
tal, again, at absolute zero of temperature. At this tem-
perature enthalpy is equal to the internal energy. This
fact establishes the link between the cohesive energy and
enthalpy offormation (also known as the heat of sublima
tion or latent heat), corresponding to the change of zero-
temperature enthalpies in the process of forming a crystal
out of isolated atoms.

When a pure substance is placed in a vacuum chamber,
one can, by changing the temperature, change the state of
the system along the sublimation curve in the pressure-
temperature (P T) plane. O-n this curve the solid coexists
in equilibrium with its vapor. The sublimation curve is
described mathematically by the Clapeyron equation. "'
The enthalpy of formation at temperature T, upon as-
sumption that the vapor can be considered as an ideal
gas, can be shown to be equal to —R d lnP/d(1/T),
where R is the molar (universal) gas constant. The value
4.55 eV/atom obtained by Batdorf and Smits indeed cor-
responds to the estimation of the heat of sublimation for
silicon in the temperature range 1200'C —1350 C.

Since heat of sublimation depends on temperature,
knowledge of this quantity at low temperatures requires
knowledge of vapor pressures at equally low tempera-
tures. However, at these temperatures, due to the fact
that vapor pressures of solids are extremely low, use of
the simplified Clapeyron equation is impractical. A way
out of this experimental dilemma is offered by the (ap-
proximate) Kirchhoff equation, " which in combination
with Clapeyron's equation gives rise to an expression,
say, f ( T), which is linear in 1/T and whose slope is equal
to the heat of sublimation at 0 K times some numerical
constant. Hence heat of sublimation at 0 K can be ob-
tained by evaluating f (T) at at least two different tem-
peratures. These temperatures can in principle be chosen
arbitrarily; however, since one wishes to measure vapor
pressures at rather high temperatures, T 's are normally
taken to be large. It should be mentioned that due to the
fact that one of the contributing terms to f (T) is ob-
tained through integration of a function involving c, i.e.,
the constant-pressure heat capacity of the solid, over the
interval [0, T], the latter choice of the T's necessitates
knowledge of c over a rather large range of tempera-
tures.

At high temperatures vapor pressures are obtained by
using, e.g. , Langmuir s evaporation method or a variation
of that, referred to as Knudsen's elusion method. " In
these methods one effectively measures the rate of eva-
poration of the solid and subsequently obtains the pres-

sure through an approximate expression which estab-
lishes a linear relationship between the two quantities.
The measurements by Davis, Anthrop, and Searcy re-
ferred to in our discussions above are based on the Knud-
sen e6'usion method. These authors use high-temperature
heat capacity data of Olette (their Ref. 11). Note that at
low temperatures c of a solid is almost equal to its c„,
and the latter quantity at low temperatures can be accu-
rately described by the Debye T relation.

Thinking of formation of a solid from its constituent
atoms as a chemical reaction we realize that in this con-
text "heat of sublimation" is the same thing as "heat of
reaction. "' Using the van't Hoff equation (or the van't
Hoff isobar), this quantity, at any temperature T, can be
shown to be proportional to the derivative with respect to
1/T of the logarithm of the equilibrium constant A' at T.
In this respect the van't Ho6' equation is identical to the
simplified Clapeyron equation, A playing the role of pres-
sure. Determination of the heat of reaction based on the
measurements of the equilibrium constant is normally re-
ferred to as the "second-law" method. ' To avoid direct
measurements of the low-temperature equilibrium con-
stants, which is as impractical' as measurements of the
low-temperature equilibrium pressures of the solid gases,
one employs here the so-called Nernst equation' which
in this case is identical to the combined Kirchho6'-
Clapeyron equation, giving f ( T). Note that the value for
b,H2» x =4.86+0. 13 eV/atom given by Zmbov, Ames,
and Margrave' for silicon has been obtained by the
second-law method.

The so-called "third-law" method of determination of
EH&98K,

' on the basis of which Zmbov, Ames, and
Margrave obtain b,Hzs9 z =4.76+0. 13 eV/atom (approx-
irnately equal to their "best" value), might be considered
not only as a method of evaluation of EH289 K but also as
a means of testing the consistency of the thermodynamic
data. To clarify this point we need to introduce a number
of quantities used in the description of the third-law
method. Let Q(T) denote the "Gibbs energy function"
defined as [G ( T)—Hz9s» x ]/T, in which G ( T) stands
for the standard-state Gibbs free energy. In a chemical
reaction, H $98 ]5 K can be shown to change according to
the relation' AH z9s, 5 K

= b, G ( T) Tb, Q( T), in w—hich
the "standard Cxibbs-free-energy change" hG (T), fol-
lowing the van't Hoff equation, is equal to —R T in@. As
we observe, in the ideal case, the combination
b.G (T) Tb, Q(T) ought —to be equal to a constant value
( KH29s i 5 z ) for all temperatures. This is a rather severe
test of the mutual consistency of the experimental data.
We observe also that in our case the value of the
standard-state enthalpy of formation at T=298. 15 K is
rather a by-product of such a consistency test. As a
matter of fact reasonable agreement between the values
for AH&98 &z K obtained by both the second-law and the
third-law method should also be considered as a neces-
sary condition for the reliability of the thermodynamic
data.

We now explain briefly how cohesive energies can be
obtained from thermodynamic tables. As mentioned ear-
lier, enthalpy of formation is a function of temperature.
Some sources of thermodynamic data present the stan-
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~fHO K ~fH298. 15 K
0 0

+(Ho rc H298. is x )g
0 0

0 0(Ho K 298, 15 K )cr (A 1)

As an example let us evaluate the right-hand side of Eq.

dard enthalpy of formation (see below) at only one tem-
perature. This temperature which is called reference tem-
perature is commonly chosen to be 298.15 K. In the
thermodynamic tables properties of the standard states
are commonly indicated by the superscript 0. Standard
state for crystalline solids (abbreviated by cr) in a well-
defined crystallographic modification or liquids (l), is
chosen to be that of the pure substance under a pressure
of either 101 325 Pa (=1 atm) or 100000 Pa ( =1 bar;
more recent tables use 1 bar as standard pressure). For
gases (g), the standard state is that of ideal gas at 101 325
or 100000 Pa.

Knowledge of the standard-state enthalpy of formation
at the reference temperature 298.15 K is not sufficient to
calculate the cohesive energy. The majority (but not all)
of the tables also present H298 15 K H0 K, corresponding
to the crystal state, liquid state, or ideal-gas (vapor) state
(see, e.g., Ref. 15; the JANAF tables go much further
and give HT H29s ]5 K

—for a variety of temperatures).
Here HT stands for the (standard-state) enthalpy at tem-
perature T. This is enough to calculate (standard-state)
cohesive energies. Let AfHT (HT)g (H——T)„, the—n for
the standard-state cohesive energy b,fHo K (subscript f
stands for formation so that b«HT eA'ectively means
standard-state enthalpy of formation of the gas from the
crystal, both in their standard states at T ) we have '6

(Al) for silicon. To this end we use the data given in the
JANAF tables. We note, however, that JANAF is one
of the few thermodynamic tables which gives 6fHT
as well, so that in practice we do not really need to do
such a calculation if we access to these tables. Here
we find 5&H298 15 K . 450.000 kJ/mol, (HT =o x

H298. 15 K )g
—7.550 kJ/mol, and (HT=o a—Hz9s, s ~)„=—3.218 kJ/mol. Equation (Al) yields

hfHT o z =445. 668 kJ/mol or simply 4.619 eV/atom.
Finally, we make some comments regarding the values

of the phonon zero-point energies (ZPE) which should be
subtracted from the computational total energies (which
assume stationary ions). Normally, the phonon ZPE at
low temperatures is obtained using the simple Debye
model which gives' a ZPE (per atom) of 9k~eD/8,
where OD is the Debye temperature. It has become com-
mon practice to consider the Debye temperature as a
function of temperature, ' defined so that the experimen-
tal heat capacity at all temperatures is reproduced by the
Debye formula. Unlike the heat capacity which for low
temperatures is almost entirely determined by the long-
wavelength acoustic phonons (excluding cases in which
the optical modes are softened), the ZPE involves contri-
butions from all phonon modes. At very high tempera-
tures, the heat capacity involves the zeroth moment of
the phonon density of states, so that use of OD(T),
T~ ao, in the above expression guarantees that the
zeroth moment of the phonon density of states is exactly
described by the Debye model. Though the ZPE involves
the first moment of the phonon density of states we esti-
mate that the errors in the ZPE obtained by using the
Debye model are of the order of 0.01 eV/atom and there-
fore do not affect our conclusions.
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