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An analytical expression for the hole mass at the top of the valence band was derived for a
strained quantum well (QW) grown on a (001) substrate assuming infinite barriers. This expression
for the hole mass indicates that the mass value is isotropic in the (001) QW plane even if the warping
of the valence band is taken into account. The mass values estimated from this analytical expres-
sion were compared with those calculated numerically by treating the boundary conditions exactly
at the heterointerface, and the effects of the finite-barrier height and the strain were studied. The
comparison of the calculated mass values with the measurements was also discussed.

I. INTRODUCTION

Strain in semiconductor quantum-well (QW) structures
is known to modify the band structures.! The valence-
band structure near the zone center is significantly
reshaped with strain, and the biaxial compression in the
QW plane improves the lasing properties in semiconduc-
tor QW’s due to the reduced density of states in the
valence band.2”> These laser characteristics are usually
analyzed using material parameters, such as the effective
masses of the respective band. However, the study of the
band structures in strained QW’s up to now has been
mainly based on numerical calculations, and this has
made the device characterizations rather difficult.

In this paper, an analytical expression of the hole mass
at the top of the valence band was derived for strained
QW’s grown on (001) substrates. The expression was de-
rived assuming the infinite-barrier height and the validity
of the model was examined by comparing it with the nu-
merical calculations of the band structure, taking into ac-
count the finite-barrier height. In Sec. II, the analysis
based on the Luttinger-Kohn (LK) formalism® is given,
which takes into account the finite-barrier height. In Sec.
III, the analytical expression for the band-edge hole mass
is derived by simplifying the analytical procedure given
in Sec. II assuming the infinite-barrier height. The de-
rived hole mass is shown to be isotropic in the (001) QW
plane. In Sec. IV, the strain dependence of the band-edge
hole mass and the effect of the finite-barrier height are
discussed for In,Ga;_,As alloy strained QW’s, and a
comparison with the available measured mass values will
be discussed. In Sec. V, some additional discussions on
the validity of the approximations used in the preceding
sections are given. Finally, in Sec. VI the main results in
this paper are summarized.

II. THEORETICAL TREATMENT
OF VALENCE-BAND STRUCTURE

The total Hamiltonian which describes the band struc-
ture of the strained QW is given by

H=H,+H, , )
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where H, and H; are the LK Hamiltonian and the strain
Hamiltonian, respectively. In the LK formalism for H,
where a canonical transform is used to eliminate the
first-order term and is accurate to second order, the con-
duction band is decoupled.® Eppenga, Schuurmans, and
Colak’ included additional first-order terms to take the
coupling of the conduction band and the other valence
bands into account. In their method, eight bands which
result in an 8 X 8 Hamiltonian matrix were treated simul-
taneously.

In the strained QW’s under biaxial compression, which
are mainly treated below, the valence-band edge is given
by the band designated by [J,m;)=|[3,+3). This band
corresponds to the bulk heavy-hole (HH) band without
strain, but frequently it is called the light-hole (LH) band
since the in-plane hole mass becomes smaller. In this pa-
per, the |3,%+2) band will be called the HH band follow-
ing the naming in the conventional bulk band structure.

The fundamental property of this HH band may be-
come clearer by surveying the related theoretical results
reported up to now. In the k-p method, the HH band
remains uncoupled to the other bands in the first-order
formalism.® This indicates that the HH band is very
weakly coupled to the conduction (C) band and the spin-
orbit split-off (SO) band near the zone center, which are
separated in energy from the band edge of the HH band.
This is evidenced by the reported numerical results in the
following. Chitta, Degani, and Cohen treated the 6X6
Hamiltonian, which included the C, HH, and LH bands.’
The modification of the lowest HH subband dispersion in
a GaAs/Al Ga,;_,As QW by the inclusion of the cou-
pling between the conduction band and the valence band
was very small. Citrin and Chang calculated the
valence-band dispersion for GaAs quantum wires consid-
ering the coupling of the HH, LH, and SO bands.'"
Their results indicated that the lowest HH subband near
the zone center remained almost unaffected with the in-
clusion of the coupling to the SO band. The other sub-
bands were affected a little more by taking this coupling
into account.

Under the above situation, the reduction of the matrix
size becomes possible with good accuracy when the study
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is mainly aimed at the characterization of the lowest HH
subband near the zone center. When the coupling of the
HH band to the C and SO bands is neglected, the LK
Hamiltonian is reduced to the following 4 X 4 matrix:

F L M 0

L* G 0 M
M* 0 G -—-L|°

0 M* —L* F
where
F=- # [y +ykl+(y—2y,)k2]
2m, Y1TV2)Ky Y17 Y2k ]
#? 2 2
G=—2 [yi—v)k +(y +27)k; ],
mo
» (3)
L= 2mg [2\/373(kx—iky )k, 1,
— hz \/_ 2 2 . 2
M_‘ zmo [ 37/2(kx_ky)_12‘/37/3kxky] .

Y1 Y2 and y, are the Luttinger mass parameters, and
k?=k}+k}. The corresponding basis set is given by
luy)=13,2)=|—(1/V2)X +iV)1) ,
lu, ) =13, L) =|(1/V6)—(X +iY)I +2Z1]) ,
lus) =13, =Ly =[(1/Ve)(X —iY)1+2Z1]) ,
lug)=13,—3)=[(1/V2)X —iY)L) .

When a QW is under biaxial strain in the (001) QW
plane, the components of the strain are given by

_ ___ Aa
Cax —Ep =67 T, 0
€,,=— €, (5)
Cu, I

€yy =€y =€, =0,

where Aa /a is the strain due to the lattice mismatch at
the heterointerface and C,;; and C,, are the stiffness con-
stants. The (001) QW plane was assumed to be the x-y
coordinate plane in the present treatment. Under this
circumstance, the strain Hamiltonian!! H, is reduced to

HS=—EH——;—2EU(L§—§L2) , )
where
Ci—Cp
Ey=2a T € > (7a)
C,;+2Cy,
EU=_b ‘T 6‘! . (7b)

a and b are the hydrostatic and shear deformation poten-
tials, respectively. The matrix elements derived from the
strain Hamiltonian (6) leaves the HH band uncoupled to
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the other bands, but the coupling of the LH and SO
bands occurs by the matrix element of V2E;.? It will
be discussed in Sec. V that the decoupling of the LH and
SO bands is a reasonable approximation for a relatively
large spin-orbit split-off energy of GaAs and InAs. Then
the remaining strain terms are diagonalized and the ma-
trix elements of (—Ey—Ey) and (—Ey+Ey) are add-
ed in the diagonal terms of (3,£3|3,+3) and
(3,+1]3,+1), respectively.

A unitary transformation following the method of
Broido and Sham'® block diagonalizes the above 4 X4

Hamiltonian into the two 2X2 Hamiltonians. One of
them is given by
_ |F—Eyz—Ey K*
[H1= K G—Ey+Ey |’ ®
where
2 —
K= |— - V3k?(nsin®0+iy,sin26) , 9)
0
n=[y5cos*(2¢)+y3sin’(2¢)]'/* . (10)

The angles 6 and ¢ are defined to give k,=k cosf,
k,=k sin0, k,=ksing, and k,=k,cos¢. The other
Hamiltonian is given by the exchange of the nondiagonal
terms in Eq. (8). The corresponding basis set is given by

]ui3/2>=(1/1/.—2)(e_i§+|u1)iei§+|u4>), (11)
|ui1/2>=(1/\/§)(iei§7|u2>+e*i§7|u3)) s

where the basis set with the upper sign corresponds to the
Hamiltonian in Eq. (8) and

T —
§i=——+£i%tan !

RS . (12)

Y3
——tan(2¢)
2y, ¢

These two 2 X2 Hamiltonians are doubly degenerate.
For the treatment of the QW valence band, the poten-
tial term

0, |z=L,/2

V&= v, lzd>L.2 13

must be included in the eigenvalue problem, that is,
|H+V(z)I—EI|=0. (14)

When this equation is solved in the well and barrier re-
gions, the E-k (k,,k,,k,) relation in the respective re-
gion is obtained. For a given energy value E and the
wave numbers of k, and ky in the QW plane, the two
pairs of the solutions for k£, which are complex conjugate
to each other are obtained. When the basis functions in
Eq. (11) are expressed in a general form of ¢,, the wave
function corresponding to the one of the solution k,,, is
given by

1’[}kzm(z)zze[kzszn(kzm )¢’n H (15)

where the relative amplitude B, (k,,, ) is solved from the
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simultaneous equations corresponding to Eq. (14). The
term e ' is omitted in Eq. (15) and in the following ex-
pressions. The wave function in general is given by the
superposition of Eq. (15) for the four k,,, solutions:

¢(z)=2am1/zkm(z) . (16)

The amplitudes a,, are to be determined from the bound-
ary conditions shown below.

In the case of the multiband theory, the boundary con-
ditions at a heterointerface are given by the continuity of
the probability current.!* As will be shown below, the
strain terms do not appear in the boundary conditions ex-
plicitly except for the modification of the band offset.!?
In the present case, the probability current normal to the
heterointerface is given by

Jzz_7%f[¢*(2)H¢(Z)_¢(Z)H¢*(Z)]dz - am

The integral is assumed to be taken in a thin layer of a
unit area at the interface. When Eq. (15) is substituted
into Eq. (16), the wave function is also expressed as

W2)=3 F,(2)p, , (18a)

F,(2)=S a,e" "B, (k,,) . (18b)
m

When the integral in each unit cell of the basis function

@, is performed in Eq. (17), the integral reduces to

[v*@HWY2)dz=T, [ F}*(z)D;F(2)dz , (19)
i’

where D;; is the matrix elements given in Eq. (8) ex-
pressed in the following general form:

D;;=DPk ky+8E . . (20)

8E; is the strain jj’ matrix term given in Eq. (8). To
evaluate the remaining integral on the envelope functions
in Eq. (19), k, in Eq. (20) [or in Eq. (8)] is replaced with
—id/0z. After the integration along the z direction in an
infinitesimal region near the interface, the terms which
do not have the 3/3z term all vanish. The probability
current in the z direction is then given by

zz 0

J,=2Re %};Fj*(z)z ‘D;;prﬁ—ip — |F)(2)
J i’

’

' 3z

(21)

J

8v3A(k )A(k_)k  k_[1—cos(k L,)cos(k_L,)]
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which does not include the strain terms. Another condi-
tion is given by the continuity of the wave function (18a).
When the basis function ¢, is similar across the heteroin-
terface, it reduces to the continuity of the envelope func-
tion F;(z) using the orthogonality of the basis functions.
The mismatch of the basis function across the interface
will be discussed in Sec. V. Using this condition, the con-
tinuity of Eq. (21) is satisfied by the additional continuity
condition of the terms summed over j' in the same equa-
tion. Then the boundary conditions in the present case
are given by the continuity of the following equations
across the interface:

F3/2(Z) and F1/2(z)’ (223)
"‘i('}’l—2'}’2)‘88;173/2(2)+i2‘/§’}’3ktF1/2(Z) ’ (22b)
-i2x/§y3k,F3/2(z)-i(y,+2y2)§;Fm(z) : (22¢)

The boundary conditions given in Eq. (22) give the eight
conditions at the two heterointerfaces at z==+L,/2 of a
QW. The number of the amplitude coefficients a,, to be
determined is four in the well region and two for the
respective barrier region considering that the wave func-
tions are infinitesimal at infinity z. This gives the eight
equations for the eight amplitude coefficients a,, to be
determined. By solving the resultant 8 X8 determinant,
the valence-subband structure is numerically obtained.

III. ANALYTICAL EXPRESSION
FOR A BAND-EDGE HOLE MASS

The above equations can be solved only with a numeri-
cal method. When an infinite barrier is assumed, an
analytical expression for the effective mass at the zone
center can be derived as shown in the following. The
boundary conditions at the heterointerface in this case
are simply given by

Fy,(£L,/2)=0 and F,,(*L,/2)=0. (23)

Then the above 8X8 determinant resulting from the
boundary conditions (22) is reduced to the 4X4 deter-
minant from which the following equation is derived:

={n*[Ay(k;)—A(k _)Pk2+4y3 ANk k2 + ANk _)k% 1)sin(k, L,)sin(k_L,), (24)

where
Ak )=G(ky)—Ey+Ey;—E . (25)

The following equation is also obtained from Eq. (14) in
the well region:

[
E?—(F+G—2EyL)E
+(F—Ey—Ey)G—Ey+Ey)—|K|>=0. (26)

Substitution of k, =0 in Egs. (24) and (26) yields



14 102

kiLz|kt:0:n:§:7T, ni=1,2,..., (27)

where k. and k _ are the solutions of k, obtained from
Eq. (26) for a given energy value E. Taking the first
derivatives of Egs. (24) and (26) with respect to k,, the
following relation is obtained by using Eq. (27):
ok 4
ok,

=0. (28)
k,=0

The hole mass at the zone center, which is defined by
J’E
ok 2

my, = —#

-1
] , 29)
k,=0

is obtained by taking the second derivatives of Egs. (24)
and (26) with respect to k, and by using the relations (27)
and (28). The derived final expression for the hole mass is
the following:

m, 37/3
. =y 7’2“—8—"—
my Y2+0vat
2
3y, T2yt 4y, )] | —
Y1 Y2 YaF ’}/2“'8’}/”;
(—1)"F " tcos(kLL,) 300
(koL )sin(kiL,) ° a
where
kyL,={[y,FQ2y,+48y,:)1/ (v, £2y )} A ngm)
(30b)
_ # | 2n.m
Syai_zEu/ 2m0 Lz (30(:)

In this equation, the upper sign corresponds to the HH
subband and the lower sign corresponds to the LH sub-
band. As is clearly seen in Eq. (30), the derived hole mass
is independent of the crystalline direction in the (001)
QW plane and is isotropic even if the band warping is
taken into account. Without strain, Eq. (30) is reduced

= + —_—
my Y1772
V3 2
+3('}/1—2'}’2) -
Y2
(—1)" '+cos(k, L,) e
(k. L,)sin(k,L,) ° 2
k+Lz=[(7/1—272)/(71+27/2)]1/2(n~77-) (31b)

for the HH subband hole mass. When the isotropy is as-
sumed such that y,=v;, Eq. (31a) is simplified further
and is reduced to the expression derived by Fasolino and
Altarelli:'
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(—1)n7+1+cos(k+Lz)
(k,L,)sin(k  L,)

Mo _1—( 2v,) |1+3
me = Y2

(32)

The above expressions give the hole mass modified
from the bulk mass values. This is interpreted from the
following simple model. When the bulk hole mass is
given by m ¥, the hole kinetic energy is given by

,ﬁZ

m

E=—— U +k]) . (33)

*

The corresponding hole mass defined by Eq. (29) is given
by

P 9k,
k,—
k2

(34)

k,=0

Equation (28) indicates that the second term in Eq. (34) is
zero. The third term, on the other hand, is finite even for
the infinite barrier, since the boundary conditions in Eq.
(23) are satisfied by the superposed envelope functions
given by Eq. (18b), and the k, value defined by Eq. (27) at
the zone center is allowed to be changed for the finite k,
value. The direct correspondence of Eq. (34) to Eq. (32)
will be evident.

IV. NUMERICAL RESULTS

The band-edge hole mass in a strained QW is evaluated
in this section. Numerical calculations were performed
on an In,Ga,_,As alloy, which was studied extensively
recently for strained-QW lasers. The material parameters
used for the calculations are listed in Tables I and II.

First, the hole mass at the zone center was evaluated
with the analytical expression given in Eq. (30). A 100-A
In,Ga;_,As QW with the Ing 5,Al, 43As barrier lattice
matched to InP was assumed. The results are shown in
Fig. 1 by the solid line indicated as the analytical model
with strain. The In,Ga,;_,As QW is lattice matched to
InP with the x value of 0.53 and is under in-plane
compression for the larger x value. The in-plane
compressive strain is 0.82% for x =0.65 and is increased
to 3.14% for x =1.0. For the purpose of illustrating the
strain effect on the mass value, the mass value was calcu-
lated without strain by the analytical expression in Eq.
(31). A comparison of the two analytical models indi-
cates that the in-plane compression slightly reduces the
mass value.

TABLE 1. Energy gap (E,), spin-orbit split-off energy (A),
hydrostatic (a) and shear (b) deformation potentials are in eV,
and elastic constants Cy; and C}, are in 10'! dyn/cm?.

Eg A a b C” CIZ
GaAs 1.424 0.34 —8.9¢ —1.73 11.88 5.38
InAs 0.356 0.38 —6.0° —1.2 8.33 4.53

2Reference 17.
YReference 18.
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TABLE II. Luttinger mass parameters and lattice constants.

Lattice
Y1 Y2 Y3 constants (A)
GaAs 6.85° 2.10 2.90 5.6537
InAs 19.67° 8.37 9.29 6.058
AlAs 4.04° 0.78 1.57 5.6611

#Reference 19.
"Reference 20.

As described in the preceding section, the analytical
expressions for the band-edge hole mass were derived as-
suming the infinite-barrier height and this assumption
usually gives the larger subband energy. For the purpose
of studying the effect of the finite-barrier height on the
band structure as well as on the band-edge hole mass, the
results calculated with the assumption of the infinite-
barrier height will be compared with those calculated by
taking into account the boundary conditions correctly at
the heterointerface. Therefore the effective well width?!
was used in the analytical model so that the subband en-
ergy calculated with the assumption of the infinite-barrier
height would give the same energy level as the one calcu-
lated considering the finite-barrier height. Since accurate
data on the band offset are not available at present in this
strained system, the valence-band offset was tentatively
assumed to be 40% of AE,, which is the same as that for
the GaAs/Al, Ga,_, As system.?? Then the effective well
width calculated for the lowest valence subband of the
100-A In,Ga;_,As QW shown in Fig. 1 is 111.8 A for
x=0.65 and is slightly reduced to 110.4 A for x =1.0.
The mass values estimated with the analytical models
shown in Fig. 1 were calculated with these effective well
widths. In the absence of the strain, the mass value is in-
dependent of the well width, as is clearly seen in Eq. (31).
Even with the presence of strain, the modification of the

0.10 '"xGa1.xAs(1°°A)/'"o.52A'o.4eAs

z 0.08 + / on InP
I

E 0.06 \

23 \

¢ 0.04f

i 0.02 1 (Strain) (No strain)

o Analytical Model

* 0

00 " . n n L .
65 70 75 80 85 90 95 100
In Mole Fraction x (at. %)

FIG. 1. The band-edge hole mass estimated for a 100-A
In, Ga,_, As QW with the In, 5,Alj 43As barrier lattice matched
to InP. The upper curve was obtained from the band structure
near the zone center calculated numerically with the correct
treatment of the boundary conditions following the procedure
described in Sec. II. The analytical models with and without
strain were calculated with the analytical expression in Egs. (30)
and°(31), respectively. The effective well width, which is about
10 A larger than the actual well width, was used in these analyt-
ical models.
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mass value with the introduction of the effective well
width in Eq. (30) is less than 1% in comparison to the
value calculated with the actual well width.

The mass values calculated with the above analytical
models were compared with the one calculated numeri-
cally by taking the boundary conditions into account at
the heterointerface following the method described in
Sec. II (the latter will hereafter be called the ‘“finite-
barrier model”). The finite-barrier model, shown as the
upper solid line in Fig. 1, has a slightly larger hole mass
than the analytical models due to the field penetration
into the barrier region. The tendency for the larger
difference between the finite-barrier model and the
analytical models for the smaller In mole fraction in Fig.
1 is due to the reduction of the valence-band offset.

The effect of the finite-barrier height on the whole
valence-subband structure is shown in Fig. 2. A 50-A
Ing ¢Gay ;As QW with the Ing 5,Aly 43As barrier lattice
matched to InP, where the QW is under 2.6% biaxial
compression, was assumed in this case. The valence-band
offset was also assumed to be 40% of the AE,. The solid
line is the band structure calculated by taking the finite-
barrier height into account at the heterointerface. The
dashed line is the band structure calculated assuming the
infinite-barrier height where the effective well width of
60.5 A was used to give the same subband energies as
those calculated with the finite-barrier model. The
difference between the two curves indicates the increase
of the band-edge hole mass shown in Fig. 1 as well as the
increase of the subband nonparabolicity in the higher-
energy region due to the penetration of the wave func-
tions into the barrier region.

Figure 3 shows the calculated well-width dependence
of the band-edge hole mass for an InAs/Ing 5,Alj 45As
QW to illustrate the influence of the field penetration into
the barrier region. It will be clear from Fig. 3 that the
analytical model predicts a weak well-width dependence
of the mass value, the change of which is within 4% in
the range of the well width shown in Fig. 3. The effective

=3 0 Tng 9Gag 1 As(50A1/1ng 52AT0 4gAS

é 30 (2.6% biaxial compression)

= - L

g

g -60

i

2 -9

&

lve]

o -120 ZTHH2 S\ \

7] s / \ N\

& -150 L e —

E -0.10 -0.06 -0.02 0.02 0.06 0.10
[110] [100]

Wave Number k;; (unitsof 27/ag)

FIG. 2. Comparison of the subband structures calculated by
taking the finite-barrier height into account (solid line) and with
the infinite-barrier approximation (dashed line). A 50-A
Ing 9Gay ;As QW under 2.6% biaxial compression was assumed.
The effective well width of 60.5 A was used in the infinite-
barrier model.
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0.07

€ 005

§ 0.04 Analytical Model

= 003

§ 0.02|
0.01 '[1001 and [110} |nAs/|n0_52Alo'48As
%% 60 90 120

Well Width L, (A)

FIG. 3. Well-width dependence of the hole mass at the top of
the valence band evaluated with the finite-barrier model and
with the analytical model given by Eq. (30). The hole masses es-
timated with the finite-barrier model using the subband disper-
sions in the [100] and [110] directions are indistinguishable due
to the isotropy of the mass values at the band edge as indicated
by Eq. (30). The hole mass estimated with the finite-barrier
model increases for the smaller well width due to the penetra-
tion of the wave function into the barrier region.

well width used in the calculation of the analytical model
is about 10 A larger than the actual well width given in
Fig. 3, but this effect is small. In the finite-barrier model,
where the boundary conditions at the heterointerface
were correctly taken into account, the hole mass was
evaluated using the subband dispersion curves numerical-
ly calculated in the [100] and [110] directions. But the
orientation dependence of the estimated hole mass is in-
distinguishable in Fig. 3. This isotropic property of the
band-edge hole mass numerically evaluated with the
finite-barrier model is consistent with the isotropy pre-
dicted by the analytical model given in Eq. (30). The ab-
solute mass value, however, is considerably increased for
the smaller well width due to the penetration of the wave
function into the barrier region. Therefore the applica-
tion of the analytical expression (30) to estimate the hole
mass at the top of the valence band is a reasonable ap-
proximation for a relatively wide well width.

There have been several reports on the measurements
of the hole mass in strained-QW structures. They are
mostly on In,Ga,_, As/GaAs structures. The measured
mass values are shown in Fig. 4.2%2* The upper solid
curve was calculated with the finite-barrier model on a
90-A In,Ga,_,As QW taking into account the boundary
conditions at the heterointerfaces. The band offset in this
material system is still controversial and the valence-band
offset for the In mole fraction below 20% changes from
20% to 60% of the AE,.** For the In mole fraction of
20~40 %, on the other hand, the valence-band offset of
20% seems to be reliable?> and this band offset was as-
sumed in Fig. 4. The in-plane compressive strain in the
In,Ga;_,As QW ranges from 1.06% for x=0.15 to
2.44% for x=0.35. The analytical models with and
without strain were calculated with Egs. (30) and (31), re-
spectively, using the effective well width ranging from
129.3 A for x=0.15 to 116.3 A for x =0.35. The agree-
ment between the theory and the measurements is not
necessarily satisfactory at present, but at least the
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0.16
In Ga, As(90A)/GaAs
I x 1-x
T L
£ 0.12
& 0.08
=
Q L (Strain) (No “strain)
£ 0.04 Analytical Model
0.00

10 15 20 25 30 35 40
In Mole Fraction x (at. %)

FIG. 4. Comparison of the measured hole masses with the
theoretical calculations. The solid squares and triangle are the
measured hole mass values in Refs. 23 and 24, respectively. The
upper solid curve was calculated for a 90-A In,Ga,_,As QW
considering the boundary conditions with the GaAs barriers.
The analytical models with and without strain were calculated
from Egs. (30) and (31), respectively.

significant reduction of the hole mass will be evident
theoretically and experimentally compared with the bulk
HH mass ranging from 0.446 to 0.434 for the In mole
fraction shown in Fig. 4.

V. DISCUSSIONS

On the treatment of the strain Hamiltonian given in
Eq. (6), the coupling of the LH and SO bands by the ma-
trix element of V'2E, was indicated. E is the shear
deformation-potential term given in Eq. (7b), which is
proportional to the in-plane strain €. Therefore this
term will become larger for the larger strain. The contri-
bution of this term was examined by the strain depen-
dence of the bulk band edge at the zone center. At k,=0,
the 8 X 8 Hamiltonian including the strain terms reduces
to the doubly degenerate 4 X4 matrix. The C band in this
matrix is decoupled and the following equations for the
valence bands result from the eigenequation:!?

E=—E —E,,
E=—Ey—1[(A—Ey)F(9E}+2E,A+ A7),

(35a)
(35b)

where A is the spin-orbit split-off energy. The energy was
measured from the valence-band top at zero strain.
Equation (35a) corresponds to the HH band. The upper
and lower signs in Eq. (35b) correspond to the LH and
SO bands, respectively. For A>>E, the equation for
the LH band reduces to

E=—E,+Ey, , (36)

which corresponds to the diagonal term in Eq. (8) for
k =0. The solid lines in Fig. 5 are the strain dependence
of the valence-band edges calculated from Egs. (35) for
InAs. 0.38 eV was used for the A value. The dashed line
is the strain dependence of the LH band calculated with
the approximation of Eq. (36). The difference between
the two curves for the LH band is the indication of the
coupling of the LH-SO band and is very small up to 1%
of the strain. For the larger strain, the LH subband will
be modified to some extent by this coupling effect. How-
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FIG. 5. Strain dependence of the bulk valence-band edges
calculated with the LH-SO band coupling (solid lines) and
without the coupling (dashed lines for LH and SO bands) in
InAs.

ever, the HH1 subband, which gives the valence-band
edge under the in-plane compression, is not much
influenced by this effect near the zone center. The HH1
subband near the zone center is the pure HH band and
the band-edge hole mass derived in Sec. III will not be
modified by this coupling even for the larger strain.
However, the subband nonparabolicity for the larger k,
value, where the band mixing is significant, will be more
affected due to the LH band mixing. Similar examination
was performed on GaAs. The influence of this coupling
term was similar to that in InAs, and a similar argument
is applicable for an In,Ga,_, As alloy.

In the treatment of the boundary conditions in Sec. II,
the continuity of the envelope functions given in Eq. (22a)
was derived by assuming the common basis function
across the heterointerface. Eppenga, Schuurmans, and
Colak’ discussed the mismatch effect of the basis func-
tions in detail. They compared the effective-mass theory
similar to the present method with the nearest-neighbor
tight-binding approach by calculating the subband ener-
gies and the subband structures of a GaAs/Al Ga,;_,As
QW. They indicated close agreement of the two
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methods, and a small mismatch of the basis functions, at
least in the case of the GaAs/Al,Ga,;_, As system. As
for the other material systems treated in this paper, a
similar detailed discussion is not available at present. But
as long as the characteristics calculated with the finite-
barrier model are close to the infinite-barrier model, the
description of the subband structure near the zone center
will remain valid quantitatively.

An analytical expression for a band-edge hole mass was
previously derived for a uniaxial stress parallel to [100] in
the (001) QW plane.?® The resultant equation is similar
to Eq. (30) but slightly different. The indication of Eq.
(30) in the present paper is that the hole mass at the zone
center is isotropic even if the warping of the valence band
is taken into account. This isotropy of the band-edge
hole mass and the reduced subband nonparabolicity in
the strained-QW structures relative to the lattice-
matched QW’s were reflected as significant improvements
in the calculated laser properties.*

V1. SUMMARY

The analytical expression was derived for the hole mass
at the top of the valence band and this indicated that the
mass value is isotropic even if the warping of the valence
band and the biaxial stress are taken into account. This
was also confirmed by the numerical calculations follow-
ing the procedure given in Sec. II, where the boundary
conditions at the heterointerface are correctly taken into
account. Under the in-plane compressive stress in the
(001) QW plane, the valence-band edge is given by the
band designated by |J,m; ) =|3,+2), which corresponds
to the bulk HH band, and the estimated mass values
showed weak strain dependence. The effect of the finite-
barrier height on the mass value was also discussed.

The calculated hole masses were close to the mass
values measured in strained QW’s. Although the quanti-
tative agreement was not necessarily satisfactory at
present, the significant reduction of the hole mass com-
pared with the bulk mass was demonstrated theoretically
and experimentally.
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