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We show that dynamical correlation effects can account for the rapid softening of the bulk-
plasmon dispersion, recently observed experimentally in alkali metals.

Alkali metals have been drawing much attention in re-
cent years as potential media to observe the exchange and
correlation (xc) effects of electron gas. Since the periodic
lattice potential is well screened out in these metals, the
valence electrons form a nearly-free-electron system. The
usual coupling parameter ,=d /a,, d being the Wigner-
Seitz radius, varies from about 2 for Al to 5 for Cs. This
is well outside the range of applicability for the random-
phase approximation (RPA), which requires 7, <<1, and
ignores the xc effects. Therefore, some of the xc effects
should be observable in alkali metals. Unfortunately,
weakness of the xc effects makes it very difficult to distin-
guish them from the small lattice-induced effects (band-
structure effects). For example, the concept of charge
density waves! in alkali metals still awaits conclusive ex-
perimental verification.

Recently, a pronounced reduced value of the group ve-
locity of the bulk-plasmon mode for k£ —0 in comparison
to its RPA value has been observed in alkali metals.? We
will refer to this effect as the “softening” of the bulk-
plasmon dispersion (BPD). The importance of the soften-
ing increases with decreasing electron density, i.e., with
increasing r,. For Cs the group velocity has even been
found to be negative.? Lattice effects have been eliminat-
ed as a direct cause of this phenomenon.? However,
theories which ignore the lattice effects but include the xc
effects also have been unable to account satisfactorily for
the effect. Although, in general, these theories predict
that xc effects produce the softening of BPD, the predict-
ed magnitude of the softening is much smaller than ob-
served. Specifically, the experimental results show that
an abrupt decrease of the initial slope occurs for r, >4,
which is completely unaccounted for by theories that in-
clude various models of xc effects. One of the most wide-
ly used approaches is that of Singwi, Tosi, Land, and
Sjélander® (STLS) and its modified version due to Vash-
ishta and Singwi (VS).* These theories include static
(frequency-independent) correlations only in determining
e(k,w), the dielectric response function. STLS and VS
relate the static correlations to the low-frequency behav-
ior of e(k,w); a different scheme originated by Pathak
and Vashishta® (PV) bases the static correlations on the
high-frequency limit of e(k,w). Neither of these ap-
proaches are able to properly treat dynamical effects that
occur in the vicinity of the plasma frequency @,. Even a
recently proposed naive dynamical theory,® where the
frequency-dependent correlations are determined by in-
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terpolation between the low- and high-frequency,
frequency-independent behaviors, is bound to miss such
effects. In this Brief Report we present a plausible cause
for the hitherto not included detailed dynamical correla-
tion effects to account for the experimentally observed
features of the BPD, in particular the rapid-mode soften-
ing.

We use the paradigm of the classical one-component
plasma (OCP) where a similar softening of the plasmon
mode was demonstrated through molecular-dynamics
computer simulations’ and, more recently, analyzed
through theoretical calculations in substantial detail.®®
The structure of the theoretical model makes it clear that
dynamical correlations add to the softening effect over
and beyond what the static correlations contribute; the
analysis also shows that it is the mode-mode interaction
that plays a crucial role in generating the peculiar abrupt
change around r, ~4. We will argue that the results ob-
tained for the classical OCP apply, mutatis mutandis, to
the degenerate electron-gas system as well.

The theoretical calculations concerning the one-
component plasmon dispersion are based on the dynami-
cal mean field theory (DMFT) of Golden and Kalman. !°
This theory provides a nonperturbative calculational
scheme for the dielectric response function e(k,w). Writ-
ing

_ 4me?
==

with y(k,w), the conventional density response function,
the relationship between Y(k,w) and the density response
of the noninteracting gas Xy(k,) can be expressed as

x(k,0)=xok,0)[1+v(k,w)] . (2)

ek,w)=1—¢(k)x(k,0), ¢(k) (1)

The main structural development of the approximation
scheme consists of relating the coupling function v (k, )
to the quadratic density response function x(ky,®;k,,®,)
through a linear operator I:

_ xX(k—q,0—p;q,u)
k,0)=SI(q, ) 3
v(K,0) 5 (@) o et (3)

The details of the operator I and of the formalism do not
concern us here: The structure of Eq. (3), however, is al-
ready indicative of the importance of the mode-mode in-
teraction brought about by the pole structure of (3). An
important contribution for the integral comes from the
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double pole where both of the €’s vanish. For the OCP
this happens for o ~w,. The enhancement of the dynam-
ical response in the vicinity of the second harmonic of the
plasma frequency is already a well-known feature of per-
turbation calculations.!! Here, both the second harmon-
ic enhancement and the altered behavior near w~w), are
the result of the genuine dynamical correlations in the
system, and thus the amplitude of the second harmonic
enhancement can monitor the importance of these
dynamical correlation effects in the system. This point is
further elaborated below.

In order to perform any comparison between the classi-
cal OCP and the electron gas, an equivalence between the
coupling parameters relevant to the two systems,
I'=e?/dk T and r,=d /a,, respectively, has to be estab-
lished. There is no unique way to do this, but a rather
obvious translation is provided by considering both of the
parameters as the ratios of the potential energies (U) and
kinetic energies (K) in the system. The kinetic energy
per particle in the OCP is

K =3kT,
while in the electron gas
K=1ep .
On the basis of this equivalence
r=1.36r, . 4

We now turn to the comparison of recent experimental
results on BPD with various theoretical results. Writing
the plasmon dispersion in the form

w=w,[1+ A(r)k?], (5)
we concentrate on the quantity

A(r))=A(r;)/A(0) . (6)

A(0) is the RPA dispersion coefficient.

The experimental results of Ref. 2 are displayed in Fig.
1 as stars, together with the results of three simple
theoretical approaches (solid lines), as well as those of the
more elaborate DMFT (Refs. 8—-10) (heavy solid line).
The simple theories are (VS) the low-frequency static ap-
proximation of Vashishta and Singwi,* (PV) the high-
frequency static approximation proposed by Pathak and
Vashishta® (incidentally, shown recently by Kalman and
Golden'? to be correct in the strong-coupling limit, but
not for intermediate coupling); and (D) the ‘“dynamical”
interpolation formula between the above two approaches
of Dabrowski.® The results of VS and D are used in Ref.
2 to gauge the ability of existing theories to explain the
experimental findings. Two striking discrepancies of the
experimental results can be observed, however, when
compared with these theories. The first is that the criti-
cal r, . value where the group velocity becomes zero
[ A(r,;)=0] is much lower than predicted by any of
them: VS predicts 7, .;,=8.08, while PV leads to
75, crit= 12, and the value following from the formalism of
D (and calculated in Ref. 2) is in between. The experi-
mental value is 7, .;=5.3. The second observation is
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that while the experimental A(r,) curve indicates the
abrupt softening in the vicinity of 7, ., (i.e., the 4 versus
r, curve drops precipitously as it approaches r; ), no
such behavior is manifested in the predictions of any of
the above theories.

We focus now on the results of the DMFT (heavy solid
line). The DMFT values of A4(r,) given in Fig. 1 were
calculated on the basis of the formalism of Ref. 10 in Ref.
8 and have recently been recalculated in greater detail in
Ref. 9. We observe that the DMFT performs surprising-
ly well. It provides r,.;=4.39, a value much closer to
the experimental one. But even more remarkable is the
abrupt softening behavior, qualitatively almost identical
to the one noted in relation to the experiment. Thus the
careful treatment of the dynamical correlations, which is
the distinguishing feature of the DMFT, seems to be cru-
cial in obtaining reasonable agreement with experimental
data.

The more detailed mechanism bringing this about can
be identified as a kind of avalanche effect, associated with
mode-mode interaction: this latter interaction which
controls the mode softening, is enhanced in the neighbor-
hood of zero group velocity, where the available phase
space is enlarged; as a result, the softening of the plasmon
dispersion increases, which in turn further reduces the
group velocity toward its zero value. This mechanism is
quite apparent from the structure of the self-consistent
Egs. (1)-(3). A corroboration of this physical model
comes also from observing the amplitude of the second
harmonic enhancement’ discussed above: one notes a
marked correlation between stronger enhancement and
the approach to 7, ;. As one recedes to r; >>r ., (or to
7y <<F it), the enhancement amplitude drops dramati-
cally. Thus the importance of detailed correlations in the
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FIG. 1. Bulk-plasmon group velocity normalized to its RPA
value A(r;) vs r,. Stars represent the experimental results: Al
from Ref. 14; Na, K, Rb, and Cs from Ref. 2. Thin-solid lines
are for various theories neglecting the genuine dynamical corre-
lation effects: VS (Ref. 4), D (Ref. 6), and PV (Ref. 5). Heavy
solid line is from the theory that includes the dynamical correla-
tion effects (Refs. 8 and 9).
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vicinity of 7, .;; and @ ~®, seems to be well established.
One may wonder about the legitimacy of transplanting
the results of a theory pertaining to the classical OCP
into the domain of a quantum system, the degenerate
electron gas. Our belief that this is not an unreasonable
procedure is based on the fact that both the change from
positive to negative dispersion (group velocity) with in-
creasing coupling and the abrupt development of the
softening can be explained by evoking simple physical ar-
guments, founded on classical considerations. The devel-
opment of negative dispersion is the result of the inci-
pient quasilocalization of particles, which, in turn, entails
a dispersion resembling that of the Wigner lattice, where
the negative dispersion is imposed by the Kohn sum rule.
As to the appearance of the abrupt softening in the vicin-
ity of r, .;; we have already pointed at the mode-mode in-
teraction as the dominant dynamical process. Thus the
way these two mechanisms operate should not be affected
too much by the quantum nature of the system. The
prominent quantum effect that distinguishes the degen-
erate electron gas from its classical counterpart is the ex-
change interaction: One would expect that the exchange
has little bearing on the processes discussed. The most
important effect of the exchange in an unpolarized elec-
tron gas is the de facto hardening of the interaction (as
demonstrated, for example, by a lower r,,, value for
Wigner crystallization'® than expected on the basis of the
rs,m —T,/1.36 conversion of the OCP crystallization
value, T, =178; in fact!? ¥sm ~=100). Such a hardening
can be accounted for by using a I' /r; conversion factor
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which is somewhat greater than 1.36. This would not
affect the discrepancy between the experimental results
and the predictions of the static theories, and it would
only slightly change the remaining considerations of this
paper.

Finally, we may wonder what happens to the plasmon
mode for higher r; and k values, as the slope of w(k) fur-
ther decreases and the extrapolated dispersion curve
seems to move into the w”><0 domain, heralding an un-
stable softening of the mode. Our analysis of the classical
OCP indicates, however, that this never happens: w(k) is
bounded from below by »*, such that w,/V3>w*>0,
the precise value depending on the behavior of the static
structure function S (k).

Our conclusions can now be stated as follows. While
there are serious discrepancies (both quantitatively and
qualitatively) between recent experimental results® and
predictions of static mean field theories®*® concerning
the behavior of the bulk-plasmon dispersion coefficient
for the electron gas in alkali metals, a recently developed
dynamical mean field theory® !° for the classical OCP,
when reinterpreted for the electron gas, provides a better
quantitative agreement with the critical 7, value where
the group velocity vanishes and is unique in qualitatively
correctly displaying the abrupt softening of the disper-
sion as this critical r; value is approached.
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