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Solid solutions of alkali halide compounds. I. Configurational and vibrational contributions
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We present a model to do quantitative thermodynamics of pseudobinary ionic solid solutions of
the type Al B C (O~x ~1). The model enables us to compute the phase diagram as well as cer-
tain physical properties of interest, starting from interionic potentials. The model is demonstrated
with three systems: Kl Rb I KCIl, Br, and Nal K Cl. The model incorporates the essential
features of pseudobinary ionic solid solutions, namely, (a) the interdependence of volume and ener-

gy, (b) the presence of nonrandom distribution of the two species and associated configurational en-

tropy, and (c) the vibrational contributions to the free energy and its derivatives. In this work, we
make use of the single-frequency average quasiharmonic approximation to assess the vibrational
corrections to the entropy and the phase diagram.

I. INTRODUCTION

We study the equilibrium properties of essentially two
component solid solutions. In particular, our primary in-
terest is to model ionic solid solutions from interionic po-
tentials and to address the question of how in a consistent
manner vibrational contributions can be incorporated ex-
plicitly. The motivation has been to obtain the phase dia-
gram and equilibrium physical properties within a single
framework. Though models for specific properties are
needed to highlight the issues involved, a single frame-
work combining phase diagram determination with cal-
culation of physical properties would be of fundamental
interest. And a good starting point to model solid solu-
tions would be from atomic interactions. '

Specifically we choose solid solutions in the family of
alkali halides, which crystallize in the NaC1-type struc-
ture, as representative of fully ionic systems for the
demonstration of the model. The family of systems cov-
ers the essential features of a binary solid solution, name-
ly, partial to complete solubility at high temperatures,
asymmetry in the phase diagram, and physical properties
with composition. ' Three systems are chosen in the
present study to bring out the features of our model-
Na] K Cl KC1& Bl Ki Rb I.

II. REVIEW

The basic features of the phase diagram have been ob-
tained through a class of models ' based on the following
assumption (these models originated from the mean-field
theoretic treatment of the Ising model): the total parti-
tion function for the solid solution is factored into
configurational and vibrational parts,

Zconflg vib

The two parts are handled independently.

A. Configurational entropy

Z„„f, is written in terms of appropriate configur-
ational variables and is minimized with respect to them

using either of the two well-known combinatorial
methods: the quasichemical approximation ' (QCA) or
the cluster variation method (CVM). " "' ' These
methods were developed mainly to obtain better approxi-
mations to the configurational entropy. And to this ex-
tent, bond energies are treated as adjustable parameters.
Such an approach can at best serve to verify the correct-
ness of the combinatorial procedures, for there is no way
to obtain any other property of the solid solution. Never-
theless, schemes that make use of QCA or CVM are
preferable since the often-made assumption of random
distribution of species leads to an overestimate of the
configurational entropy. This would mask other contri-
butions when comparison with experiment is made.

B. Configuration energy

As we go from metallic solid solutions to the other ex-
treme, namely, ionic solid solutions, the bond energies
will depend very much on the bond lengths and methods
to obtain bond energies explicitly must be sought. We
shall briefly review here the key concepts of existing mod-
els for handling configurational energy relevant for solid
solutions of nonmetals.

There are two approaches to account for relaxations.
(a) To allow for relaxations locally with respect to a

mean lattice spacing. The change in the energy due to
the local strain 6 is of the form

E =C6

where 5=(R; —Rh„, ) with R; as the impurity-host
bond length and Ah„, as the mean lattice spacing of the
host. The form for C is fixed from single impurity calcu-
lations. Alkali halides of type KCli Br„(Refs. 10—12)
and semiconductors of type A i B„C(Refs. 13—15) have
been treated in this manner.

(b) To minimize the energy of the unit cell, local relax-
ations inclusive, for specific relative arrangements of the
two species. ' ' These methods give reasonable values
for the heats of formation. Such methods, however, can-
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not be used for determining energy derivatives with
which we are concerned (we need volume derivatives of
energy for equation of state calculations).

C. Vibrational entropy

Taking only the vibrational entropy (s„;&) to contribute
to the Gibbs free energy (g) we can write the excess
Gibbs free energy (bg) for the solid solution as

~config T~ vib

where T is the temperature. It is clear that a positive
value for bs„;& can lead to a lowering of the critical tem-
perature for phase separation. From the well-known
high-temperature limit of the vibrational entropy in the
Einstein model' for a monatomic solid, expressed per
mole,

s =3kii [1—In(PA'co~ )],
where P= I/k~ T, co@ is the effective single frequency, the
standard expression for the excess vibrational entropy of
a solid solution is given as

b,s„;&(x)=3kzln(cui co&/toss),

where co& 2 and coss are the effective frequencies of the end
members and the solid solution, respectively.

The expressions can be rewritten in terms of the Debye
temperatures and contact with experiment can be made
since it is possible to deduce Debye temperatures from
elastic-constant data, specific-heat data, etc., on solid
solutions. ' ' ' In particular, estimates from x-ray-
diffraction data suggest a positive excess vibrational en-
tropy.

Fancher and Barsch' have obtained, using elastic-
constant data on solid solutions, a significant lowering of
the coexistence curve for alkali halide solid solutions.

Lattice dynamical calculations on model solid solutions
have been performed, mostly in the virtual-crystal ap-
proximation (VCA), to study the compositional depen-
dence of the observable part of the vibrational spec-
trum. For instance, for a system like A, B C Varsh-
ney et al. evaluate the behavior of the phonon spec-
trum assuming the average force constant f to be of the
form

f (x)=(1 x~f~c+xfBc . —

By treating the degree of order as a perturbation on a vir-
tual crystal, Kirkwood "has shown that inclusion of
atomic vibrations lowers the critical temperature for the
order-disorder transition.

III. PRESENT APPROACH

Only isostructural, homogeneous single phase regions
of the phase diagram will be considered for equation of
state (EGS) calculations. Given the experimentally ob-
served crystal structure, the enumeration of the system's
energy levels at overall composition x and temperature T
can be made tractable by making the following observa-
tion.

Experimental time scales determine the most probable
configuration and are longer than atomic diffusional time
scales which in turn are longer than lattice vibrational
time scales. That is, the arrangement of A and B atoms,
at a given overall composition x, changes with tempera-
ture and since the vibrational states of the system depend
on the atomic arrangement, a Hamiltonian that is a func-
tion only of x will be inadequate.

The general procedure for the given structure would
then be as follows: at x, generate possible configurations;
express the Gibbs free energy in terms of configuration
variables; and determine the most probable configuration
by minimizing the free energy with respect to configur-
ational variables at (x, T). This would mean each possi-
ble configuration is to be considered as a trial "ground
state" with a corresponding Hamiltonian. The tempera-
ture dependence of the solid solution, at x, is obtained by
forming a set of "ground states" each of which gives the
minimum free energy at each temperature. And the tem-
perature dependence of various physical properties will
be nontrivial since at each temperature we have distinct
configurations to evaluate from.

We shall take Na, „K Cl as a typical system in what
follows. It is a diatomic lattice of NaC1 type with z=6 as
the coordination number. The dominant interactions are
the long-range Coulomb part which is dependent only on
positional disorder and the nearest-neighbor (NN) short-
range repulsive part which depends on local composition
as well. We introduce cluster variables as configurational
variables and choose the z NN sites around a common
anion site as our basic cluster. The composition of the
cluster is indexed by n, the number of K+ ions among the
z possible sites. Thus a cluster with n=2 will have four
Na+ ions and two K+ ions with respect to a Cl ion.
There are z + 1 distinct cluster types if we assume that all
the ways of arranging n K+ ions among z sites are ener-
getically equivalent. A configuration is defined by the set
of occurrence probabilities [p„j of clusters of each kind
(for convenience we shall refer to [p„] as [p] from now
on). 8'([p]) denotes the number of ways of arranging
the clusters and the total energy of the configuration is
assumed to be independent of the different arrangements
of the clusters. In view of the nature of the interactions
considered, this is a reasonable assumption. If H([p])
denotes the Hamiltonian for a configuration [p], the par-
tition function Z can be written down as

Z = g 8 ( [p] ) g exp t PH ( [p ] ) }, P= I /kii —T .

The second sum is over all the vibrational energy levels
for a given H([p]). The Hamiltonian is taken to be the
same for all the 8'ways of constructing the configuration
[pl.

Formally, the most probable configuration is given by
the condition

8 lnZ ( [p] )/B[p] =0 .

We note that while W([p]) can be an explicit function of
[p], it is quite difficult to express the second sum in
closed form as an explicit function of [p] due to the pres-
ence of compositional and positional disorder.
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We first assume that the most probable configuration is
determined using the configurational partition function.
And for this configuration, vibrational contributions as
well as all the thermodynamic quantities of interest are to
be evaluated. This assumption leads to replacing Z by
Z, „s in the differentiation with respect to [p],

BlnZ„„„,([p])/B[p]=o .

The most probable configuration will be denoted by [p ].
To minimize with respect to [p] and to evaluate W[p]
among other things we employ a suitably extended ver-
sion of the quasichemical approximation (see Sec. V).

We next parametrize the solid solution using the prop-
erties of the configuration [gr] (see Sec. VIII). The pa-
rameters can be said to define the interactions in the solid
solution as that between pseudoions sitting on a regular
lattice. Such a regular configuration is considered to be a
suitable representation of the most probable configur-
ation for the solid solution at x and T. Unlike in the
virtual-crystal approximation where the atoms are ar-
ranged in a completely random manner on sites of a per-
fect lattice at constant volume, the present approxima-

tion allows us to follow the state of a typical solid solu-
tion in the (x, T) plane much more closely.

The Hamiltonian with these effective potentials being
identical in form with that for the end members, subse-
quent procedures to evaluate the various thermodynamic
quantities of interest from the EOS will be the same in
both cases. Further, since the solid solution at x and T is
treated on the same footing as end members, we expect
the calculation of the solidus temperature to be feasible if
the calculation of melting temperatures for end members
1S.

We then make the reasonable assumption that the cal-
culation of EOS and thermodynamical quantities, for end
members as well as for solid solutions, depends only on
the averages over the phonon spectrum and hence can be
evaluated using an effective single frequency.

Specifically, we make use of the single-frequency aver-
age quasiharmonic approximation (if-AQH) (see Ap-
pendix A).

A summary of the entire calculation sequence is given
in Fig. 1 with notes in Appendix C.

IV. INTERACTION POTENTIALS
FOR THE END MEMBERS

Find end-member potential parameters with
input a) R,BT b) C, D; given T,P =0; use

Eq. (la) and Eqs. (A4)—(A8)

Set up expression for n-cluster energy,
~n Qn ~~R ~ Eq. (2); fix the set I ~n ' n, Mn )

using (i)u„ /t)g) =0, (Bu„ /BR)(„=0; fix I e„ I

from Eq. (B9) at P =0

Iteratively solve Eqs. (B6)—(B8) for Ip„ I

subject to Zan pn
= 1, X(n /z)anpn =x at given

P, T; repeat for all x in the range (0 (x ( 1)

Phase diagram and T,' ""g from bf,
[Eq. (B12)]by method of common tangents,
done numerically

Increment P to P +EP; repeat stages 2,3 and
evaluate I en(P) ], Ip„(P) I at T,' ""g, all x
Numerically fix a(x), 77(x) using Eqs. (4a), (4b)
and (t)u /t)R)& =0 at T,' ""g, all X

From Eq. (B12) for hf,
fix b,h„hs, through
numerical differentiation

We consider the form in Eq. (1) in all the energy calcu-
lations, for the solid solutions as well as for end members:
point charges on a NaC1-type lattice with NN repulsive
potential (Born model, soft core). The lattice energy per
ion pair is

P = —aM e /R +zA exp( —aR ) .

o.'I is the Madelung constant taken as 1.747 558 here; A
and a are short-range repulsive potential parameters; R is
the NN lattice parameter.

However, to obtain u and A for the end members we
must apportion energy between various terms as correct-
ly as possible and hence van der Waals (vdW) interaction
terms are included for this purpose and the form below is
used for the semiempirical determination of o'. ,A:
u = a~e /—R +z A exp( —aR) —C/R D/R, (la)—

where C and D are, respectively, dipole-dipole and
dipole-quadrupole coefficients of the vdW interaction in-

Compute bf with input a(x), A(x); P =0; using
Eq. (1) and Eqs. (A4)—(A8); from 5f, fix
phase diagram by method of common tangents,
done numerically

Determine hh, bs„;b through numerical
differentiation of hf at T =300 K, P =0 using
the "quenched" potential parameter set when
needed

TABLE I. The input to determine end-member NN interion-
ic potentials and the calculated potential parameters e, at
T=300 K. 8 is the lattice constant and BT is the isothermal
bulk modulus. Data taken fro Ref. 29. Note: We have used
Mayer's van der Waals interaction coefficients from the tabula-
tion in Ref. 33.

BT
Compound R (A) (10" dyn/cm ) a (A ) (10 erg)

FICx. 1. We summarize here the computational sequence fol-
lowed in the present work. Further details are given in Appen-
dix C.

NaCl
KCl
KBr
KI
RbI

2.82
3.147
3.298
3.533
3.671

2.4
1.74
1.48
1.17
1.06

3.187
3.101
2.997
2.857
2.826

2.539
4.649
5.074
5.918
7.561
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TABLE II. Properties of end members calculated, at T=300 K, from the potential parameters in
Table I using if-AQH. Experimental values are given in parentheses. Entropy data are taken from
Ref. 34, BT values from Ref. 29, and all other data taken from Ref. 35.

Parameter NaC1 KBr KI RbI

R (A)

BT
(10" dyn/cm )

(10" dyn/cm )

Ci2
{10"dyn/cm )

~AQH
(10' Hz)
Infrared
dispersion
frequency (10' Hz)

Entropy
(kcal/mol, K)

2.9282
(2.8203)

2.0
(2.35)

4.134
(4.87)

0.9983
(1.311)

2.867

(3.078)

16.48
(17.42)

3.2739
{3.1467)

1.391
(1.74)

3.026
(4.064)

0.6268
(0.712)

2.23

(2.667)

19.78
(19.7)

3.441
(3.299)

1.152
(1.48)

2.532
(3.463)

0.5105
{0.581)

1.768

(2.14)

22.74
(23.1)

3.7018
(3.533)

0.8744
{1.17)

1.95
(2.71)

0.3763
(0.45)

1.525

(1.917)

24.8
(24.9)

3.8575
{3.671)

0.7613
(1.055)

1.724
(2.573)

0.3161
(0.3776)

1.125

(1.408)

28.7
(28.2)

elusive of structure constants.
The procedure to obtain a and A within the lf-AQH

approximation is given in Appendix A. Results and the
input experimental data used for the evaluation of a and
A. for end members are given in Table I. In Table II we
have presented the results of relevant properties, like
coA&H and entropy, calculated from the potential parame-
ters and the EOS, along with the corresponding experi-
mental values for the three systems studied. We see from
Table II that in spite of the various constraints on the
functional form and the EOS, the calculated values bare a
one-to-one correspondence with the values measured. It
is encouraging to see a close agreement between experi-
ment and model in the case of entropy.

V. ENERGIES OF N-CLUSTERS

In this section we detail the procedure used to deter-
mine the energies of n-clusters which forms the input for

QCA (see Appendix B).
First, we tile n-clusters to form an infinite crystal in

three dimensions. We will have, for each value of n, a
corresponding configuration [Fig. 2(a)]. The configur-
ations are symmetric about n =3. These are termed refer-
ence compounds, as they provide an energy scale for the
problem. And the important feature in this class is that
every anion site has identical number n of K ions [and
(z n) Na+ ion—s]. Next, we write down the energy of
such configurations in a simple way —as energy per the
corresponding unit cell. It has been possible to include
ionic displacements and minimize the energy with respect
to these displacements with the following assumptions.

(a) The displacement pattern is confined to the anion
sublattice —with K ions causing the NN Cl ions to
move away along the line joining them because the K+-
Cl distance is larger than the Na+-Cl distance.

(b) The electrostatic energy correction terms due to the
ionic displacements are neglected.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

K) Rb I

0.646
0.993
1.210
1.331
1.370
1.331
1.210
0.993
0.646

0.645
0.991
1.205
1.323
1.361
1.324
1.206
0.992
0.642

0.645
0.989
1.199
1.314
1.352
1.318
1.204
0.992
0.646

ideal

0.646
0.994
1.213
1.337
1.378
1.337
1.213
0.994
0.646

TABLE III. Excess configurational entropy for the three sys-
tems at T= 300 K along with the ideal mixing entropy.

!saks fig (cal/mol, K)

The energy expression is just the weighted anion and cat-
ion site energies to give the total energy per unit cell—
weighted to correct for double counting of sites and
bonds. There are two sites, one cation and one anion site,
per unit cell and the site energy is the total interaction
energy of the ion at the site with the rest of the system.
Explicitly, for n=3, we have

u3(R, g)= aMe /R +v3—(R, g),

v, (R, g) = [~&exp( —a2R i )+~2exp( —a~R+ )]

+ [2A iexp( —aiR, )+A iexp( —aiR )],
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where R+ =(R+g); R i =(R +g ); R2 =(R +2(' ).
Similar expressions can be written down for n = 1,3.
Since the expressions are symmetric with respect to an in-
terchange of Na+ and K+ ions, n=4, 5,6 cases are also
covered. The minimization conditions are

[&U„ /~g'J g=g

[Bu /BR ]~ ii & &
=0 . (3b)

n 3

(a)
p W p

o —Larger of the two cations,
here K +

The values g(R„) and R„are obtained iteratively from
these conditions.

The numerical coefficients for repulsive interactions
such as 1,2 in the above expressions are the result of con-
sidering bond and site double counting when writing
down the energy of the configuration in terms of the ener-
gy of the unit cell. The reference compound defines the
n-cluster energy uniquely, and is independent of x
(xnan/z). We feel that the n-cluster energy in the corre-
sponding reference compound can be regarded as the
lowest energy state in analogy with n=0 and n =z cases
where it is so. These reference compounds are taken as
purely hypothetical in nature for the present. '

VI. RESULTS

We see that the excess configurational free energy is
determined completely by [p ] which in turn is specified
by [E). Since [c.] is dependent on pressure P implicitly
and since [P] is dependent on T, b,f, is dependent on
P, T. When e„=O, all n, the set [p] goes over to [p*] as
it should. Correspondingly, Af, reduces to b,f;d„~ [see
Eq. (812)].

Values of c.„are asymmetric about n=3 and the degree
of asymmetry tends to increase with increasing disparity
between the pair of end members which in turn leads to
higher critical temperatures. Within QCA, systems differ
from each other quantitatively through the magnitudes of
the cluster energy set and qualitatively through the rela-
tive magnitudes within each set. Thus there exists a sim-
ple proportionality between T,""" and the absolute mag-
nitude of the cluster energy set. p„(x) is fairly symmetry
about n=3 and as a function of x peaks at x =-n /z, all n

for a given pressure and temperature. The occurrence of
peaks at x -=n/z and the absence of any other structure
in the composition dependence of [P] stems from the
simple trend seen in the behavior of s„with respect to n.
Moreover, for the same reason, we find no pronounced
structure in the compositional dependence of other de-
rived properties.

The crucial quantity in QCA is the configurational en-
tropy As, . We give in Table III the results for the three
systems studied along with the ideal mixing entropy. The
negative deviation from As;d„& is a common feature in all
cluster based approximations, for systems for which
c,„+0, all n. This negative deviation leads to
T,'"') T,'" '. However, since calculated excess enthalpy
values turn out to be reasonably close to the experiment
we have to seek other sources for bringing down T,"',
notably vibrational entropy.

VII. COMMENTS

(b)

~ —anions with directions of
displacernents indicated
by arrows

~ «) ~
&)

(c)

FIG. 2. Two classes of configurations are illustrated here for
a typical system like Na& „K„C1at a given overall composition
x (= 2). {i) Composition that is maintained in each cluster
through tiling. The resulting relaxation pattern is unique [see
(a) and (c)], and (ii) composition that is maintained over an op-
timum sized "unit cell" leading to low-energy configurations
[see (b)]. For clarity, the displacement pattern is restricted to a
small number of ions. Site double counting and bond double
counting are corrected for computing the energy of these unit
cells. Note that the smaller cations are not shown in the figure.

We have sampled a few other configurations and com-
puted cluster energies using the unit-cell procedure. Our
results can be summarized as follows.

(a) Configurations with slightly larger unit cells but
asymmetric with respect to interchange of Na+ and K+
ions [Fig. 2(b)] leads to a range of values of E„, both posi-
tive and negative.

(b) For n=3, a fully tiled energetically nonequivalent
configuration could be constructed [Fig. 2(c)]. The excess
cluster energy c3 in this case is surprisingly negative.
From the expression for the cluster probability in terms
of s„[Eq. (89)], it is seen that a negative E3 can lead to
p3 )p 3. And negative excess energies can lead to a struc-
ture in the phase diagram. ' ' However, since the exist-
ing experiments on the systems considered do not reveal
any structure, we have not used this configuration for our
calculation of [p ].

(c) Configurations having ordered sublattices (fcc) (Ref.
18) lead to complete cancellations of displacements for all
n with consequent high energies.

(d) Independent-cluster approximation: it is based on
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the observation that in QCA, the most probable
configuration is constructed from the knowledge of the
cluster populations and not from the exact distribution of
various clusters. Hence it may be thought that clusters
can be uncoupled from the environment for the purposes
of cluster energy calculation. ' In the present context,
the absence of relaxational contributions from the im-
mediate neighborhood leads to high cluster energies. '

The unit-cell procedure that we have introduced for
the calculation of configurational energy, inclusive of re-
laxations, is based on the following picture.

At high concentrations of impurities we can consider
the total displacement field to consist of a homogeneous
part, which changes the mean volume of the whole sys-
tern, and an inhomogeneous part, both of which contrib-
ute to the change in energy of the total system. ' We
partition the system into equisized regions and introduce
the set Ig; I to describe the inhomogeneous displacement
field in each region. If the clustering tendency among im-
purities is not pronounced, we expect, on the average, the
same set of variables to describe the displacement field in
every other region. Hence it is possible to write down

pP
«0» ~

p

Na1-x KxCl

g unquenc
~ ~ quenc hed

T=12

{a)

3.18— 4. 4

3.16— —40

0

3.14—

3.125—

3.2

3.1Q5

(
3.085—

0.2
I

Q. 4
I

0.6
I

0.8 1.0

FIG. 3. Compositional dependence of the two effective potential parameters cz and A, representing range and strength of the soft-
core repulsive interactions (solid curve) in the solid solution. A linear dependence on composition is included for comparison (dashed
line). In (a) the significance of the effect of "quenching" to 300 K from T, is illustrated. The set of "quenched" parameters is used to
describe a quenched sample. Even though A increases over the mean, the increase in a over the mean is such that there is an overall
softening of the effective repulsive interactions.
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the total energy of the configuration as a sum over ener-
gies of the regions (correcting for bond and site double
count) in terms of the mean lattice parameter (treated as
a free variable) and the set I g, j of displacement variables.
Alternatively, we can perform a weighted sum over dis-
tinct site energies, weighted according to the frequency of
occurrence of the corresponding sites. It follows that the
"unit-cell" energy written as the weighted sum over dis-
tinct site energies gives the total configurational energy.

The displacement variables are arguments of the site
energies, to be determined from minimization conditions.
The mean volume of the system is obtained from the
equilibrium condition applied to the variable R, the mean
lattice parameter, which enters the argument of the site
energy.

VIII. THE SOLID SOLUTION

We parametrize the solid solution using the
configurational properties. For this it is convenient to
work with g, [p ], the Gibbs free energy for the most
probable configuration [p ], and define enthalpy h, [p ] as

a(g, /T) =u =aMe /8 +zAe
a(1/T)

(4a)

where we have equated it to the lattice energy per pair for
NaC1-type crystal structure (u is the same as P), and
volume ~, [p ] as

, = jag, /arj, =2m,',

3.10%.
KC[ ) )( Br)(

0

3.08 5.05

3.06 4.95—
L

O

3.04

3.02

3.Q t,
' )4.65

0.0
t

0.4

I

0. 8 1.0

FIG. 3. (Continued).
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where in the second equality is expressed as the unit-cell
volume of the NaCl-type crystal structure.

The equilibrium condition to be satisfied by u is

(4c)

h, and ~, are obtained through numerical derivatives of
g, with respect to T and P (see Fig. 1 and Appendix C).
cz and A can thus be completely determined from Eqs.
(4a)—(4c). And with the help of lf-AQH the equation of
state of the solid solution can be worked out as a function
of temperature and composition.

To check if T,"""g is lowered upon addition of vibra-
tional contributions one must use, as is done here, the pa-
rameters determined at T,"""~.The results of the calcula-
tion of the parameters for the three systems K, Rb I,

KCl& Br, and Na& K„Cl are shown in Figs.
3(a)—3(c). These parameters depend on x, P, and T. Such
a dependence follows from the cluster probabilities being
dependent on x, P, and T. We have used the parameters
corresponding to P=O and T=300 K as this is closest to
the experimental conditions. The compositional depen-
dence indicates softening of effective interactions (follows
from positive excess cluster energies).

It has been possible to compute the properties of the
solid solution by taking into account the e6'ect of quench-
ing which can be compared with experimental measure-
ments on quenched samples of solid solutions. Results
for the system Na, „K„C1shown in Figs. 5(a} and 5(b}
were obtained using the quenched parameter set [shown
in Fig. 3(a)]. In practice, since T; 'XT;"r', the tempera-
ture from where quenching is done (usually to T= 300 K)

)-x Rbxt
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2852 ~

—72
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I
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~ j'
/ —64
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FIG. 3. (Continued).
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differs in the calculation and experiment, becoming
significant when T,""deviates appreciably from T,""'.

The phase diagrams for the three systems, shown in
Figs. 4(a)—4(c), have been obtained numerically from the
excess free energy following the method of common
tangents. Also included are the phase separation curves
obtained from the excess configurational free energy. Re-
sults on the vibrational entropy, obtained through nu-
merical differentiation of the free energy, are given in
Table IV. Values of coAQH are obtained in the present
work though EOS calculations at given x, T.

In general, we do not see any significant change in ex-
cess free energies and phase diagrams when vibrational
contributions are included (magnitude is small as is clear

0.1

0.2
0.3
04
0.5
0.6
0.7
0.8
0.9

K, Rb„I
—0.0659
—0.1203
—0.1626
—0.1918
—0.2066
—0.2057
—0.1872
—0.1488
—0.0877

As„;b (cal/mol, K)
KC1 l Br„
—0.0272
—0.0487
—0.0648
—0.0754
—0.0802
—0.0788
—0.0709
—0.0560
—0.0334

Na& „K Cl

—0.0184
—0.0312
—0.3097
—0.0436
—0.0432
—0.0395
—0.0339
—0.0273
—0.0176

TABLE IV. Compositional dependence of excess vibrational

entropy calculated at T= 300 K.
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FICx. 4. Phase separation curves (i) and (ii) with and without vibrational corrections, respectively. While QCA has an intrinsic

temperature scale, lack of a natural scale in equation of state calculations has lead to a T, for Na& „K„Clhigher than the melting
temperatures of either end members. For the same reasons, as high temperatures are approached, T, '""g+"' is deviating little from
Tconfig

C
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FIG. 4. (Continued).

from Table IV). We notice, however, that the addition of
vibrational contributions to the configurational part
seems to raise the critical temperatures instead of lower-
ing it contrary to expectations. ' In order to have lower
critical temperature, hs„b must be positive. In terms of
the effective frequencies we must have b, coA&H (0 (for in-
stance, from the expression for As„b given in the intro-
ductory review, we see that at x =

—,', ross should be small-

er than the geometric mean of the frequencies of the end
members). And lowering of the frequencies comes about
through softening of interactions within the present mod-
el.

From Figs. 5(a) and 5(b) we see that, although lowering
of coAQH is realized fully in Na

&
K Cl, partly in

KC1& Br„, it is not sufFiciently negative. Nevertheless,
as EcoAQH becomes relatively more negative, As „;b tends
to be relatively more positive.

In paper II, we present the results of our calculation of
physical properties of solid solutions. And we take up
the e6'ect of vacancies on the phase diagram.

(co ) —= (6NO) ' gcokq, k—:~k~

k, A,

and with NN potentials the average is given by

(A2)

(A3)

where uNC is the non-Coulombic potential and p is the re-
duced mass. Explicitly,

(co ) =(a/p)Ae (a —2/R)
—(c+ /R ) —(d+ /R' ) . (A4)

The 1f-AQH approximation consists of replacing all the
frequencies cok& by a single frequency given by

[for a diatomic crystal there are 6NO vibrational modes
labeled by the wave vector k and branch (polarization) in-
dex A, ] (No is the Avogadro number). The summation is
over the Brillouin zone (BZ). The average of the square
of the frequencies over the BZ is defined as

( 2)1/2 (A5)

APPENDIX A

F =No u +P ' g ln(2 sinhg'kq)
k, A,

where

(A 1)

Ciiven the ion-ion potentials, the free energy within
1f-AQH can be written down as

The expression for free energy, per mole, becomes

f =F/No=u +6f3 'ln(2sinhg), g= —'13k'cg) .

The equation of state is

P = —
I BF/8 V I r .

The bulk compressibility BT is given by

(A6)

(A7)

(A8)
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Q6 — 2 KC(l-x Brx

-x KxCL

We rewrite derivatives with respect to volume V, as those
with respect to lattice parameter R.

For end members, an iterative procedure is used to ob-
tain the potential parameters with input consisting of the
experimental lattice parameter at equilibrium and the
bulk modulus at the chosen temperature.

For solid solutions, we drop vdW terms and since the
potential parameters would be known, the procedure to
obtain the free-energy derivatives is just the inverse of
what we had followed earlier.

APPENDIX 8

The partition function for a given configuration [p] is

Z,o ss
= g W'( [p] )exp [ f3/( [p—] ) j,

[p]

where W and P in terms of [p] are

-02— S!
N„!Nii!

(81)

P= g a„p„u„. (82)

P.2 0.2 0.3 0.4 0.5 0.6 G. 7 0.8 0.9

p„ is the n-cluster occurrence probability defined as the
ratio of the number of n-clusters to the total number of
clusters. The normalization condition is

a„p„=1 . (83)

0.!
0.1

0.0

p. 2
I

0.3
I

0.4
I

0.5
I

0.6 0.7
I

0.8
I

1: KI-g Rbxl

2 i KCLI„& Srx

3: Na! „K„Ct

0.9
I

g (n/z)a„p„=x =pii( =N&/N) . (84)

The total number of B atoms in the configuration is ob-
tained by counting the number of B atoms in all the clus-
ters,

—P.l—

-0.2

-0.3—

E
-p.c—

E
8
c -o.5—
O

a

-0.6—

3~
2

r) lnZ, ( [p ] ) /r) [p ]=0 at [p ] . (85)

We solve Eq. (5) subject to the two conditions, Eqs. (3)
and (4). We give the final expressions as follows: for
Ip„] we have

p„* denotes the random cluster occurrence probability
and is defined as p„*=(1—x)' "x",n=0, 6.

The most probable configuration, denoted by [p], is
determined from the condition (the condition is
equivalent to picking up the maximum term in the sum
over configurations )

-0.7— p„=(p,' ""p,"')exp( —)rIE„),

-0.8—
(z n)—po=p„—g a„p„, n =1,5,

z
(87)

FIG. 5. (a) Compositional dependence of change in effective
single frequency at T=300 K. Due to softening of repulsive in-
teractions, there is a lowering of ~AQH but not for all three sys-
tems. (b) Compositional dependence of vibrational entropy at
T= 300 K. It is negative, but ends become relatively positive as
Aco+QH becomes more negative.

=0
n n

(z n) n-
QO+ Qz

z ' z

p, =pir —g —a„p„, n =1,5,
z

where we define the "excess" cluster energies I c.„]as

(88)

(89)
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&O=O and c., =0 by d fi t on
From this result, we see that [p„] is dependent on T.

At high temperatures when PE„«1, the temperature
dependence will be small.

The configurational free energy f, per mole is

f, [R=—0 '»II'([p])+4([R) .

The first term can be written as

—P 'In&([p ])= g a„p„E„+f3 '[(1—x)ln[po/po ]+x In[pl, /p, *]+(I—x)ln(1 —x)+x lnx ] (810)

The excess configurational free energy, denoted by b,f„is
defined as

Af, =f, —[(1—x)u„+xus] . (811)

Recalling that x and (1—x) can be expressed through
Eqs. (3) and (4), we rewrite the first term in Eq. (10) and
after simplification we get the result for b f, as

Qf, =P '[(I —x)ln[po/po ]+x ln[p, /p, *]]

+P '[(1—x)ln(1 —x)+x lnx ] . (812)

This is the basic result of QCA.

APPENDIX C

Numerical calculations in the present work were done
on a personal computer in FORTRAN with double pre-
cision. It was found that up to eight significant digits
were essential for the iterations as we worked with cgs
units all through and converted to calories in the end.
Moreover, excess functions were evaluated, in cgs units,

when possible with explicit expressions for the differences
instead of subtracting one large value from another. A
step of 0.1 mole fraction was used to obtain the composi-
tional dependence for the plots and tables. Where experi-
mental data are available at arbitrary compositions, we
have read off the present calculated values at those com-
positions from a plot and tabulated the results. For a sin-
gle system a little over an hour is needed to perform all
the computations, inclusive of all input and output opera-
tions between modules. Numerical derivatives of the
Gibbs free energy, 6 (I', T), were performed as follows.

With respect to T, Stirling's central difference tables
were constructed with a step size of 0.001 K and the
number of steps as nine. Five difference tables result.

With respect to T, Stirling's central difference tables
were constructed with a step size of 0.001 K and the
number of steps as nine. Five difference tables result.

With respect to P, P=O is the starting point. We use
Newton's forward difference table with a step size
1.013 25 X 10 dyn/cm (= 1 kbar) and the number of
steps five. Four difference tables result.
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