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By using a model dielectric matrix in electron self-energy evaluations the computational effort of
a quasiparticle band-structure calculation for a semiconductor is greatly reduced. Applications to
various systems with or without inversion symmetry, having narrow or wide band gaps, and semi-
conductor alloys demonstrate the reliability and accuracy of the method. Calculations have been
performed for thirteen semiconducting or insulating materials: Si, LiC1, A1P, A1As, A1Sb, GaP,
GaAs, GaSb, InP, InAs, InSb, and the Alo 5Gao 5As and Ino 53Gao 4"/As alloys. Excellent agreement
with experimental results is obtained for the quasiparticle energies for these materials. The only
three exceptions, E(I &, ) of A1P, E(L&, ) of A1As, and E(L&, ) of AlSb are discussed and attributed
to various experimental uncertainties. Several other quasiparticle-excitation-related properties are
also examined in this work. The many-body corrections to the eigenvalues of the valence-band-
maximum states obtained from the local-density approximation are calculated for the zinc-blende-
structure semiconductors, which are widely used in semiconductor-interface studies. In the present
approach, the static screening of the Coulomb interaction between two electrons in a crystal is
determined using a model that depends only on the local charge densities at these two points. Since
a direct quantitative modeling of the electron self-energy operator has proven difticult, the success-
ful application of the present model-dielectric-function scheme in self-energy calculations makes
possible detailed studies of the quasiparticle properties of rather complex systems, which would be
otherwise computationally too demanding.

I. INTRODUCTION

Recently, much progress has been made in the band-
structure calculations of solids from first principles. '

By utilizing the many-body Green s-function technique,
the quasiparticle energy calculations become conceptual-
ly well founded. Actually calculated results are, in gen-
eral, in agreement with spectroscopic experiments to the
order of 0.1 eV. This general accordance has been estab-
lished for semiconductor bulk systems, as well as for
their surfaces, ' interfaces, " superlattices, ' and also for
some simple metals. ' In contrast, the Hohenberg-
Kohn-Sham local-density approximation (LDA) theory'
for the inhomogeneous electron gas is very capable of
describing the structural properties' but lacks rigorous
justification when applied to excitation energies in a crys-
tal. ' ' However, it serves as a good starting point for
the quasiparticle self-energy calculations. '

In the quasiparticle picture of electronic excitations in
solids, the electron self-energy operator X is a central ob-
ject. ' It is, in general, nonlocal, non-Hermitian, and
energy dependent with its imaginary part giving the life-
time effects. Currently, most quasiparticle calculations
employ the so-called GR' approximation of Hedin. '
In this approximation, the vertex function is taken to be
unity in the expression of X in terms of the dressed
Green's function G and the dynamically screened
Coulomb interaction O'. ' For semiconductors with
significant charge nonuniformity, local field effects in the
screening of the Coulomb interaction are shown to be of

crucial importance in obtaining accurate energies at the
0.1-eV level. ' Although they have been very successful
in evaluating and predicting quasiparticle energies for
various kinds of solid-state systems, these first-principles
calculations are computationally time consuming.
Several such calculations on semiconductor surfaces '
and superlattices' approach the limit of current compu-
tational ability.

Owing mainly to the dependence in energy and the
nonlocality in space of the self-energy operator X, to
date, it has not been successful to introduce simplified
and physically appealing models for X in real materials.
The complexities of X also make it difficult to assess the
correctness of the different aspects of a model should it
fail to give results in agreement with experiments. It has
been generally recognized that the inclusions of the local
fields in the screening and of the dynamical correlation
effects are both crucial. The band gaps are usually only a
small portion (10% or so) of the value of the electron
self-energy, so a small error in modeling X can unfor-
tunately introduce relatively much larger errors to the
band gap or excitation energy results. Recently, several
noteworthy attempts ' have been made along this
direction and some encouraging results are obtained.
However, none of the simplified models for X have been
fully successful even for the conventional semiconduc-
tors. ' ' A particular difficu1ty is to calcu1ate the in-
direct band gaps which require accurate treatment of the
local fields.

In this work, we take the alternative approach intro-
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duced in Ref. 21: Instead of modeling X directly, we
model the dielectric matrix, particularly the static dielec-
tric matrix, which enters the evaluation of X. Its proper-
ties are rather well understood and relatively easier to
handle. From a more technical point of view, calculation
of the dielectric matrix takes about 75% or so of the total
computation time for the crystalline semiconductors
when a generalized plasmon-pole (GPP) model is used '

in describing the energy dependence of the dynamical
screening.

We have employed a generalized form of the static
Levine-Louie model dielectric function for semiconduc-
tors and insulators. This model incorporates the correct
limiting cases of the long-range and short-range proper-
ties of the response function. It contains features of the
response function resulting from the presence of a gap in
the excitation spectrum. Previous work ' using this
model dielectric matrix scheme has been reported for dia-
mond, Si, and Ge. Here we generalize the approach to
LiC1, A1P, A1As, A1Sb, GaP, GaAs, GaSb, InP, InAs,
InSb, and Alo 5Gao 5As and Ino 53Gao 47As alloys. These
materials cover a range of semiconductor systems with
quite different properties and chemical environments.
The band gaps of them vary from 0.2 to 9.4 eV, for exam-
ple.

For the materials studied, we have found excellent
agreement between the calculated quasiparticle energies
and the band structure obtained by various experiments.
Table I summarizes this agreement for the minimum
band gaps, in which we compare the LDA results, the
first-principles quasiparticle calculation results where
available, the present quasiparticle calculations with use
of the model static dielectric function, and the experi-
mental results. The first-principles results for InAs and
InSb are calculated here using parameters similar to
those in previous A1As and GaAs calculations. The
agreement between our model calculation and the experi-

ment is generally within 0.1 eV. The largest discrepan-
cies are less than 0.3 eV. Throughout the paper, the ex-
perimental results are taken from Ref. 23 except where
specified. The agreement between the model and the full
calculation is excellent (with maximum error less than 0.1

eV). Examining the small differences between them,
there appears to be a systematic trend that the band gaps
tend to be slightly overestimated for wide gap materials,
and slightly underestimated for the narrow gap materials
by the model. Table II gives our calculated quasiparticle
valence-band widths for the thirteen materials, in com-
parison with existing experimental data. The agreement
is again very good. For those materials for which there
are no experimental valence-band widths, our results
should provide a guide in analyzing x-ray and ultraviolet
photoemission spectra.

In this work, a quasiparticle excitation-related parame-
ter, the renormalization factor Z, is also examined and
compared to the results from the first-principles calcula-
tions using the Hybertsen-Louie implementation of the
GR' approximation. Other GR' calculations which do
not employ the GPP model have given very similar re-
sults for Z. Further, we study the many-body correc-
tions to the LDA energies of the valence-band maxima
(VBM) of the zinc-blende-structure semiconductors. The
corrections are relevant to a quantitative theory of the
valence-band offsets at semiconductor interfaces.

The remainder of this paper is organized as follows.
Section II outlines the theoretical framework and gives
the numerical details. In Sec. III we present the calculat-
ed quasiparticle energies for the thirteen materials and
compare them with experiments. We also compare the
quasiparticle energies from the present calculation with
those from the full calculations where available. Section
IV comprises discussions on several subjects, including
some systematic trends of X, comparison of the static
model dielectric function with the ab initio dielectric

TABLE I. The comparison of the LDA minimum band gaps,
quasiparticle minimum band gaps from the available quasiparti-
cle calculations (QP), and those from the present calculations
with the model dielectric matrix (QPM), with experimental
values taken from Ref. 23 except where noted. Results are in

eV. Theory Expt.

TABLE II. Calculated quasiparticle valence-band widths for
thirteen semiconductors and insulators in comparison with
available experimental data taken from Ref. 23 except where
noted. Results are in eV.

Si
LiCl
Alp
A1As
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
AlQ 5GaQ 5As
InQ 53GaQ 47As

'Reference 24.

LDA

0.54
6.07
1.52
1.25
0.99
1.82
0.37

—0.10
0.57

—0.39
—0.51

1 ~ 12
0.02

QP

1.38
9.21

2.06

1.29

0.40
0.18

QPM

1.32
9.34
2.59
2.15
1.64
2.55
1.22
0.62
1.44
0.31
0.08
2.06
0.80

Expt.

1.17
9.40'
2.50
2.23
1.68
2.39
1.52
0.80
1.42
0.41
0.23
2.09
0.81

Si
LiCl
Alp
A1As
A1Sb
GaP
GaAs
GaSb
InP
InAs
InSb
AlQ, GaQ 5As
InQ 53GaQ 47As

'Reference 25.
"Reference 26.
'Reference 27.

12.30
14.77
12.07
12.41
11.10
12.83
13.03
11.72
11.75
12.10
10.91
12.74
12.46

12.5
15.0'

12.30
13.21
11.64
11.0
12.30
11.7, 11 20'
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function, and examination of other quasiparticle excita-
tion properties. Finally, a summary is given in Sec. V.

II. THEORY AND TECHNICAL
DETAILS

In many-body Green's-function theory, the wave func-
tion and the eigenvalues of a quasiparticle in a crystal are
given by solving the following Dyson equation

(T+ V;,„+Vz }g„k(r)+Jd r'X(r, r', Eq~&)f„k(r')

The terms in Eq. (I) represent, respectively, the kinetic
energy, the ionic potential, the Hartree average potential,
and the electron self-energy operator X which contains
the electron-electron exchange and correlation effects. In
the 68'approximation, ' X becomes

(2)

where G is the dressed Green's function, 8'is the dynam-
ically screened Coulomb interaction, and 5 is a positive
infinitesimal. More details of the theory can be found in
the articles by Hedin and by Hedin and Lundqvist. ' The
formalism and calculational scheme for semiconductors
and insulators and the effects of many-electron screening
have been extensively discussed by Hybertsen and
Louie. '

In the Hybertsen-Louie scheme ' which is employed in
this work, the calculation of the electron self-energy is
formulated in momentum space. In first-principles calcu-
lations, the static irreducible polarizability matrix yo is
evaluated as a ground-state property from the LDA re-
sults using the Adler-Wiser perturbative approach.
This part of the calculation involves summations over
large numbers of intermediate states for each element of
the yo matrix. It typically takes 75% or so of the total
computation time. The random-phase approximation
(RPA) is then used to calculate e '(co=0) from ya. In
the present work, a generalized Levine-Louie model
which we will discuss later is used for the static dielectric
matrix. The static dielectric function is as in the full cal-
culation extended to finite frequencies by the generalized
plasmon-pole (GPP) model. ' Exact sum rules are used
to fix the locations and the strengths of the plasmon poles
in e '(~) 'For syste.ms without inversion symmetry,
special care needs to be taken for the phase factors in ap-
plying the GPP model. The integral over frequency in
Eq. (2) can be easily carried out analytically. The time-
ordered Green's function is constructed iteratively within
the quasiparticle approximation and, for the first run, its
LDA counterpart is used. Once both 6 and 8'
( W'=e ' V with V the bare Coulomb interaction) are ob-
tained, the quasiparticle energies are calculated as

(3)

where VLD~ is the LDA exchange-correlation potential.
The last term in Eq. (3) is often referred to as the many-

body correction to the LDA eigenvalue of the state
~n, k). The validity of Eq. (3) is based on the observation
that the quasiparticle wave functions are very well ap-
proximated by the LDA wave functions. ' The spectrum
in the Careen's function is subsequently updated to the
quasiparticle energies after the first run. This self-
consistency procedure increases the quasiparticle band
gaps by roughly 0.1 eV except for LiC1 in which case a
0.3-eV gain is found. More elaborate numerical integra-
tion over frequency for Eq. (2) has yielded virtually iden-
tical results for the quasiparticle energies.

The rest of this section is devoted to a discussion of the
form of a generalized Levine-Louie model dielectric ma-
trix and the computational details of using it in quasipar-
ticle self-energy calculations

A. Model dielectric matrix

Solving for the dynamical response function of a
many-body system has been a very active and interesting
area in the field of many-body physics. A large number
of physical quantities (pair distribution function, correla-
tion energy, etc.} of a many-electron system can be calcu-
lated with a knowledge of the dielectric function
e '(q, q', co). Since the early work of the Lindhard dielec-
tric function, attempts ' ' have been made to go
beyond the random-phase approximation, viz. , to include
the effects of the electron-electron exchange and correla-
tion in the screening. A typical example of the theories
along this line is the Hubbard model ' which includes the
exchange interaction within the context of the time-
dependent Hartree-Fock theory.

The Levine-Louie model, however, is not directly de-
rived from a microscopic theory. Rather, it starts from
realizing the presence of an energy gap in the electronic
excitation spectrum in a semiconductor. The imaginary
part of the dielectric function is chosen to be Lindhard-
like with a reduced, "effective" frequency. Specifically, it
is taken to be zero up to a frequency threshold deter-
mined by the gap. Defining

the imaginary part of the dielectric function is then ex-
pressed as

(4)

In Eq. (4), e (q, co) represents the usual Lindard dielectric
function. ' Notice that the parameter A, is a function of
the local charge density (which determines the local elec-
tron density parameter r, ) and of ea. The dielectric con-
stant e; (e for ionic crystals) is the input needed for the
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model. The real part is then obtained from Kramers-
Kronig causality requirements. In the absence of the
gap, the model reduces exactly to the RPA Lindhard
dielectric function. This model generally agrees well with

I

other model dielectric functions, and for the case of Si, it
compares better with the realistic calculation by Walter
and Cohen. The expression for the static dielectric
function from this model is given by (in atomic units)

1

mqF Q~

2
e„L(r,q) = 1+

2Q

+ '+1
8Q 2Q

g2+ (2Q +Q2 )2
ln

gQ A, +(2Q —Q )

with Q =q lqF ( r ).
In the original work by Levine and Louie, the parameters qF and X are taken to be the average values characteristic

of the specific material. The model dielectric function in this form (that of a homogeneous insulating electron gas) has
been employed by Wang and Pickett in their quasiparticle LDA theory. Here, as in Ref. 21, it is used to model the
static screening potential between r and r' in the following way:

V"'(r, r') =
—,
'

[ VLL(r —r', r, (r') }+VLL(r' —r;r, (r) }] .

Both terms are evaluated using Eq. (5). By using the local values for the parameters in the model, we obtain a better
description of the screening in the inhomogeneous insulating electron gas in a semiconductor. This generalization also
ensures the proper symmetry under the interchange of r and r' in V„,(r, r'). We emphasize that our model screening
function is only for the static response. The dynamical effects will certainly change this screening picture, as accounted
for by the GPP model in the Hybertsen-Louie scheme. '

A straightforward manipulation of Eq. (6) gives the following form of the static dielectric matrix in momentum
space: '

coo(q;co=0)V, (q+G')= — V, (q+G) f dr'et [L~q+G~;r, (r')]e'~ =1

+ V, (q+G') fdr eLL [~q+G'~;r, (r)]e"

The model requires only one parameter as input, name-
ly, the dielectric constant of the material. It can in prin-
ciple be evaluated from ab initio calculations, but in this
work, the experimental values are used. The final quasi-
particle energies are not very sensitive to the exact value
of eo because short-range screening is not strongly
affected by eo. For silicon, for example, ' the band gaps
change by less than 0.1 eV in a range of variation of 10%%uo

or so of eo. We stress that both the short-range metallic
screening behavior and the long-range semiconducting
screening are properly retained by the model.

B. Technical details

(Ino ~3Gao 47As is lattice matched with InP. )

In the calculations, ab initio pseudopotentials are
used to eliminate core electrons, and to remove the
strong Coulomb potential in the core region responsible
for binding them, from the problem. Scalar relativistic

TABLE III. Lattice constants (in A) and static dielectric con-
stants (e„ for ionic crystals) taken from Ref. 23, and the energy
cutofFs (in Ry) for the wave functions used in the calculation.

ao

Table III gives the lattice constants and the dielectric
constants for Si, LiC1, A1P, A1As, A1Sb, GaP, GaAs,
GaSb, InP, InAs, and InSb, as well as for A105Gao 5As
and In053Gao47As, used in our calculation. For ionic
crystals, it is understood that we mean e when we men-
tion the dielectric constants. These constants are taken
from Ref. 23. We have also included the energy cutoffs
for the expansion of the wave functions in the LDA cal-
culations for these materials in Table III (see below). For
the two semiconductor alloys, the lattice constants and
the dielectric constants are taken to be the weighted ar-
ithmetical averages of the constituent III-V compounds.

Si
LiC1
Alp
A1As
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
Alo. sGao. sAs
Ino. s 3Gao. 47As

5.43
5.13
5.45
5.65
6.14
5.45
5.65
6.10
5.87
6.04
6.47
5.65
5.87

12.0
2.7
7.5
8.2

10.0
9.0

10.9
14.4
9.6

12.3
15.7
9.5

11.6

16
25
16
16
14
16
16
14
14
14
13
16
14
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effects are included except for Si and LiC1. The
Ceperley-Alder exchange-correlation potential is used
in the LDA calculations. However, in examining the ab-
solute many-body corrections to the LDA energies at the
top of the valence band, the von Barth —Hedin form of
the exchange-correlation potential is employed. It is
more appropriate in this case since the von Barth —Hedin
approximation to the exchange-correlation potential in
the LDA corresponds to the 68' approximation in jelli-
um. The calculation of the self-energy operator X in-
volves several numerical cutoffs. For GaAs, the LDA
wave functions are expanded up to E,„=16Ry. The
LDA band gaps are converged to better than 0.01 eV.
The dielectric matrix is truncated at

~ q+ Cx
~

=3. 1 in Ry
atomic units. We have included 8 k points in the irreduc-
ible wedge of the Brillouin zone and 100 bands in the ca1-
culation of the matrix elements of X in summing over the
immediate scattering states. The final quasiparticle ener-
gies are converged to about 0.1 eV. Similar convergence
is reached for all the other materials with the energy
cutoffs given in Table III. Among them, LiC1 has the
largest cutoffs. Two partially canceling effects, the core
relaxation and the valence-core exchange, are taken into
account within the LDA by the LDA atomic pseudopo-
tentials. "

For some systems, the LDA minimum band gaps are
negative. But the occupation number in the Green's
function should be determined by the quasiparticle spec-
trum. This is achieved self-consistently. We first input
the LDA spectrum into the Green's function. The occu-
pation of these states is then adjusted according to the
new quasiparticle spectrum for the second run. This pro-
cedure distinguishes better the valence states from the
conduction states, and yields a larger band gap mainly
due to changes in the exchange energies associated with
the states.

The virtual crystal approximation (VCA) has been
employed in calculating the properties of Alo 5Gao 5As
and Ino 53Gao $7As. The ionic pseudopotential of the vir-
tual cation is obtained by the direct weighted average of
the pseudopotentials of the two constituent cations. The
electron-electron interaction potential is allowed to adjust
self-consistently to the charge density distribution in the
virtual crystal, given the virtual ionic pseudopotentials.
No attempts are made to include chemical disorder
and/or bond-length disorder. The roles of these disor-
ders have yet to be clarified by careful comparisons be-
tween experimental results and theoretical predictions. '

The effects of spin-orbit interactions become non-
negligible for materials which contain heavier atoms.
In Sb-containing zinc-blende-structure compounds, the
spin-orbit splitting at the top of valence band can be as
large as 0.7-0.8 eV. This alters the direct gap at I in
InSb by more than 50/o. We have taken the experimen-
tal spin-orbit splitting parameters where they are avail-
able. Ab initio calculations for the spin-orbit interaction
effects in the diamond- and zinc-blende-structure semi-
conductor compounds ' have been carried out. The re-
sults give accurate accounts for the spin-orbit interaction
induced band splittings. ' Spin-orbit effects arise from
the electron-ion interaction. They can be well treated to

first order in perturbation within the LDA and would not
affect the many-electron contribution to the quasiparticle
results.

III. QUASIPARTICLE ENERGIES
FOR THIRTEEN SEMICONDUCTORS

In this section we present our theoretical quasiparticle
energies for the thirteen materials, together with the
available experimental results. For completeness, we
have also included Si although it was discussed previous-
ly in Ref. 21. The results (both ab initio and model
dielectric function calculations) reported here for silicon
are newly calculated with parameters similar to those
used for the other compounds to facilitate comparison.
First-principles quasiparticle energies without using the
model dielectric function for InAs are calculated here for
the first time. As evidenced by the satisfactory agree-
ment for all the materials investigated, the model demon-
strates clearly its versatility and accuracy in the quasipar-
ticle self-energy calculations for semiconductors and in-
sulators. We report our results for Si and LiC1, both hav-
ing inversion symmetry, in Sec. III A. The results for the
nine zinc-blende-structure semiconductor compounds are
given in Sec. III B. Section III C contains the results for
the two semiconductor alloys.

Before we proceed to the comparison of the theory
with the experiment, we would like to note that the inter-
pretation of our calculated results is based upon a quasi-
particle description of excitations in solids. The evalu-
ated poles in the one-particle Green's function represent
the energies of the excitations in which one particle is
physical removed from or added into the system. Hence
strictly speaking, direct comparison can only be made to
photoemission and inverse photoemission experiments.
Band gaps and critical transition energies derived from
differences in quasiparticle energies may differ from re-
sults obtained from optical measurements in which
electron-hole pairs are created. In general, excitonic
effects shift the optical transition energies to lower values
by the amount of the exciton binding energy if bound ex-
citons are formed and may modify the shape of optical
spectrum. In three dimensions, the change in excitation
energy caused by excitons is less than 0.05 eV at inter-
band critical points in most semiconductors. Our follow-
ing comparison with experimental data proceeds on the
assumption that excitonic effects are small in these ma-
terials compared to the energies of interests.

A. Si and LiCl

Si is one of the most carefully studied semiconductors.
It is in the diamond structure under normal pressure with
an indirect band gap 1.17 eV (I 25, ~-0.85X&, ). LiCl is
a wide gap insulator (with a band gap l, ~, ~r &, -9.4
eV) in the NaCl structure. The screening effects in LiC1
are much weaker than those in Si, as manifested by their
respective dielectric constants: 2.7 for LiC1 and 12 for Si.
The quasiparticle wave functions (as well as the charge
density) are so localized in LiC1 that it poses a special
challenge to the model-dielectric-function scheme since
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the model owes its origin to the isotropic and homogene-
ous electron gas. Despite these concerns, we find that the
model calculation gives 9.34 eV for the minimum gap for
LiC1, in excellent agreement with 9.4 eV deduced from
reAectivity measurement. The minimum gap from our
model calculation is slightly larger than the full calcula-
tion result 9.21 eV, consistent with a trend that we men-
tioned earlier.

Tables IV and V show the excellent agreement for both
of these materials between the quasiparticle energies ob-
tained with use of the model dielectric function and the
results from first-principles calculations. Spin-orbit in-
teractions change the band gaps by less than 0.05 eV in
these two materials and are therefore neglected. The
very minor differences of the first-principles quasiparticle
energies of Si and LiC1 here and those reported in Ref. 6
are due to a slightly lesser convergence in the present cal-
culation. For Si, we have included the available experi-
mental results taken from Ref. 6. For LiC1, we only
make the comparison between the LDA eigenvalues, the
quasiparticle energies from the model and the full calcu-
lations due to a lack of reliable experimental data. The
point here for LiC1 is to illustrate the applicability of the
model dielectric matrix in the self-energy calculation for
extremely ionic insulators. The success hinges on the fact
that the model dielectric function takes into account the
rather drastic variation of the charge accumulation in
LiC1.

The largest discrepancy between the model and the full
calculation in LiC1 occurs for the Cl 3s-like states. We
find this is due to the less efficient screening of the model.
This affects the self-energies of the Cl 3s-like states the
most since it has the largest (absolute) value of X. This
less efficient screening pushes the energies of the 3s-like
states further down (thus closer to the Hartree-Fock re-
sult), hence a larger valence-band width. The larger band
gap found in the model calculation also stems from the

TABLE IV. Comparison of the quasiparticle energies from
the present model calculation (QPM) and from the full first-
principles calculation (QPF) with experimental values for Si tak-
en from Refs. 6 and 23 at high-symmetry k points. Energies are
in eV.

TABLE V. Comparison of the LDA eigenvalues, the quasi-
particle energies calculated from the model (QPM), and the
quasiparticle energies from the full calculations (QPF) for the
ionic crystal LiC1. Energies are in eV.

X),
X4,
Xs,
Xl,
X3,

Li,
L2,
L3,
Ll,
L3,

LDA

—13.11
0.0
6.07

11.84

—11.95
—2.40
—1.00

7.87
8.45

—11.85
—2.58
—0.03

6.38
9.11

—14.77
0.0
9.34

15.71

—13.64
—2.74
—1.14
11.16
11.94

—13.61
—2.93
—0.08

9.82
12.82

QPF

—13.33
0.0
9.21

15.63

—12.30
—2.68
—1.11
11.18
11.95

—12.26
—2.87
—0.08

9.78
12.80

B. Zinc-blende-structure compounds

same origin.
To gain some quantitative feel of the importance of the

dynamical screening on the quasiparticle energies in al-
kali halides, we have broken X into two pieces in LiCl:
the bare exchange and the rest of X which includes the
screening to the bare exchange and the correlation terms.
The bare exchange term gives essentially the Hartree-
Fock results, which are of course identical in both the
model and the ab initio calculations. In Table VI we list
these terms for the top of the valence band I », and for
the bottom of the conduction band I &, from both the
model and the full calculations. For the occupied state
I,5„, which is largely of atomic Cl 3p character, the bare
exchange contributes more than 85% to X. But for the
unoccupied state I „, its contribution is only 50%.
These numbers are not very different from those typical
of a semiconductor.

I l„
II 2s.

Ils
I2,
X),
X4,
Xl,

Lzv
LlU

L3„
Ll,
L3,

QPM

—12.30
0.0
3.43
4.23

—8.15
—3.02

1.47

—9.98
—7.28
—1.28

2.36
4.30

QPF

—11.98
0.0
3.43
4.13

—7.97
—2.95

1.53

—9.74
—7.12
—1.25

2.34
4.30

'Reference 23.
Reference 6 and references therein.

Expt.

—12.5'
0.0
34
4.2'

—2.9, —3.3

—9.3'
—6.7'
—1.2'

2.1,'2. 4b

4.15

In this subsection we shall discuss the quasiparticle en-
ergies for the nine zinc-blende-structure compounds
formed by the combinations of Al, Ga, In with P, As, Sb.
The empirical pseudopotential method has been success-
fully applied to these zinc-blende-structure materials.
It is, however, an empirical approach and thus requires
experimental data as input. We show here that the
present quasiparticle approach gives equally accurate ex-
citation energies without fitting to experimental optical
and photoemission spectra.

In Tables VII, VIII, and IX, we compare the calculat-
ed quasiparticle energies with the available experimental
data, for compounds containing P, As, and Sb, respec-
tively. Quasiparticle energies at I, X, and L are given in
these tables. Spin-orbit interaction corrections are taken
from experiments where available. They are most
significant at I . For the P-containing compounds, the



14 148 XUEJUN ZHU AND STEVEN G. LOUIE 43

TABLE VI. Comparison for the various terms in X at I in LiCl calculated using the model and us-

ing the ab initio static dielectric function. X denotes the bare exchange; SX+CH denotes the rest of X.
Results are in eV.

rlSv
r1,

—18.39
—4.26

Full

SX+CH

1.76
—3.75

—16.64
—8.01

—18.39
—4.26

Model

SX+CH

1.88
—3.50

—16.51
—7.76

TABLE VII. Quasiparticle energies for A1P, GaP, and InP from present calculation compared to
available experimental results taken from Ref. 23 except where noted. The results are in eV.

rlu
15u

r1,
r1s

X1,
X3,
X5,
X1,
X3,

L1,
L1,
L3,
L1,
L3,

Theory

—12.07
0.0
4.38
5.72

—9.68
—5.69
—2.31

2.59
3.56

—10.36
—5.92
—0.85

3.90
6.05

Alp
Expt.

0.0
3.62'

2.50

Theory

—12.83
0.0
2.85
5.03

—10.02
—7.04
—2.78

2.55
2.81

—10.91
—6.88
—1.16

2.67
5.87

Gap
Expt.

—12.30
0.0
2.89
4.87

—9.6
—6.8
—3.0

2.39
2.75

—10.8
—6.8
—1.27

2.64

Theory

—11.75
0.O, —O. 11
1.44
5.08

—9.53
—5.97
—2.38

2.58
3.08

—10.18
—S.89
—1.02

2.28
5.83

InP
Expt.

—11.0
0.0, —0. 11
1.42
4.85

—5.9
—2.2

2.38

—1.15
2.03

'Reference 46.

TABLE VIII. Quasiparticle energies for A1As, GaAs, and InAs from the present calculation com-

pared to available experimental results taken from Ref. 23 except where noted. Energies are in eV.

Theory
A1As

Expt. Theory
GaAs

Expt. Theory
InAs

Expt.

r„
r15v
r1,
r15

X„
XB
X5,
X1,
X3,

L3,
L1,
L3,

—12.41
0,—0.27
2.88
5.14

—10.41
—5.87
—2.44

2.14
3.03

—10.97
—6.01

E, —3.90
1c

2.91
5.59

0,—0.27
3.13

—2.41
2.23

E —3.92L1

2.36'

—13.03
0,—0.34
1.22
4.48

—10.69
—7.19
—2.87

2.01
2.24

—11.41
—6.97
—1.28

1.64
5.40

—13.21
0,—0.34
1.52
4.61

—10.86
—6.81
—2.91

1.90
2.47

—11.35
—6.81
—1.41

1.74

—12.10
0,—0.38
0.31
4.51

—10.23
—6.18
—2.49

2.01
2.50

—10.76
—6.04
—1.13

1.43
5.32

—12.30
0,—0.38
0.41

—9.8
—6.30
—2.40

—10.6

—1.04

1.55

'Reference 47.
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TABLE IX. Quasiparticle energies for A1Sb, GaSb, and InSb from the present calculation compared
to available experimental results taken from Ref. 23 except where noted. Energies are in eV.

Theory
Alsb

Expt. Theory
GaSb

Expt. Theory
InSb

Expt.

r„
15u

I lc

I&s

X„
X3,
X5,
Xl,
X3c

Ll,
Ll,
L3,

Ll,
L3,

—11.10
0,—0.67
2.23
3.52,3.82

—9.09
—6.01
—2.54

1.64
1.84

—9.70
—5.91

EI —3.32
1c

E —2.90Ll

1.84
4.29

0,—0.67
2.32
3.7,4.0

1.68

EI —3.31
1c

E —2.89Ll

2.33

—11.72
0,—0.76
0.62
3.11,3.32

—9.33
—7.26

—2.73, —2.97
1.15
1.50

—10.16
—6.78

—1.56, —1.14

0.79
4.11,4.23

—11.64
0,—0.76
0.82
3.2,3.4

—9.62
—6.90

—2.86, —3. 10
1.15

—10.06
—6.60

—1.53, —1.10

0.92
4.36,4.49

—10.91
0,—0.80
0.08
3.16,3.55

—9.00
—6.33
—2.56

1.50
1.57

—9.61
—5.97

—1.46, —0.96

0.76
4.09,4.24

—11.7,' —11.2
0,—0.80
0.23
3.14,3 ~ 53

—9.50'
—6.40
—2.40

1.79

—10.5'

—1.4, —0.9

4.32,4.47

'Reference 26.
"Reference 27.
'Reference 48.

spin-orbit splittings ((0.1 eV) are neglected. For As-
containing compounds, we only consider the spin-orbit
correction to the valence-band maximum (splitting of
-0.3 eV). For Sb-containing compounds, they should be
included for all the k points and we have taken the avail-
able experimental data for the energy splitting caused by
spin-orbit interaction (0.4—0. g eV depending on k). Sim-
ple group notation is used throughout the paper. Wher-
ever two energies are listed in the same entry, they
represent the energies of two states (at I, one of them
could still be doubly degenerate) derived from the origi-
nally degenerate states. Later in the paper, we will dis-
cuss some systematic trends in the quasiparticle energies
in these compounds.

The experimental data are taken from Ref. 23. The
original sources of the data scatter in the literature, with
rather diverse origin. We only include references of the
experimental data which we will discuss further below.
The overall agreement between theory and experiment is
excellent. Here we analyze only the three near gap states
with energies that show discrepancies larger than 0.25
eV. They all occur in the Al-containing compounds. For
A1P, the theory gives a direct gap at I of 4.38 eV, while
the experimental value is 3.62 eV. For A1As, the theory
and experiments agree on the direct gap at L, which is
3.90 eV from theory and 3.92 eV from experiment. But
the indirect gap in A1As from I », to L&, are 2.91 eV
from the theory and 2.36 eV from experiment, showing
a 0.55-eV difference. The energy of the L &, state in A1Sb
given by theory is 1.84 eV above the valence-band max-
imurn, but the experimental value is 2.33 eV, although
again, there is a very good agreement for the direct tran-
sition energies at L. All of these three discrepancies

exceed 0.5 eV and are not expected to be caused by the
uncertainties in the calculation. Simple estimates of the
exciton energies from the experimental effective masses
and dielectric constants in these compounds cannot ac-
count for more than 0.03 eV. For these three materials
(as well as the other six materials), the rest of the quasi-
particle energies consistently agree very well with experi-
ments. This leads us to reexamine the experimental data.

The experimental value for the direct band gap of A1P
is obtained from photoluminescence spectrum by Mone-
mar. Due to a large defect concentration in the AlP
sample used, the observed spectrum is rather broad and
the features are rather vague, compared to those of A1As
reported in the same paper. The temperature dependence
of this gap was not studied due to the large uncertainty in
locating the transitions. There is effectively little evi-
dence for the weak feature observed to be a direct band
gap. The feature at 3.62 eV, assumed to be the direct-
band-gap energy at I in the experiment, actually agrees
with our theoretical energy of X3„which is 3.56 eV. The
transition to X3, from I », involving a phonon or defect
potential is possible. We thus believe the experimental
data are not conclusive in the identification of the direct
band gap in A1P.

The inconsistency between theory and experiment for
the position of L „relative to I », in A1As was also re-
ported in a paper by Godby, Schluter, and Sham, in
which first-principles 68' calculation was performed.
Our calculated result of 2.91 eV agrees with their value of
3.03 eV for the energy of L &, . It was pointed out in their
analysis that the experimental energy of L&, was not
directly measured, but was extrapolated quadratically
from the data of Al GaI As alloys. However, the ex-
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TABLE X. Comparison of the full quasiparticle calculation with results from the model dielectric
matrix calculation for A1As, GaAs, and InAs. Results presented are the many-body corrections defined
in Eq. (3) for states near the gap. Results are in eV.

Full
AlAs

Model Full
GaAs

Model Full
InAs

Model

lsur„
Xs,
Xl,
L3,
Ll,

0.00
0.92

—0.14
0.80

—0.07
0.84

0.00
1.03

—0.16
0.87

—0.08
0.94

0.00
0.91

—0.08
0.73

—0.03
0.81

0.00
0.84

—0.12
0.70

—0.05
0.77

0.00
0.79

—0.03
0.71

—0.01
0.77

0.00
0.70

—0.06
0.61

—0.02
0.67

perimental range of x only goes from 0.0 to 0.6." The
discrepancy was attributed to the inaccuracy of the quad-
ratic fit used in analyzing the experimental data.

There are early experiments on the energy position of
Li, in AlSb by Mead and Spitzer, which gives 1.86 eV
in very good agreement with our theory. Photoresponse
was measured and this energy was deduced from the
slope of the photoresponse. In Ref. 48, very accurate
modulation reAectance technique was used. But there
does not appear to be sufticient evidence for associating
the peak in the modulation reAectance spectrum with the
energy of L &„although the positions of the peaks can be
accurately located. The peak attributed to L &, in this pa-
per did not appear in the low-field electroreAectance spec-
tra. Similar features in the electroreAectance spectra are
observed in GaAs, where they are attributed to possible
defect states. In Ref. 48, measurement had not been done
at energies below 2.0 eV to observe the L „peak predict-
ed by the present calculation. So our theoretical result is
not incompatible with this high-accuracy electro-
reAectance experiment. Further experiments are needed
to elucidate these disagreements.

First-principles quasiparticle energies are available for
AlAs for GaAs (Refs. 7 and 8) and we have performed
similar calculation for InAs. In Table X we display the
excellent comparison of the many-body corrections to the
LDA eigenvalues of the band edge states at I, X, and L
between results from the model calculation with those ob-
tained from first principles. We find as in Ref. 21 that the
model gives values for X for these states to within 5% of
the first-principles results. The difference in the correc-
tions to the LDA results for the direct band gaps are even
smaller between the model and the full calculations.
They are for most cases less than l%%uo. From Table X and
results on other semiconductors, we observe that empiri-
cally when the minimum gap in a semiconductor is larger
than 1.5 eV, the model calculation gives slightly larger
band gaps than the full calculation. When the minimum
gap is smaller than 1.5 eV, the model results are smaller.
But the differences in the quasiparticle energies between
the model and the full calculations are consistently within
0.1 eV.

C. Semiconductor alloys

Semiconductor alloys have attracted much attention
because of their tunable band gaps and other tunable

TABLE XI. Quasiparticle energies for Alo, Gao, As and
Inp 53Cxap 47As from the present calculation, in comparison with
experiments. Energies are in eV.

Alp 5Gap 5As
Theory Expt.

Inp 53Gap 47AS
Theory Expt.

r„
r„
I &5

X„
X3,
Xs,
X),
X3,

L),
L)„
L3,
Li,
L3c

—12.74
0,—0.30
2.06
4.77

—10.57
—6.54
—2.68

2.05
2.61

—11.21
—6.51
—1.16

2.25
5.48

0,—0.30
2.09'

1.97'

2 03'

—12.46
0,—0.30,
0.80
4.55

—10.42
—6.49
—2.64

2.07
2.50

—11.02
—6.36
—1.18

1.63
5.41

0,—0.30
0.81"

'Reference 47.
Reference 50.

properties. Among them, Alo 5Gao 5As and
In053Gao47As are probably the most studied and best
known ones. The latter has a potential of being useful in
fast electronic devices. Several theoretical methods
have been employed in the past for calculating semicon-
ductor alloy electronic properties. The virtual crystal ap-
proximation (VCA) which omits local chemical and
bond-length fluctuations is the simplest and has been the
most popular approach. More sophisticated theories
have recently been proposed and they reveal certain
deficiencies of the VCA method. But, as far as the abso-
lute band structure is concerned (rather than the much
smaller differences between the band gap of the alloy and
the averaged value of the corresponding band gaps of the
constituent semiconductors), calculations have shown
that VCA and other more sophisticated methods give the
same results to within 0.1 eV. ' We find that the bow-
ing parameters of the band gaps are not given correctly
by either LDA or the present quasiparticle approach
within the VCA. The roles of chemical disorder and
bond-length disorder in determining the bowing parame-
ters are qualitatively important but the details have yet to
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be clarified. '

In Table XI the quasiparticle energies at I, X, and L
are given for the two semiconductor alloys considered, in
comparison to the available experimental data. For
Alo ~Gao 5As, the theory places E (L „) at about 0.2 eV
higher than E(I „),and E(X„).This concentration is in
the vicinity of that of the I „,X&„and L&, crossovers.
Experimentally the energies of these k points are very
close to each other. Among them, X„ is identified as the
conduction-band minimum. We note E(I &, ) from the
theory is a little too low for both parent compounds,
A1As and GaAs, due to the neglect of core-valence ex-
change interaction. ' Taking this into account in our
calculation would raise E (I &, ) to approximately E (L „),
leaving unambiguously X&, the conduction-band
minimum. For In() 53Gao 47As experimental data are not
complete in terms of the band energies. The use of the
VCA also prohibits a reliable estimate for the band bow-
ing parameters in these semiconductor alloys. No sys-
tematic agreement with experiments is found for the bow-
ing parameters in the analysis of our theoretical energies.

IV. ANALYSIS AND DISCUSSIQNS

I
I

1
I

'
I

~ AlP

~ InP
0

In-Ga-As GaAs
Cl

GaSb
InAs

InSb
0—

~Si

~A1As

GaP
+AlSb

0Al-Ga-As

I ~ I I s I

0 1 2 3 4

FIG. 1. The quasiparticle direct band gaps vs the LDA direct
band gaps for Si, nine zinc-blende-structure compounds, and

two semiconductor alloys.

We discuss some systematic trends found in the calcu-
lated quasiparticle energies and the electron self-energy
operator in these semiconductor compounds in Sec. IV A.
In Sec. IVB, the model static dielectric matrices are
quantitatively compared to the first-principles dielectric
matrices in several cases. The objective of Sec. IV C is to
examine the quasiparticle renormalization factor which is
related to the validity of the quasiparticle description of
excitations in solids. In Sec. IVD, our results for the
many-body corrections to the LDA energies at the
valence-band maxima for the zinc-blende-structure semi-
conductors are reported.

A. Systematic trends in X

band gaps for these compounds. Figure 2 depicts the
variation of the many-body corrections to the LDA
direct band gaps as the degree of localization of the states
varies, being measured here by the ratio of the direct
band gap at I and the valence-band width, as calculated
by the theory. There is a general correlation between the
many-body correction and the degree of wave-function
localization in these materials. In Fig. 2, the data point
for Si drops somewhat below the line that the other rna-
terials seem to follow. The origin of this di6'erence stems

The complexities of X are caused by its nonlocality and
its energy dependence. In the GR' theory, they arise
from both the Green's function 6 and the screened
Coulomb interaction 8'. Their efFects on the quasiparti-
cle band gaps are found to cancel to some degree but
quantitatively reliable results can only be acquired by in-

cluding both. In Si, for example, the indirect minimum
band gap requires definitely the inclusion of the local
fields in 8' while the direct band gaps rely less on it.
The nine III-V compounds considered here provide an
excellent family of semiconductor systems for us to study
the systematic trends in the behavior of X.

For simplicity, we shall mainly discuss the direct band
gaps at I of these compounds. The minimum band gaps
are derived from difFerent k points in the Brillouin zone,
thus bringing unwelcome complications to the analysis.
In all of these materials, the top of the valence band at I
has characters of the bonding p states and they are all
threefold degenerate without spin-orbit interaction. The
lowest conduction-band state at I is formed by the anti-
bonding s states for all the materials except for Si, in
which it is formed by the antibonding p states. We plot,
in Fig. 1, the quasiparticle band gaps versus the LDA

AlAs
a As OO

GaAs O
O

OIn-Ga-As O
InAs O»

GaSb

InSb

O A1P

0
0.0 0.5

FIG. 2. The many-body corrections to the LDA direct band

gaps at I as a function of Eg '"/W, where W is the valence-band
width, and Egd" is the direct band gap, for Si, nine zinc-blende-
structure compounds, and two semiconductor alloys.
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from the fact that in Si the lowest conduction state at I is

p like, unlike in the other compounds where this state is s
like.

Recently, much attention has been focused on develop-
ing directly a model for X to avoid the intensive compu-
tation effort, and to provide some better physical insight.
There are two recent models' ' proposed for X which
make extensive use of knowledge of the self-energy opera-
tor calculated from first principles. One is the work of
Hanke and Sham who construct the self-energy within
the time-dependent screened Hartree-Fock approxima-
tion using a local orbital basis. The other is by Gygi and
Baldereschi' who employ the static Coulomb-hole-plus-
screened-exchange (COH SEX) approximation to the
difference of X and the LDA potential. The approach of
Hanke and Sham has the merits of being able to give an
analytic expression for the many-body corrections to the
band gaps in ionic compounds. But the p' model for
the screening has yet to be stringently tested. Their mod-
el is still semiquantitative as it stands now, when com-
pared to the ab initio results. The gaps are off by -0.5
eV for diamond and LiCl. The model introduced by

I

Gygi and Baldereschi approximates the local behavior of
X with the LDA potential. It further uses a COHSEX
model for the rest of the screening effects in X. It appears
to work well for diamond and Si, but for Ge and some
III-V compounds they examined, large discrepancies of
about 0.5 eV remain to be resolved.

B. Comparison of the model
and the full dielectric matrices

The ab initio static dielectric matrix
e '(q+G, q+G', co=a) may be calculated as a ground-
state property from density functional theory using the
linear response approach. ' Within the RPA in which
the exchange correlation contributions to the screening
potential are neglected, e ' is given by the following
compact form:

&Rp'~= l I —~col

where go is the independent particle polarizability. The
Adler-Wiser formulation gives

4 (u, k~e ' + "~c,k+q)(c, k+q~e'q+ "~u, k)
XDGG' 'q ~ X

c, u, k Eu, k ~c, k+q

1.0 1.0 I 1 —I
W H W 'W % H ~e

0.8—
(a)—

0.8
(a)

0.4—

0.2

0.8

(q =X)
GaAs

(b)—

0.4

0.2

0.8

s (q= X)

InSb

I I I
I

W % W % % % R

(b)

04

0.2
0.0 5

Iq + G I (a. u. )

s (q=L)
GaAs

10

0.4

0.2
0.0 5

Iq+ Gl' (a. u.)

& (q=L)
InSb

10

FIG. 3. (a) Comparison of the diagonal elements of the model
and the RPA e ' for GaAs at X; (b) comparison of the diagonal
elements of the model and the RPA e ' for GaAs at I.

FIG. 4. (a) Comparison of the diagonal elements of the model
and the RPA e ' for InSb at X; (b) comparison of the diagonal
elements of the model and the RPA e ' for InSb at L.
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TABLE XII. dX/dE for states near the gap in LiC1. The
quasiparticle energies for these states are also listed for refer-
ence.

d X/dE

L3,
Li,

0.0
9.34

—1.14
11.16

—0.08
9.82

—0.16
—0.14

—0.16
—0.14

—0.18
—0.13

C. The quasiyarticle renormalixation factor

In this section we examine an important quantity asso-
ciated with the quasiparticle excitations in a solid, the re-
normalization factor

For each (q, G, G'), summations have to be carried out
over large number of bands and k points. Although sym-
metry may be fully exploited, calculation of yo is still
very time consuming.

The Levine-Louie model for e ' that we used in the
present calculation has been discussed at length in Sec.
IIA. The diagonal elements of e ' have contributions
from the off-diagonal elements of e, i.e., the local field
effects. The inverse of the diagonal elements of e ' gives
the macroscopic dielectric function, which is affected by
the local fields. In Figs. 3 and 4, we compare the results
for the diagonal elements of e '(q) (thus with local field
effects) for GaAs and InSb from the model with the ab in
itio results obtained from Eqs. (8) and (9), for q's at L and
X. The agreement is quantitative. In the high-q region
(short-range behavior in real space), the model gives a
more efFective screening by its nature of being from a
electron gas. In the q~O region which is not shown on
these plots since the smallest

~ q+ G
~

is L or I, the ab ini-
tio results are expected to overestimate the screening due
to the use of the LDA band structure. In the intermedi-
ate range of q, we find generally that the model screening
is less effective. The behavior of the dielectric function
discussed here has a direct impact on the final quasiparti-
cle energies. Generally speaking, more effective screen-
ing corresponds to a smaller band gap.

the energy dependence of the self-energy operator. Static
approximations to X, such as Hartree-Fock or COHSEX
(Ref. 1), do not carry information about the interplay of a
quasiparticle with the excitations (electron-hole pairs,
plasmons, etc.) associated with the dynamical many-body
screening effects around the quasiparticle. In the
Green's-function language, Z gives the weight of the
quasiparticle peak in the spectral representation. Z is
directly related to the imaginary part of X by the follow-
ing dispersion relation' for the quasiparticle states near
the gap in a semiconductor:

BX(E„q) 1 ImX(E')
~ „q dE' .

BE a (E' E„q)—2
(10)

D. The many-body correction
to the VBM energy

This expression is negative definite, resulting in a less-
than-unity Z. This is consistent with the fact that the
quasiparticle peak can only be a part of the whole spec-
tral function which is normalized to one.

Calculations' ' ' have shown that the exact values of
Z are not sensitive to the GPP model used in the present
approach. Close relationship between Z and the average
charge density in a material has been pointed out by
several previous papers using slightly difFerent
methods. ' Table XII gives dX/dE for near gap states
at high symmetry points for LiC1. Table XIII gives
dX jdE for the highest occupied and the lowest unoccu-
pied states at I for the nine zinc-blende-structure semi-
conductors. For the states near the gap, our calculation
gives ——0.2 for BX/BE, and -0.8 for Z for all the
compounds listed in Table XIII. The energy dependence
of Z is found to be insignificant, confirming the finding in
Refs. 6 and 7. We have found Z to be state-insensitive
also. These trends are tied to the fact that the energy
dependence part of X can be well reproduced within a
—5-eV range of energy near the semiconductor band gap
by that of a jellium with corresponding charge density.
Indeed, the Z values of these materials are very close to
that of a jellium with r, -2. ' ' One exception to this
general observation is in LiCl which shows a Z value
close to unity than the other materials. LiC1 is more ion-
ic and more localized than the rest of the materials and
the static approximation applies better, thus a smaller
dynamical effect.

BX(E)
nk gE

n, k

for a particular state ~n, k). This quantity gives a direct
measure of dynamical effects, as it is explicitly induced by

In this subsection, we present results for the many-
body corrections to the LDA energies for states at the
valence-band maximum (VBM). These quantities are
relevant to theories of the valence-band offsets at semi-
conductor interfaces. " In the past decade, many models

TABLE XIII. dX/dE for the near gap states at I for nine zinc-blende-structure semiconductors.

Alp

—0.23
—0.24

A1As

—0.22
—0.25

Alsb

—0.23
—0.26

GaP

—0.20
—0.23

GaAs

—0.26
—0.27

GaSb

—0.28
—0.24

InP

—0.26
—0.24

InAs

—0.27
—0.26

InSb

—0.28
—0.25
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TABLE XIV. Calculated self-energy ( X) and LDA
exchange-correlation energy ( VLzA ) using the von
Barth —Hedin exchange-correlation potential at the valence-
band maximum for thirteen semiconductors. The last column is
the many body corrections to the LDA valence-band maximum
energies lX —VLo~ ). Quantities are in eV.

vBH
VLDA yvBH

Si
Ge
Alp
A1As
A1Sb
GaP
GaAs
GaSb
InP
InAs
InSb
Alo. 5Gao. 5As
Ino 53Gao 47As

—11.90
—11.29
—12.63
—11.94
—10.73
—12.55
—11.83
—10.66
—12.20
—11.52
—10.38
—11.91
—11.67

—11.75
—11.31
—12.31
—11.76
—10.67
—12.33
—11.76
—10.69
—10.98
—11.44
—10.38
—11.77
—11.57

—0.15
0.02

—0.32
—0.18
—0.06
—0.22
—0.07

0.03
—0.22
—0.08

0.00
—0.14
—0.10

have been proposed for a unified mechanism for deter-
mining the valence-band offsets at semiconductor hetero-
junctions, such as the charge neutrality level model, ' the
dielectric midgap level model, and the "model-solid"
theory, etc. However, realistic calculations" ' and
recent experiments indicate that these models are not
completely satisfactory.

The LDA has been found to be unable to give accurate
band offsets for semiconductor interfaces. " The
discrepancies are more severe for the Schottky barrier
heights at the metal-semiconductor interfaces, where
the states involved are less similar than in the valence-
band offset case. As is well known, the LDA eigenvalues
cannot be treated rigorously as the electron removal ener-
gies, despite the fact that the exact density functional
theory would give the correct ionization energy of a

solid. Application of the quasiparticle theory has given
excellent account for the band offset at A1As-GaAs inter-
face." The many-body correction amounts to about 25%%uo

of the total valence-band offset in that case." This fact,
together with the intense experimental interest in this
field, has motivated us to compute and tabulate the
many-body corrections to the LDA energies of the
valence-band maxima for compounds considered here.
To obtain the final valence-band offset for a semiconduc-
tor interface, our data just have to be combined with a
self-consistent calculation of the electrostatic potential
change across the interface, which could be done within
the LDA. The justification and the actual procedure for
such a calculation are given in Ref. 11. By combining the
valence-band results with the many-body corrections to
the band gap s, one is also ready to deduce the
conduction-band offsets.

As mentioned earlier, in order to make a parallel com-
parison between the LDA and quasiparticle results, we
have used the von Barth —Hedin correlation potential in
the LDA calculations. In Table XIV we give
(VBM~X(EgM)~VBM) and (VBM~ VL&&~VBM) and
the differences between these two quantities, for Si, Cxe,
and nine III-VI zinc-blende structures, and the two semi-
conductor alloys. Since the VBM state was mainly local-
ized on the anion, there is a clear correlation between the
magnitude of the many-body correction and the proper-
ties of the anion of the material. There is also a weaker
dependence on the cation. Our results reveal, as expect-
ed, that the more localized the system is, the larger the
correction will be. It is thus expected that the many-
body corrections to the band offsets of semiconductor in-
terfaces will be larger for II-VI compounds, which are
also frequently used to form semiconductor interfaces in
practice. The failure of the LDA to describe sufficiently
the exchange potential, which is very influential to the
VBM energies, is more severe in the more localized sys-
tems. Also we note that the many-body corrections to
the LDA VBM energies for the two alloys are slightly
larger in magnitude than averages of the corresponding

TABLE XV. Valence-band offsets for eight semiconductor interfaces. The LDA results here are tak-
en from Ref. 53. The many-body correction b, 's are calculated directly from Table XIV. QP denotes
the quasiparticle results obtained by adding 6 to the LDA band offsets. Results are in eV.

A1As-Ge
GaAs-Ge
A1As-GaAs
AlP-Si
GaP-Si
A1P-GaP
InAs-GaSb
A1Sb-GaSb

'Reference 58.
Reference 59.

'Reference 60.
Reference 61.

'Reference 62.
Reference 63.

LDA

1.05
0.63
0.37
1.03
0.61
0.36
0.38
0.38

0.20
0.09
0.11
0.17
0.07
0.10
0.11
0.09

QP

1.25
0.72
0.48
1.20
0.68
0.46
0.49
0.47

Expt.

0.95'
0.56
0.55'

0.80'

0 51'
0.45'
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values of the constituent compounds.
We turn now to a comparison with experiments for the

semiconductor interface band offsets by adding the
present many-body corrections to the LDA band offset
energies. The transitivity rule, which states that the
valence-band offset formed at the interface of semicon-
ductors 2 and B (denoted as 2 /B, ) and at the interface
of B and C (denoted as B /Q are simply related to that at
A/C by 6~&~+6.~zc=b. „&c, is found to be valid for
most of the semiconductor interfaces in previous LDA
calculations. The addition of the many-body correction
term to the LDA band offsets will of course not affect the
transitivity rule. Results from self-consistent LDA calcu-
lations, which allow for the various relaxation effects,
were taken from Ref. 53 for several semiconductor inter-
faces. The LDA calculations in Ref. 53 are moderately
well converged with a theoretical uncertainty of +0. 1

eV. For A1As-GaAs, a better converged LDA calcula-
tion gives 0.41 eV for the valence-band offset, "compared
to 0.37 eV reported in Ref. 53. Also, much attention
needs to be paid to the accuracy of the experimental re-
sults because of the technical difticulties in measuring the
valence-band offsets at semiconductor interfaces.

Only lattice matched materials were considered in Ref.
53. Table XV gives the LDA band offsets, the many-
body corrections, the final quasiparticle band offsets, and
the corresponding experimental results. A-B indicates
that VBM energy in B is higher than in A. In general,
the results with the many-body corrections for the
valence-band offsets provide a better agreement with ex-
periments. The largest discrepancies between theory and
experiment are for A1As-Ge and GaAs-Ge. Experimen-
tal band offsets for A1As-Ge, GaAs-Ge, and A1As-GaAs
also show the largest violation of the transitivity rule.

The InAs-GaSb interface deserves some special atten-
tion. The valence-band maximum of GaSb is located
0.49 eV higher than that of InAs, according to our calcu-
lation. The experimental value is 0.51 eV. ' This
valence-band offset is in fact larger than the direct band
gap in bulk InAs. The interface system is thus in princi-
ple a metal with holes in the GaSb region and electrons in
the InAs region. This is the so-called "broken gap" line-
up. Our present quasiparticle calculations for both the
band gap and valence-band offset provide the first ab ini-
tio theoretical confirmation for this interesting phenome-
na. If one is instead dealing with superlattices with finite

thickness, this metallization does not occur until after
some critical thickness is reached. For the InAs-GaSb
interface (corresponding to an infinitely thick superlat-
tice), we obtain an estimate for the overlap of the
valence-band edge in GaAs and the conduction-band
edge in InSb to be 0.11—0.20 eV. Experimentally it is ob-
served to be in the vicinity of 0.15 eV.

V. SUMMARY AND CONCLUSIONS

Accurate descriptions of the band structure of a wide
range of semiconductors and insulators have been ob-
tained by calculating the self-energy operator within the
GR'approximation of Hedin. The use of the generalized
Levine-Louie model dielectric function has greatly im-
proved the e%ciency of such calculations. Satisfactory
agreement between the theoretical quasiparticle energies
and experimental spectroscopic data is obtained for the
thirteen materials: Si, LiC1, A1P, A1As, A1Sb, GaP,
GaAs, GaSb, InP, InAs, InSb, and AlQ 5GaQ 5As,
InQ 53GaQ47As. Our results for the many-body correc-
tions to the LDA valence-band maximum energies should
be helpful in the understanding of the valence-band
offsets of semiconductor interfaces formed by these ma-
terials. The present approach has proved to be viable and
accurate in calculations involving evaluation of the elec-
tron self-energy operator. Further applications to semi-
conductor surface are currently underway.
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