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The advantages of describing solid solutions at each composition x and temperature T with
effective interactions are illustrated by considering two issues in the present work: (1) Calculation of
certain physical properties of interest at each x and T; and (2) handling of single impurities in a solid
solution (the formation energy of Schottky defects has been estimated). Our results suggest that
significant contributions to the total entropy of a solid solution can arise from configurational entro-

py due to vacancies.

I. INTRODUCTION

Various physical properties of interest, such as the
bulk modulus, elastic constants, and thermal expansion
coefficient, can be obtained through appropriate deriva-
tives of the free energy —such calculations have been
done for elemental solids and stoichiometric com-
pounds. ' For solid solutions there has been no model
that permits properties to be computed as derivatives of
the free energy. Interpolatory schemes exist though, for
estimating the compositional dependence of certain prop-
erties using the corresponding values for the end
members. In particular, there are two properties,
often used in estimates as a linear function of composi-
tion x, which have neither been verified nor found to be
consistent amongst each other through any explicit mod-
el calculations (1,2 below refer to end members).

(a) Volume: V(x) =(1—x) Vi+xVz (Vegard's
law' "). This kind of dependence has also been used for
the lattice parameter R.

(b) Force constant: f (x ) = (1—x)f, +xf2.

We may anticipate simple averages over higher deriva-
tives of energy (force constants, bulk modulus, thermal
expansion coefficient, etc. ) to be a good approximation
for estimating the energy —provided, experimentally the
higher derivatives deviate little from a linear dependence
on x.

However, since microscopic averages are superior to
macroscopic averages the problem will be to average the
interaction energies and their derivatives over 2 and B
species atomistically dispersed in a solid solution.

II. PRESENT CALCULATIONS

We parametrize the configurational energy of the solid
solution through effective potentials and with the help of
the quasiharmonic approximation perform the equation
of state calculations at (x, T) in just the same way crystal-
line solids are treated (see paper I).

The free energy and its derivatives are evaluated nu-
merically (details are given in I). Quantities such as the
elastic constants and electric susceptibility can also be ob-
tained by direct numerical differentiation —through

differentiation of the Csibbs free energy in the presence of
stress and electric fields, respectively. However, the
change in the free energy was small for numerical pur-
poses and we could only evaluate the explicit expressions
available for such quantities based on interionic poten-
tials, ' neglecting configurational contributions. We note
that the set [p*] of random cluster probabilities does not
depend on any of the external fields including pressure
and temperature. And so, when [p ] tends to [p*] at high
temperatures, configurational contributions to the free-
energy derivatives with respect to external fields drop off.

The results are presented in Figs. 1 —3 and Tables I—VI
along with experimental results and calculations where
available. '3

III. DATA PRESENTATION

The compositional dependence of physical properties
at various temperatures is of primary interest whether
calculated from a model or obtained from experiment.
The following procedure is employed for presenting the
results: First, excess functions are defined in the usual
manner, as

b,q(x, T) =q (x, T) —[(1—x)q (0, T)+xq (1,T)],
where q is any given property in the solid solution and
the quantity in the square brackets is the mean —a
weighted sum, pertaining to a mechanical mixture of the
end members at the same temperature:

q (0, T)—:q„(T), q (1,T):—qz( T),
3 and B referring to end members.

Next, the percentage deviation from the mean is
defined through the ratio of the excess over the mean.
Such a definition makes it possible to compare any two
models as well as a model with experiment for different
systems. The reason is that a model's description of a
real system is approximate and hence end-member prop-
erties are only approximately determined —this means
that the "base-line" is model dependent. This in turn
affects the excess functions directly. Further, since ex-
periment deals with real systems, a comparison with
model calculations must be free from direct base-line
effects. As indicated above, and as can be seen from the
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definition of percentage deviation from the mean, a model
can be assessed in two ways —one, in its ability to de-
scribe the end members (base 1ine) correctly, and two, in
its ability to give the deviations from the mean correctly.
We note that for consistency, a model should describe the
end members also instead of taking the real systems as
they are. Accordingly, the figures and tables contain re-

suits in terms of percentage deviations from the mean
where necessary.

IV. RESUI.TS AND DISCUSSION

There are two general features against which our re-
sults are discussed.
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FIG. 1. (a) Composition dependence of excess enthalpy Ah. FB refers to the work of Fancher and Barsch, Ref. 4. MRS refers to
the work of Maity, Roy, and Sengupta, Ref. 15. (b) Composition dependence of excess enthalpy Ah. FB refers to the work of Fanch-
er and Barsch, Ref. 4. (c) Composition dependence of excess enthalpy Ah. (a) —(c): compositional dependence of excess enthalpy Ah
(heats of formation). (a) as T, & 300 K for this system, we calculate Ah both at T, and at 300 K with the "quenched" set. Note that
in all the figures experiment refers to measurements made at 298 K and 1 atm pressure while the present calculations (as well as those
of others referred to here) are done at 300 K with the pressure set to zero. It is clear that NN bond length changes account for nearly
90% of the contributions to excess enthalpy. Thermal corrections do not exceed 10% at the maximum in any system.
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(1) It is expected on general grounds that when the ex-
cess volume of the solid solution is positive, the following
inequalities would be satisfied: ' if

Av &0

then

68T &0, Ace ff&0, As„b &0 .

co ff is an effective frequency characteristic of the system
which can be related to Debye temperature, for instance.
We can also infer A(force constant) (0, AC» (0,
EC,2 & 0 to be satisfied following the above relations.

(2) For systems with b,h )0 the use of the quasichemi-
cal approximation or cluster variation method will lead
to a configurational entropy that is less than ideal mixing
entropy (see I).

In the present model, the excess enthalpy results [in
Figs. 1(a)—1(c)] are of the right order of magnitude while
the configurational entropy values are significantly lower
than the ideal mixing entropy values. The discrepancy is
maximum for the high-temperature system Na& K„C1
[T,'" '=800 K (Ref. 29)]. The values of T, that would re-
sult if a regular solution model were used, with hh„&,
from the present model, are higher (T, =26.h /kz in the
regular solution model at x =0.5). In fact, if b,h,„~, is

used, the resulting T, value is again higher than T,'"P'.

This clearly shows that the ideal entropy values are
inadequate. We can see that the errors in-the calculation
of hh values are far less significant than the errors in en-
tropy calculation. In order to get reasonable values for
T„additional sources for entropy are sought. Two such
are the vibrational entropy and the entropy due to vacan-
cies.

If hs„;b &0 as expected, it can bring the total calculat-
ed entropy (hs„„„s+hs„b)towards and perhaps beyond
the ideal mixing entropy. We estimate As„b through the
Debye temperature OD along with a similar estimate
from the Debye temperatures deduced from experiment"
(Table IV). It is worth noting that even if b,s„b)0 is
achieved in such a way that T,'"' is brought down to real-
istic values, the possibility of TM") TM""' (TM denotes
melting temperature) for end members can still exist—
this implies that a correct description of end members
would help in determining As„;& better as we would be us-

ing the same improved equation of state (EOS) for inter-
mediate compositions as well.

The other inequalities turn out to be as expected for
most of the quantities calculated. The discrepancy be-
tween calculated and measured values of various proper-
ties (we refer to the percentage deviations from the mean
of the properties where applicable) is discussed below.
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FIG. 2. (a) Compositional dependence of lattice parameter. Experimental data, taken from Ref. 13, refers to measurements on a
quenched sample quenched to T =298 K. Calculation was done with the "quenched" set corresponding to T =300 K. (b) Composi-
tional dependence of lattice parameter at T =300 K. Experimental data taken from Ref. 19 corresponding to T =298 K.
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Although the enthalpy is obtained as a T derivative of
the free energy in the present calculation, since thermal
energy contributions are not significant as noted earlier,
the total is close to the result from the quasichemical ap-
proximation (QCA) (this is not the case for all other
properties such as volume, bulk modulus, etc.). In any
case, the calculated enthalpy values (P =0) are lower
than measured values (P = I atm). That it is lower is a
point worth noting, keeping in mind that the present
model as well as most of the other estimates include only
nearest-neighbor (NN) interactions. The first P deriva-
tive, volume, agrees fairly well with experiment. The
second I' derivative, bulk modulus, and the elastic con-
stants (without thermal energy corrections) are systemati-
cally lower than the measured values. The changes in the
elastic properties due to vacancies and dislocations could
be the main reason for this lowering (that these defects
contribute appreciably has been noted by Goland; that

vacancies and dislocations occur in greater numbers in
solid solutions emerges from the review of Haribabu and
SubbaRao' ). The values obtained through interpolation
schemes ought to be low, as we find, for this same reason.

The calculation of Aeo and he„ from the present mod-
el is mainly intended to determine the effect of the com-
positional dependence of volume and force constant,
present in the simple expressions for e and eo based on
the point polarizable ion approximation. The Clausius-
Mossotti relation is used for eo and e . The results of
present calculations on Aeo and Ae are given in Figs.
3(f) and 3(g) and Table VI. We have assumed that there
is no change in the polarizability of individual ions. This
assumption, though consistent with the use of a crystal-
independent set of polarizabilities (the set we have used is
given in Table VII), may be inadequate for solid solutions
where we expect the ions to be sensitive to local disor-
der. "

0. 44

0.40—

(a)
1-x Rbx 1

2: KCl1-xBrx

3: Na1-x K x CI

0.1
0.0

-0.2—

0.2 0.3
I I

04
I

0.5
I

0.6
I

0.7
I

0.8 0.9

Cb)

0.36—
-0.4—

0.32—

0.28— -0.8 — ~

0.24—
C0
E

a20—

E0
l

V

C 0.16—0
a
4t

0.12—

C

e -100
E
4

E

C0
o -14
Oi

-1.6

0.08—
'~

0.04—

4

-1.8

-2..0—

—aO4

0.'I

I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2.2—

—2.4

K1-x Rbxt

2 -' KCL1-x Brx

1-x KxC&

—2.6

FIG. 3. (a) Compositional dependence of lattice parameter. {b) Compositional dependence of bulk modulus. (c) Compositional
dependence of force constant. (d) Compositional dependence of elastic constant C». (e) Compositional dependence of elastic con-
stant C». (f) Compositional dependence of static dielectric constant. {g) Compositional dependence of high-frequency dielectric con-
stant. (h) Compositional dependence of Schottky defect formation energy. (a) —(h): Compositional dependence of certain physical
properties of the three systems expressed in terms of percentage deviations from the mean corresponding to T=300 K. For
Na, K Cl, the "quenched" set was used. A small but definite asymmetry in the compositional dependence can be seen. The trend
shown by the three systems for most of the physical properties is characteristic —end-member pairs having greater disparity in bond
strengths and bond lengths display larger percentage deviations from the mean. The trend shown in elastic properties, namely, the
calculated changes in the magnitude being smaller than measurements, is consistent with our other results, all of which indicate
inadequate softening of the repulsive interactions.
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FIG. 3. (Continued).

V. THERMAL POINT DEFECTS

The role of thermal defects assumes greater
significance in solid solutions at high temperatures. Al-
though there is no successful theory for melting of ele-
mental solids and stoichiometric compounds, a high
thermal defect concentration is believed to exist close to
the melting point. It is therefore of interest to know the
defect structure in solid solutions and their relation to
solidus and liquidus temperatures.

We note, however, that we would only be dealing in
the present work with "one-phase" theories. That is, we

can, at most, study the stability of a single phase without
being able to describe the crossover to the second phase
(liquid; further, the low-temperature two-phase structure
of the solid solution cannot be described by the one-phase
theories, for a different reason though). It may be possi-
ble, however, to discuss precursive phenomena associated
with the approach to the crossover. In this sense then,
we ask the following question: Will the intrinsic concen-
tration of thermal point defects be larger in solid solu-

Calc. (T=300 K) Expt. (T=298 K)

TABLE I. Compositional dependence of lattice spacing, for
the system K& „Rb„I, expressed in percentage deviation from
the mean. Experimental data taken from Ref. 20.

Present calc.
(T=300 K)

hBT
VA

( T =298 K)
Expt.

(T=298 K)

TABLE II. Compositional dependence of bulk modulus, for
the system KCl, „Br„,expressed as percentage deviation from
the mean. Included is the set calculated by Varotsos and Alexo-
poulos (VA), Ref. 5. Experimental data taken from Slagle and
McKinstry's work, Ref. 21.

0.13
0.25
0.38
0.5
0.6
0.7
0.78
0.9

0.026
0.048
0.064
0.068
0.063
0.051
0.038
0.017

0.051
—0.028
—0.006

0.222
0.111
0.1 1

0.13
—0.06

0.168
0.171
0.382
0.387
0.578
0.598
0.795
0.8

—0.368
—0.374
—0.664
—0.668
—0.701
—0.691
—0.455
—0.449

—0.549
—0.833
—0.708
—0.45
—0.518
—0.668
+0.041
+0.213

—0.831
—0.732
—1.562
—1.445
—1.468
—1.71
—0.645
—0.95
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TABLE III. Compositional dependence of elastic constants
C» and C», for the system KC1, Br, expressed as percentage
deviation from the mean. Calculations were done at T =300 K;
room-temperature experimental data taken from Ref. 21.

Method NaCl KCl
hs (eV)

KBr KI RbI

TABLE V. Comparison between calculation and experiment
of the Schottky defect formation energy expressed in eV.

Calc. Expt. Calc. Expt. Calc.
Expt.

2.566
2.55'

2.591
2.57'

2.355
2.49'

2.08
2.31'

2.10
2.10b

0.168
0.171
0.382
0.387
0.578
0.598
0.795
0.8

—0.294
—0.3
—0.542
—0.546
—0.583
—0.575
—0.385
—0.378

9.976
9.836

—25.25
1.66

—3.941
—5.158

—10.18
—10.23

—0.519
—0.527
—0.912
—0.918
—0.944
—0.931
—0.604
—0.592

14.28
14.71
4.437
4.646

—3.617
—4.304

—10.11
—11.65

(l) To illustrate the scope of the model for single defect
calculations in solid solutions.

(2) To check if vacancy concentration is enhanced in
the solid solution —enhancement is expected since the
stresses in the solid solution can be relieved by creating
vacancies, which means that the vacancy formation ener-

gy can be lowered.

Realistic single defect calculations in solid solutions are
difficult because the equilibrium positions of the ions be-
fore a defect is introduced are not known and conse-
quently, relaxation to the final equilibrium positions can-
not be determined. In a binary solid solution, since
there are two types of atoms A and 8 in a variety of envi-
ronments, we can expect a distribution of vacancy forrna-
tion energies. It is not clear if this distribution will be bi-
modal in nature. Bimodal distribution, even if we
succeed in obtaining it, presents difhculties in the inter-

tions than in corresponding end members' If we assume,
for vacancies in a solid solution, an average Gibbs free
energy of formation g&, then the question can be re-
phrased as the following: Will g& be lowered in solid
solutions?

We have chosen to estimate vacancy formation energy
for two reasons.

'Reference 24.
"Reference 38.

pretation of experiments.
The present model for the solid solution, in the

parametrized form, can be used to compute vacancy for-
mation energy just as it would be done in the case of end
members. What we get from this model can be taken to
be the averaged free energy (with vibrational contribu-
tions neglected). The vacancy formation energy is
defined as

where 8',+—denotes the work done to create a vacancy at
the cation or anion site and 8'L is the lattice energy per
pair. We make use of a simple procedure to evaluate, to
first order, this quantity. The expression involves quanti-
ties all of which are composition dependent and can be
evaluated within the present model.

There will be a configurational or mixing entropy
change associated with the formation of n vacancies
given by

bs„„„=k~ln(W'/W),

where 8 ' and W are the number of configurations with
and without vacancies. For a perfect crystal, 8'is taken
to be unity (this means that the "ground state" chosen is
unique with all sites occupied). To treat vacancies in
solid solutions we must define the corresponding 8 care-
fully.

The excess or change in the configurational entropy
due to the vacancies, with respect to the end members,
can be written as

TABLE IV. Compositional dependence of vibrational frequencies and excess vibrational entropy.
Comparison between estimates made using the present values of ~AQH and OD deduced from experi-
ments for the system KC1& Br„at room temperature. The second half of the table was obtained by
making use of the relation between OD and co«H given above. As noted earlier, the present values for
6)AQH are not lowered to a sufficient extent.

~Svib
(in cal/mol, K)

% deviation from the
mean, of vibrational freq.

0.268
0.382
0.598
0.8

0.143
0.288
0.248
0.172

0.134
0.222
0.123
0.122

—0.047
—0.074
—0.076
—0.048

—1.768
—3.389
—3.123
—2.176

—1.71
—2.88
—2.135
—1.792

—0.012
—0.012
—0.002

0.012

'Using OD from specific-heat data of Karlsson, Ref. 22.
Using OD from elastic-constant data of Nagaiah and Sirdeshmukh, Ref. 23.

'OD was obtained from the relation OD =
—,0&, where Oz =A~«H/Kz.
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TABLE VI. Comparison between experiment (T =298 K) and calculation (T =300 K) on the com-
positional dependence of high-frequency dielectric constant e expressed in percentage deviation from
the mean. In columns 2—5 the Clausius-Mossotti relation, (e —1)/(e +2)=(4m/3~)(a++a ), is
used for calculations. o:+ is the electronic polarizability of cation and anion, respectively. Values are
taken from Ref. 25. For the solid solution KC1& Br, a+ =o. +, o,' =(1—x)a +xa (0+x 1).

K Cl Br
~ is the unit-cell volume. In (a) and (b) R (x) was taken as R (x) =(1 x)RKcl+xRKB with the end-
member lattice parameters from the present calculation (a) and experiment (b), respectively. The exper-
irnental refractive indices at these compositions were taken from the work of Nigara and Kamiyoshi,
Ref. 8. (c) is deduced from their calculations. We note that the simple estimates in (a) and (b) are close
to (c), all of them being higher than the present calculations.

0.2
0.4
0.6
0.8

0.122
0.158
0.155
0.115

0.121
0.153
0.15
0.115

(a)

0.212
0.311
0.303
0.197

(b)

0.212
0.319
0.312
0.203

(c)

0.228
0.339
0.323
0.215

Expt.

0.056
0.352
0.123

—0.312

AS,'"'"=Nkii (1+x, )ln(1+x, )
—g x, (1+x,')ln(1+x,') —Nks x, lnx, —g x,x,'lnx, '

i=A, B

where the second term in each of the large parentheses
accounts for vacancies in the end members. Considering
the simple case of vacancies in an 3, B type solid
solution, we define the Gibbs free energy of formation of
vacancies in each case as Ag, and Ag, for the 3 and B
end members, b,g,"(x) in the solid solution at overall
composition x (x =NslN). We start with (N+n) sites,
N~, X~ atoms of type 3 and B and n vacancies. The to-
tal number of ways of arranging these among (N + n )

sites is

TABLE VII. Crystal-independent set of electronic polariza-
bilities assigned to the cations and anions. From Jaswal and
Sharma, Ref. 25.

Compound
n+

(10 ' crn')

W', =Ns!l(n!N„!Nii!), Ns=(N+n) .

We write n =x,N such that Ns =N(1+x, ).
The entropy S, is given by S, =kz ln O' . Using

Stirling's approximation and after simplification we have

S, = —Nks(x~lnx„+xiilnxs )+Nkiiln(1+x, )

—Nkii [x,lnx, —
( 1+x, )ln( 1+x, )],

where N, /Ns =N; l(N + n ) =N; l[N ( 1+x, ) ]=x;I
(1+x, ), i = A, B,v. N, is number of vacancies, indexed
by U. When there are no vacancies only the first term in
S, remains. To get the excess we subtract the ideal entro-
py of mixing from S, .

This expression permits an estimate of AS,'"""if the
Ag, 's are known in the three cases. It has been pointed
out ' that (i) the above expression for hS;"""leads to
the result that a ) 1% excess of vacancies in the solid
solution can contribute significantly through the corre-
sponding configurational entropy term and (ii) experi-
mental values for the total excess entropy obtained from
activity coeKcient measurements along with
Wasastjerna's Q,v approximation are seen to exceed
that of ideal mixing entropy. However, it is not clear if
vacancies can contribute thus at low temperatures ( =300
K), although it has been suggested in the literature that,
for systems like K& Rb I and KC1& „Br„they can do

10

The results are presented in Table V for end members
along with experimental values, and in Fig. 3(h) for the
compositional dependence.

Of the three systems studied, only for KC1& Br„does
the excess vacancy formation energy become negative
and that to a small extent (the excess entropy due to va-
cancies in this case was found to be even less significant).
These results must be regarded as preliminary in nature.
The calculation of the Schottky defect formation energy,
which in the present work depends on eo, e, volume and
force constant, must be treated on the same footing as the
calculation of eo and e

When Ae )0, Ah, (0 obtains as in the case of
KC1, Br [Figs. 3(g) and 3(h); Fig. 3(g) shows b, eo close
to the zero axis]. This kind of correlation can perhaps be
used to guess at the sign of Ah, from Aeo, Ae through
experiment.

WaC1
KC1
KBr
KI
RbI

0.29
1.133

1.679

2.947

4.091
6.116

VI. CONCLUSIONS

We have the following.
(a) The interactions neglected, though important in

their own right, are not as crucial as obtaining an im-
proved EOS which ought to, even with restricted interac-
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tions, describe high-temperature behavior better.
(b) The entropy contributions from atomic vibrations

and vacancies are significant and can, together with
configurational entropy from the QCA or the cluster
variation method (CVM), approach and even exceed the
ideal entropy of mixing. And it is important for a model
to account for these two contributions.

(c) It would be of interest to correlate the measured
compositional dependence of the excess static dielectric
constant (Dec) with that of the excess Schottky defect
formation energy (b,h, ) (to check if bh, (0, when
A6'p )0' 5A (0 leads to an excess vacancy concentration
in the solid solution).

(d) To get an idea of the distribution of the formation

and migration energies of Schottky defects an analysis of
the measured compositional dependence of (i) total va-
cancy concentration, (ii) ionic conductivity, and (iii) self-
diffusion coefficients of the three species A, 8, and C (in
Ai, B„C) may perhaps be necessary. We expect that
while dilatometric studies may perhaps give only the to-
tal number of vacancies present, self-diffusion experi-
ments would be more sensitive to vacancy characteristics
in solid solutions.

The physical properties of solid solutions are expected
to be sensitive to defect microstructure. And, to model
impurities such as color centers and to consider the mi-
crostructure of a solid solution, we hope that an averaged
system is a good point of departure.
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