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We present a nonlocal theory of collective excitations in quantum-dot arrays. Selection rules, os-
cillator strengths, and Coulomb interactions inside a dot and between dots are discussed. The col-
lective excitation energy is found to “saturate” for n, (the number of electrons per dot) greater than
3. The depolarization energy shift in a quantum-dot array is found to be predominantly due to in-
terdot coupling. We explain qualitatively the multiple branches and anticrossings recently observed
in far-infrared experiments. We predict that anticrossings can occur only if ng>2. If ny <2, there
should be only one branch with positive B dispersion, and one branch with negative B dispersion,
where B represents a perpendicular magnetic field. Multiple branches with positive (negative) B
dispersions occur for larger ny. The use of left (right) -circularly-polarized light should result in sig-
nals predominantly from positive (negative) B dispersion branches, while signals from the opposite
polarization branches should provide information on the coupling between positive and negative B

dispersion branches.

I. INTRODUCTION

Quantum dots are structures that confine electrons in
all three spatial dimensions. They are typically a few
hundred nanometers long or wide and a few nanometers
thick. In such small structures electron states are quan-
tized into discrete energy levels, with energy spacings be-
tween levels ranging from a few meV to ten times more.
Contrary to what one might think, quantum-dot systems
are far from simple. Experiments on them have revealed
numerous surprises. An example is the recent discovery
of multiple branches of excitations and anticrossings be-
tween branches in far-infrared (FIR) experiments on
quantum-dot systems in a magnetic field.>? These supris-
ing results have provided incentives for theorists to seek a
thorough understanding of these phenomena.

The capability of fabricating quantum dots is fairly re-
cent, but it has already created a dynamic field of study.
Experiments on quantum-dot systems can be roughly
grouped into two categories: transport experiments and
optical experiments. In transport experiments, it is possi-
ble to study a single quantum dot, or a few quantum dots
in various configurations. In optical (FIR) experiments,
macroscopic samples are used in order to obtain detect-
able signal strength. A typical sample several millimeters
long and wide can contain tens of millions of quantum
dots. Due to the presence of the long-range Coulomb
force, in such systems the quantum dots are Coulomb
coupled, making these systems exhibit richer properties
than isolated quantum dots. A single quantum dot con-
taining only one electron can only have single-particle ex-
citations, but an array of such dots can also support col-
lective modes. The existence of collective excitations in
such systems was predicted by Que and Kirczenow® in
1988, before any optical (FIR) experiments on quantum-
dot systems were attempted. Since then several FIR ex-
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periments on quantum-dot systems have been carried
out.24~% Although quantative comparisons to some of
the key results are yet to be made, qualitatively the re-
sults are in agreement with the collective excitation pic-
ture, as we will show in this paper.

Reference 3 developed the basic formalism for the
theoretical study of collective excitations in quantum-dot
arrays. It considered a rectangular lattice of quantum
dots in the absence of magnetic field. It showed that col-
lective excitations should exist in quantum-dot systems,
with energies shifted significantly from single-particle ex-
citation energies. It also showed that a system with a
dispersionless single-particle energy spectrum can have a
dispersive collective energy spectrum, and that a degen-
eracy in the single-particle spectrum can be lifted in the
collective spectrum. In this paper we extend this work to
more general two-dimensional (2D) lattices of quantum
dots, and include the effects of a magnetic field B. A
magnetic field applied in the z direction couples the x and
y degrees of freedom, changing the single-particle energy
spectrum as well as the collective excitation spectrum.
As we will show, many interesting effects occur in a mag-
netic field. Reference 3 is a special case of the more gen-
eral theory presented in this paper. It can be recovered
by taking B =0.

In Sec. IT we establish the general formalism. Section
III is devoted to model calculations, assuming parabolic
confinement. The parabolic confinement model has been
used by many experimentalists to analyze their data. We
will discuss selection rules, multiple branches, anticross-
ings, effects of level crossings in single-particle energy
spectra, and the Coulomb interaction between dots versus
inside dots. Many of the qualitative results are not limit-
ed to the parabolic confinement model. Section IV
discusses the nonlocal aspect of the theory. Section V
discusses oscillator strengths for optical excitations.
Concluding remarks are presented in Sec. VI.
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II. FORMALISM

We consider a system of quantum dots which form a
two dimensional lattice. A magnetic field B is applied
perpendicular to the 2D plane. Since the quantum dots
made today are much more confined in the vertical z
direction than in the lateral directions, we only need to
consider the lowest-energy level in the z direction. For
many systems that have been studied, the individual
quantum dots are physically separated, allowing little
possibility for electrons to tunnel between dots. For such
systems we can use the tight-binding ansatz,’

k-t —ile/A)A-r;
ka)=g Fe" Tyr—re Y,
T,

J

2.1

where &, is the wave function for the lowest-energy level
in the z direction, k is a 2D wave vector, r is a 2D vector,
r; is a 2D lattice vector, ¢, is the xy component of the
wave function for a single quantum dot, a is a composite
quantum number, and A is the vector potential for the
magnetic field.

Collective excitations are studied using the self-
consistent-field formalism of Ehrenreich and Cohen.®
Starting from the integral form of the Poisson equation,
we take Fourier transforms in x and y directions and get

_ 2mre? ' —glz—2'] ,
V(q,z) Tea Jdze n(q,z'), 2.2)
where q is a 2D wave vector, ¢ =|q|, and € is the back-
ground dielectric constant €, multiplied by 4me,. The

(a'le’fla)=3 eik'rf_ik"rf'fdx Jdye
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In (2.7) we have direct terms when r;=r;, and overlap
terms when r;7r;. For systems with no tunneling be-
tween quantum dots, such as those studied in the FIR ex-
periments of Ref. 2, the overlap terms vanish. For such

systems we get

(a'|eiq'r|a)=5k:;k4q,GAaa'(q) s (2-8)

Aag()= [ dx [ dy e "yrIg(r) . 2.9)

The neglect of overlap terms might be still valid for sys-
tems with weak tunneling.” The & function in (2.8) indi-
cates that the wave vector is conserved within a recipro-
cal lattice vector G due to the periodicity of the system.
With (2.8) and (2.9), Eq. (2.6) becomes

i(e /i) A-rj,v A~rj)+iq-r
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density response of the system to a Coulomb perturbation
is given by

n(q,2)=2l&, > 3 (alV(r,z)la"){a’|e'"|a)
a,a’
fa— T
Xttt (2.3)
E,—E,+%w

where a is a composite quantum number, and f, is the
Fermi distribution function. Combining (2.2) and (2.3)

and integrating out the z degree of freedom gives

2
Viq)= 4:; I(g) 3 (alV(r,2)la"){a’le'9"|a)
fa’_fa
Xm , (2.4)
where V(q)=fdz V(q,2)|€, %€,/ and
I(@)= [dz [dz'e 9=l 2¢, | . 2.5)

Since (a|V(r,z)la’)= 3, V(q){ale "9"|a’), (2.4) can
be written as
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Using Eq. (2.1) we find
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It is understood that the quantum number a’'=(k+q,f).
It is convenient to define

fa'_fa
I (qo)=3 —“2
a( %) % E,—E, +#w

(2.11)
Note that if there is no tunneling between quantum dots,
I1,5 becomes independent of q.

To solve (2.10), we define

Go5(@)=3 V(q+G)A%5(q+G) . (2.12)
G
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G ,p(q) is periodic, G,5(q+G)=G 5(q). Sois 1 4(q,w).
Using (2.12), replacing q by q+G in (2.10) gives

V(q+G)=——"71(lq+G]|)

| +G|
X ZGUB q)A
a,B

Now we multiply (2.13) by 4%(q+G) and then sum
over G. The result is a set of homogeneous linear equa-
tions for G ,45(q):

A +GI4qe) . (2.13)
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X A,5(q+G) 4qo) . (2.14)

In (2.14) a and B appear in pairs, describing transitions
from the ath level to the Bth level. From the definition of
A in (2.9), it is obvious that the order of a and 8 cannot
be interchanged unless wave functions of the system are
real. Let us use i to denote the af3 pair, and j to denote
the a'f’ pair. With this notation (2.14) appears less com-
plicated,

G;(q)= I(lq+G|)

ZG(q II; (q,a))z—'TéT

A(q+G)4,(q+G) .

(2.15)
The coefficients of G;(q) in (2.15) form a matrix with ele-
ments

——=71(lq+G|)4}(q+G)

Cj=i(qa) X —
i 2 +G|

C,; is neither a symmetric nor a Hermitian matrix. In or-
der for (2.15) to have nontrivial solutions, namely, for the
system to sustain self-supporting eigenmodes, the fre-
quency o must be such that the determinant of the ma-
trix (2.16) vanishes. This condition determines the exci-
tation energies of collective modes in the system.

Our method for deriving Eq. (2.14) has been used be-
fore in the study of plasmons in multilayer semiconductor
superlattices.” Reference 9 showed that it is equivalent to
a different method by Das Sarma and Quinn,10 because
the two methods produced identical results. Our method
has also been applied to quantum-wire superlattices.'!
The resultant equation is identical to the equation de-
rived by Li and Das Sarma using a different method:!?

The general formalism in this section applies to any 2D
lattice of nontunneling quantum dots, with or without a
magnetic field, at zero or finite temperatures. Collective
excitation energies can be calculated provided that
single-particle energy levels and wave functions are
known.

III. PARABOLIC CONFINEMENT

So far we have not specified any details of individual
quantum dots. Self-consistent numerical results for a
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particular sample'® show that even if the defining cap lay-
er is square shaped, the confining potential seen by elec-
trons in a quantum dot has nearly circular symmetry.
The energy levels are found to be insensitive to the
charge in the dot at a fixed gate voltage, and the evolu-
tion of energy levels with increasing magnetic field is
similar to that for a parabolic potential. These results
make the parabolic confining potential model very ap-
pealing. In the presence of a magnetic field, this model
potential offers exact analytic information on the single-
particle energy states. The parabolic confining potential
model has been widely used by experimentalists for inter-
preting their data. We devote this section to study this
model.

We assume that the confining potential in a single
quantum dot is parabolic: U (r)=1m*wjr?, where m* is
the effective mass. In the presence of a magnetic field in
the z direction, the single-particle Hamiltonian is

H=—(P+eAP+U(). (3.1

m

In the symmetric gauge A=(—1By,1Bx). The energy
levels of this Hamiltonian are given by'*

E,,=(2n +|m|+l)ﬁﬂ+%ﬁwc, (3.2)
where Q= (0j++w?)!?, w_ is the cyclotron frequency, m
is the angular quantum number, m =0,11,+2 ., and
n is the radial quantum number, » =0,1,2,... . The
wave functions are given by
172
1 me’Ilml(pZ)e —p?/2 ,

o = . 2m*Qn!
nm ‘/ZT

#(|m|+n)

img

(3.3)

where p=r(m*Q/#)'/2, and L)" are associated
Laguerre polymonials.

Figure 1 shows the energy spectrum (3.2). At high
magnetic fields, magnetic confinement dominates over
static confinement, and electron states group into
quasidegenerate Landau levels. At zero magnetic field,
static confinement determines the level structure to be
that of a 2D harmonic oscillator. In between the two
limits, energy level crossings appear. Note that if wy,=0,
the energy levels would be simply Landau levels and no
level crossings would occur. Therefore the level crossings

are a quantum confinement effect.

A. Selection rules

The energy spectrum in Fig. 1 looks complicated. If
there were no selection rules, there could be many possi-
ble excitations between levels. However, selection rules
greatly narrow down the possible kinds of excitations. In
optical experiments, the leading component in the outgo-
ing signal usually comes from the dipole term {a’|r|a ).
Selection rules are determined by conditions under which
the matrix element {a’|rla) does not vanish. Using the
tight-binding approximation (2.1) for a quantum-dot ar-
ray, and neglecting overlap terms we get
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FIG. 1. Magnetic field dependence of the energy levels described by (3.2). The levels are labeled by (n,m) values. Confinement en-

ergy #iw,=7.5 meV, m*=0.014m,.

(a'ltla) =8y _y 6 [ dx [ dy Yi(ry,(r) . (3.4)

The integral in (3.4) is the matrix element for a single
quantum dot, {a’|rla). Thus for quantum-dot arrays
with negligible tunneling, the selection rules are the same
as those for a single quantum dot. Any violation is only

172
’ ’ . f— ﬁ
{(n'm'|xtiy|lnm )= 0 o p—
— |n+
and
s |7
(n'm'|xxiy|lnm )= a0 8, 41
X(Vn+18,,—Vn 8, , 1),
m=0. (3.6)

The 6 functions in (3.5) and (3.6) give the selection rules
An =0,+1, and Am ==1. Namely, the radial quantum
number n cannot change by more than one, and the angu-
lar number m can only change by one. The single-
particle energy for transitions obeying the selection rules
can take only two values:

1/2
ntm lisgzn(m) J 5

1 Fsgn(m)

of the order of the overlap integral between nearest-
neighbor quantum dots. A similar conclusion should also
apply to quantum-wire arrays.'>!!

Since the magnetic field couples the x and y degrees of
freedom, it is better to consider {a’|x *tiy|a) instead of
(a'|x|a) and {a’'|yla) separately. Using the wave func-
tions (3.3), we find

n',n

172
(3.5)

8n’,n + sgn(m) ]’ m7#0 4

AE. =0+ o, =Hod+402) 4 o, , (3.7)

where the + (—) sign corresponds to left (right) circular
polarization.

The selection rules and (3.7) have very important
consequences. In a somewhat simplistic picture, collec-
tive excitations in quantum dots may be understood as a
result of Coulomb coupling between single-particle exci-
tations, with energies given by the single-particle energies
(3.7) plus a “depolarization shift” due to Coulomb cou-
pling. The magnetic field dependence of the collective ex-
citation energy is largely influenced by AE,. Note that
AE | increases with magnetic field B, approaching #w, in
the high field limit, while AE_ decreases with B. De-
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pending on where the Fermi level is or how many elec-
trons each quantum dot contains, the system can have
many selection-rule-obeying single-particle excitations
with different initial and final states, but they are laregly
degenerate, having only two distinct energies AE..
However, the matrix elements for Coulomb interaction
(alV]a') are generally different for different |a) and
la’), causing the degeneracy to be broken in the collec-
tive energy spectrum. This means that, in the parabolic
confinement model, while single-particle excitations have
only one positive B dispersion branch AE, and one neg-
ative B dispersion branch AE _, collective excitations can
have multiple branches of each type. Indeed multiple
branches have been observed experimentally.? The ex-
istence of multiple branches is more obvious if the
confinement is nonparabolic. In that case one finds that
multiple branches already exist in the single-particle
spectrum. Clearly the existence of multiple branches
originates from the fact that there can be several excita-
tions obeying the selection rules. Therefore in essence it
is not a collective phenomenon.

n'n'l i

(Im|+nm)(|m’|+n')

m')@,

itm—
A 5(q)=2e

X fo""dpp*'"‘+"""+‘L,L""(p2)L,1¢"" (p2)e P, _

where @,=arctan(gq, /q, ), provided ¢70. If ¢ =0, 4,4
is simply the orthonormal product {B|a), giving zero or
one depending on whether « is different from S or not.

The confinement in the z direction can be achieved by
sandwiching materials.!® For such quantum dots the z
degree of freedom can be described by “particle in a box”
wave functions, and we can use

172

. mZ
Sin
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(3.10)

for the z component wave function, with z, the thickness
of the layer in which electrons are confined. This wave
function and the definition of I (q) in (2.5) gives

(qzo )2

2
2[47r2-|-(qzo)2]

I(gq)=
7 9zo

_@mfi—e ™)
qzo[47r2+(qzo)2]2

(3.11)

In our calculations spin splitting is neglected, since we
are interested in relatively low magnetic fields where spin
splitting is not significant. We leave the effects of spin
splitting at higher magnetic fields to future research.
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Since optical (FIR) wavelengths are orders of magni-
tude larger than typical quantum-dot sizes, the dipole
selection rules govern the optical excitations very precise-
ly. Therefore for theoretical calculations it is not neces-
sary to consider excitations forbidden by the dipole selec-
tion rules. This statement may not apply to systems with
tunneling, in which the selection rules for a single dot can
be violated due to large wave-function overlaps between
quantum dots.

B. Model calculations

For parabolic confinement in x and y directions, the
quantity A4 ,5(q) can be calculated straightforwardly us-
ing the definition (2.9) and wave functions (3.3). Making
use of the expansion

e ix COSQ — i

n=-—oo

i"J,(x)e™®, (3.8)

where J, are Bessel functions of the first kind, we find
that for a=(n,m) and B=(n',m’),

(—iym—m

wpg (F/m*Q)?) (3.9)

The size of the matrix equation given by (2.14) is given
by the number of interlevel transitions under considera-
tion. Although we are only interested in excitations al-
lowed by the dipole selection rules because they are the
experimentally observable ones, in principle they can
couple to excitations characterized by higher-order selec-
tion rules. This means that the corresponding off-
diagonal matrix elements are nonzero, and our matrix
equation has a dimension approaching infinity in the par-
abolic confinement model. In multilayer semiconductor
superlattices, the ‘“diagonal approximation,” which re-
places all off-diagonal matrix elements by zeros, has been
used and is known to be a valid approximation if only the
lowest subband is occupied.!” Recently, Que analyzed
collective excitations in quantum-wire superlattices, and
found that collective excitations characterized by
different symmetries have very small off-diagonal matrix
elements because of a cancellation effect.!®* We expect the
same cancellation effect to be present in a quantum-dot
array, because it is a symmetry effect unrelated to the
dimensionality of the system. In light of these results, in
our calculations we restricted our matrix equation to be
in the subspace of excitations allowed by the dipole selec-
tion rules. Within this subspace the matrix is treated ex-
actly.
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C. Multiple branches and anticrossings

When only the lowest-energy level is occupied, the
selection rules of (3.6) allow only two excitations, from
the state (0,0) to (0,— 1), and from (0,0) to (0,1). Figure 2
shows the B dispersions of collective modes associated
with these two transitions. The collective spectrum has
one positive B dispersion branch, associated with the
(0,0)—(0,1) transition, and one negative B dispersion
branch, associated with the (0,0)—(0,—1) transition.
At high magnetic fields there is a large energy splitting
between the two branches. As B decreases, the positive
and negative B dispersion branches approach each other.
However, in the limit B =0, these modes do not have the
same energy, a result of degeneracy breaking by Coulomb
interaction. It has been shown that in the B =0 limit the
two modes reduce to usual longitudinal and transverse
modes.®> In Fig. 2 the energy difference between the two
modes at B=0 is 0.09 meV. This small difference is
difficult to measure experimentally. However, when the
number of electrons per dot is increased to ny=4 as in
Fig. 3, the splitting between the top two modes at B =0 is
0.4 meV. This might be a measurable effect.

The number of allowed excitations increases with the
number of occupied energy levels. We see from the above
that if  only the lowest-energy level is
occupied, there are two allowed transitions. If ny=3,
one more level is occupied, we have the additional excita-
tions (0,—1)—(0,—2), and (0,—1)—(1,0), making a
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FIG. 2. B dispersions of collective excitation energies for two
electrons per dot, ny=2. The dashed lines show the single-
particle excitation energies in Eq. (3.7). The system is a square
lattice of quantum dots with lattice constant d =250 nm. Other
parameters used are fiw,=6 meV, m*=0.014m,, background
dielectric constant €,=17, zo=5 nm, g, =g, =0, temperature
T =0 K. The parameters are chosen to correspond to the InSb
sample in Ref. 4.
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total of four allowed excitations. With the breaking of
degeneracy in the collective spectrum, we obtain multiple
branches of collective modes as shown in Fig. 3(a). There
are two positive B dispersion branches; the higher-energy
branch has larger energy shifts from single-particle exci-
tation energies, and is expected to have larger oscillator
strengths.!! There are also two negative B dispersion
branches.

In Fig. 3(a) two of the branches seem to cross. Indeed
they do cross if the two modes are uncoupled. In general
coupling between branches is known to cause anticross-
ings. Deviations of the confining potential from azimu-

Energy (meV)

Energy (meV)

FIG. 3. B dispersions of collective excitation energies for (a)
ny=3; (b) ny=4. The dashed lines show single-particle excita-
tion energies in Eq. (3.7). Other parameters are the same as in
Fig. 2.
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thal symmetry or the parabolic shape can be expected to
induce coupling between branches.

For ny=4 and zero temperature, the (0,0)—(0,—1)
transition is no longer possible because both states are
fully occupied, making only three excitations possible.
This is why in Fig. 3(b) there are only three branches.
However, at finite temperatures the (0,0)—(0, —1) tran-
sition should be allowed due to partial occupation of the
states, recovering the lowest-energy branch in Fig. 3(a).
This suggests that experimental studies of the tempera-
ture dependence could be interesting.

Early experiments observed only one positive B disper-
sion branch, and some indications of a negative B disper-
sion branch.* Recently, the much more accurate FIR ex-
periments by Demel et al.? revealed clearly multiple
branches of excitations in quantum-dot arrays. As we
have shown above, both multiple branches and anticross-
ings can be explained qualitatively by our theory. How-
ever, a detailed quantitative comparison to the results in
Ref. 2 has not been possible. This is because the experi-
ments were performed for n,=25-210, while calcula-
tions for large n, values require very long computing
time, and we have only performed calculations for up to
ny==6 at finite B. Further experimental results for small-
er values of ny, would be of considerable interest. Ac-
cording to our theory, anticrossings can occur only when
ny>2. This prediction can be tested experimentally.

D. Effect of electron transfer between energy levels

As shown in Fig. 1, quantum confinement causes level
crossings in the single-particle energy spectrum. For a
fixed number of electrons, level crossings can cause elec-
trons to be transferred between energy levels as the mag-
netic field changes. Let us consider the zero temperature
case. If there are five or six electrons per dot, at B =0 the
(0,1) level is occupied and the (0,—2) level is empty. As B
increases the two levels approach each other and cross at
B =B,_, as Fig. 1 indicates. At the crossing point, elec-
trons are transferred from the (0,1) level into the (0,—2)
level, and the angular quantum number m for the top oc-
cupied level changes abruptly from m =1 to m =—2.
The sudden change in the quantum number m affects the
matrix elements for Coulomb interaction and manifests
itself in the collective spectrum. In Fig. 4(a) the solid
curves in the collective excitation spectrum at zero tem-
perature show discontinuities at B =B,. Note that only
level crossings at the Fermi level cause charge transfer
and thus anomalies in collective spectra. The discon-
tinuities are artifacts of zero temperature for which the
charge transfer occurs suddenly at the point B =B,. At
finite temperatures, charge transfer becomes a gradual
process. The dashed lines in Fig. 4 are for T=2 K. The
discontinuities are smoothed out. This is because near
B =B,_, the energies of the two energy levels can be arbi-
trarily close. If the energies measured from the chemical
potential (Fermi level) are comparable to the thermal en-
ergy kgT, both levels become partially occupied with
significant occupancy factors. As B increases across B,
the occupancy in the (0,1) level decreases continuously,
and that in the (0,—2) level increases continuously. The
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width of the region in which both levels have significant
occupancy determines the experimental difficulty to ob-
serve this electron transfer effect. The lower the tempera-
ture is, the narrower this region is and the easier to ob-
serve the effect. This effect should be easier to identify in
derivative of energy against B plots as shown in Fig. 4(b).
Peaks or valleys occur at B, in such plots.
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FIG. 4. (a) Two positive B dispersion branches for the n,=6
case. The solid lines are for zero temperature, and the dashed
lines are for T=2 K. Other parameters are the same as in Fig.
2. Singularities occurring at 0.51 T are caused by electron
transfer between energy levels. (b) Derivatives of the dashed
lines in (a). The solid (dashed) curve corresponds to the lower
(upper) dashed curve in (a).



14 086

E. Coulomb interaction between dots versus inside dots

Energies of collective excitations are shifted from
single-particle excitation energies. The shift is caused by
Coulomb interaction between electrons, which exists be-
tween electrons in different quantum dots as well as those
in the same dot. We wish to point out that our ansatz
takes into account both interdot and intradot Coulomb
interactions. This can be shown explicitly by the follow-
ing. The Coulomb interaction between electrons is treat-
ed in Eq. (2.4) by the matrix element {a|V|a’'), where V
is the Coulomb potential. After substituting |a ), |a’) by
tight-binding states of the form (2.1), we get two kinds of
terms: (a) Terms involving basis states located on
different dots, which take care of the interdot Coulomb
interaction; (b) terms involving basis states located on the
same dot, which take care of the intradot Coulomb in-
teraction.

Coulomb coupling between dots is expected to decrease
as the separation between dots becomes larger. One
might think that the depolarization shift is predominant-
ly due to the interaction of electrons in the same dot, be-
cause of the shorter distances between electrons in the
same dot thus stronger interaction compared to electrons
in different dots. However, a closer examination of this
naive view shows that one cannot arrive at a clear-cut
conclusion. We must remember that the Coulomb force
is long range, and an electron in a given dot interacts
with far more electrons in other dots than the limited
number of electrons in the same dot. In other words, in
the contribution to collective excitations, the Coulomb
interaction between dots, although weaker, has a much
larger weighting factor. Therefore from simple argu-
ments it is difficult to decide which interaction is more
important for collective excitations, and the question can
only be answered by detailed calculations.

Figure 5 shows the dependence of energy shift on d,
the lattice constant of a square lattice of quantum dots.
The energy in excess of #iwy=6 meV is due to depolariza-
tion shift. The lower curve is for one electron per dot,
thus by definition the shift is purely due to Coulomb cou-
pling between dots. All FIR experiments performed so
far on quantum-dot arrays have d less than 1000 nm.
Figure 5 indicates that the energy shift due to Coulomb
coupling between dots should be significant for d < 1000
nm.

While it is expected that in the d — oo limit, the energy
shift in the ny=1 case should approach zero, it is aston-
ishing to see in Fig. 5 that for ny=4 the energy shift also
approaches zero in this limit. In fact, Eq. (3.9) implies
that for ¢ =0, the energy shift approaches zero in the
d — oo limit for any n,. Mathematically this is because
the Bessel function in Eq. (3.9), J,, _,,(pq(#i/m*Q)!"?),
is zero if the argument is zero and m%m’'. (m =m' is
not allowed by the selection rules.) In the d — o limit the
lattice constant for the reciprocal lattice 27 /d —0. Thus
for ¢ =0 the Bessel function is always evaluated at zero,
giving no energy shift.

Since the self-consistent-field formalism and the tight-
binding ansatz we used are not exact methods, this is not
an exact result. The physical implication of this result is
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FIG. 5. Collective excitation energy as a function of distance.
d is the center to center distance between neighboring dots in a
square lattice array. Lower curve: n,=1; upper curve: n,=4.
B =0 T. Other parameters are the same as in Fig. 2. Since
fiwy=6 meV, the energy in excess of 6 meV is the depolarization
shift.

that for ¢ =0, the intradot Coulomb interaction causes
negligible energy shift. In fact, for ¢ =0 it can be proven
exactly that for a single quantum dot with a parabolic
external confining potential, the interaction between elec-
trons in the dot does not cause any energy shift in optical
excitations.!® Our result is consistent with this so-called
“generalized Kohn’s theorem.”

For g0, the intradot Coulomb interaction does con-
tribute to the energy shift in our calculations. In Sec. IV
we will show that the energy dispersion of collective ener-
gy is generally small, typically less than 0.1 meV. Thus in
the ¢70 case for d <1000 nm the energy shift is mainly
due to the Coulomb coupling between dots.

The above results show that the intradot Coulomb in-
teraction is relatively unimportant for optical excitations.
We are not the first to arrive at this conclusion. The gen-
eralized Kohn’s theorem provided the first convincing
evidence for this conclusion. This highlights the impor-
tance of interdot coupling in quantum-dot arrays.

F. Saturation behavior

Figure 6 shows the dependence of collective energy on
the number of electrons per dot. The horizontal lines
show single-particle excitation energies in Eq. (3.7). Up
to ny=3, the collective energy increases by significant
amounts, but beyond that point the energy increases very
slowly. This saturation behavior is a unique property of
quantum-dot systems. It can be most easily understood
by considering the B =0, zero-temperature case for a sys-
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tem with no degeneracy other than the spin degeneracy.
In this case selection rules for dipole transitions require
that excitations occur only between neighboring energy
levels. Suppose the system has at least four levels. For
no=1 or 2, electrons can be excited from the populated
first level to the empty second level. For n,=3, the
second level is only half filled, electrons in the first level
can still be excited to the second level. In addition the
electron in the second level can be excited to the third
level. Thus up to ny=3, all electrons can be activated,
and the collective excitation energy in a quantum-dot ar-
ray increases. However, if ny=4, electrons in the first
level can no longer be excited, because the second level is
full, and excitations to higher levels from the first level
are forbidden by the selection rules. Only electrons in the
second level contribute to collective excitations. In this
system the number of electrons participating in collective
excitations cannot exceed three per dot. As n, increases
and more levels are filled, only electrons in one or two
levels at or near the Fermi level can be activated; elec-
trons in lower-energy levels are inactive. This causes sat-
uration in the collective spectrum. For degenerate states
as in the parabolic confining potential model, each state
in a degenerate multiplet has its unique symmetry prop-
erties, and selection rules only allow certain symmetry
states to accept excitations from a given lower level. The
number of electrons that can participate in excitations is
still limited. A finite magnetic field makes the situation
more complicated, but as shown in Fig. 6 the saturation
behavior remains.

The saturation behavior in quantum-dot systems is a
contrast to quantum-wire systems. In quantum wires, all
energy subbands below the Fermi level are only partially
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FIG. 6. Collective excitation energy as a function of n,.
B =0T for the lower curve, and 2 T for the upper curve. Other
parameters are the same as in Fig. 2. The solid lines indicate
the single-particle energies in Eq. (3.7).
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occupied, a result of the free motion in the direction of a
wire. Excitations from all populated subbands are always
allowed, making all subbands contribute to collective ex-
citations. The result is that the collective energy in-
creases with electron density without saturation in
quantum-wire systems.!’!> In Ref. 4 the authors report-
ed FIR data on quantum-dot arrays in the range of
ny=3-20. The FIR resonance energy was found to be
insensitive to n, within experimental error. With no
theoretical results for the n, dependence available at that
time, the authors drew the conclusion that in their system
collective modes are suppressed, based solely on the in-
sensitivity of the excitation energy to n,. Now it is clear
that this conclusion was unwarranted, because the insen-
sitivity to n, in the experimental data is entirely con-
sistent with the FIR resonances being collective excita-
tions.?! Further independent measurements of the
single-particle excitation energy in the same sample
should give an energy lower than the FIR resonance en-
ergy.

IV. NONLOCALITY

A standard approximation in theories of collective ex-
citations is the local approximation, which corresponds
to the long-wavelength limit ¢ —0. Translating into real
space, this approximation is equivalent to neglecting non-
local effects, which can only be included by considering
higher-order terms in q. For many systems the local ap-
proximation works well and is very useful. However, for
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FIG. 7. Wave-vector dispersion of a negative B dispersion
collective mode for no=4, B=2 T. Other parameters are the
same as in Fig. 2. T, X, and M represent, respectively, the fol-
lowing points in k space: (0,0), (7/d,0), and (7/d,w/d).
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the problem under study here this approximation is inap-
propriate. For example, this approximation fails to pro-
duce a nonzero depolarization shift at ¢ =0 for any
confining potential, while a more precise nonlocal theory
predicts significant depolarization shifts.

Our theory is a nonlocal theory, valid for any wave
vector. In fact, for dispersionless quantum-dot systems,
our theory is exact as far as nonlocality is concerned.
This is achieved by carrying out exactly the summation
over the reciprocal lattice vector G to infinite order in
Egs. (2.10)-(2.16). This nonlocal feature of our theory en-
sures that the Coulomb coupling between dots is treated
properly.

An interesting result of our theory is that a system
with a dispersionless single-particle energy spectrum can
have a dispersive collective energy spectrum. An exam-
ple has been presented in Fig. 1 of Ref. 3 for the zero
magnetic field case. Here in Fig. 7 we show an example
for the finite magnetic field case. The dispersion will in-
crease if the background dielectric constant is reduced.
However, the dispersion is generally a small effect, which
makes experimental measurements of the dispersion
difficult.

For symmetric confining potentials and ¢ =0, the di-
pole excitations allowed by the selection rules are decou-
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One reason is the generally small wave-vector dispersions
for all modes, which imply the coupling is expected to be
very small. Another reason is that because optical (FIR)
wavelengths are much larger than quantum-dot sizes,
such probes are not suitable for creating excitations for-
bidden by the dipole selection rules.

V. OSCILLATOR STRENGTHS

The oscillator strengths for circularly polarized optical
transitions from state |a ) to state |a’) are given by

2m*(E, —E,

)
7 [{a'l(xtiy)a)|*. (5.1

fila—a')=

For dispersionless quantum-dot arrays, overlap integrals
vanish, and (5.1) equals that for a single quantum dot,

filnm—n'm’)=

pled from the “2w,” modes,?? which are forbidden by the X |[{n'm’|(xxip)|nm )|? . (5.2)
dipole selection rules. For g0, the dipole excitations in
principle couple to the 2w, modes. However, this cou-
pling is unlikely to be observable in quantum-dot systems. Using (3.5) and (3.6), we find
I
1+
. notm 4 1ESEm) g, AT sen(m) (s o MO,

f+(nm—>n’m’):2 1+ 5m:mi1 2 ! 2 ’

+ 24Q ’ (5.3)

(n+18,.,+nd

The factor (1+#iw, /2#)) becomes 1 if B=0, and in the
B — o0 limit it becomes 2 for the + sign, O for the —
sign. The oscillator strengths for positive B dispersion
branches increase as B increases, while those for negative
B dispersion branches decrease. This is consistent with
the experiments in Ref. 2.

The oscillator strengths defined in (5.1) are for isolated,
or decoupled single-particle type optical transitions. In
FIR experiments different transitions coexist and they are
in general coupled. The coupling can redistribute oscilla-
tor strenghts among various modes. In multiwire super-
lattices!! with parabolic confinement, it was found that
the coupling of N dipole modes leads to one strong mode
with a large energy shift, and N —1 weak modes with
very small energy shifts. This drastic coupling effect is
related to the fact that matrix elements of the operator
¢'97 do not vary too much.!'! For quantum-dot systems
with parabolic confinement, the effect of coupling does

n',n—1

m =0 .

not seem to be as drastic. As Fig. 3(b) shows, for exam-
ple, the two positive B dispersion branches both have
significant energy shifts from the single-particle excita-
tion energy. This reflects the stronger dependence of the
matrix elements on quantum indices in quantum-dot sys-
tems.

The selection rules or Eq. (5.3) imply that single-
particle excitations in the system are either left or right
circularly polarized. If one uses circularly polarized
lights as probes, one can selectively excite modes with a
particular circular polarization. However, collective
modes labeled by Am =1 and — 1 can be coupled. There-
fore the use of circularly polarized lights will predom-
inantly detect, for example, the Am =1 modes, but sig-
nals from the “forbidden” Am = —1 modes may also ap-
pear in the spectra. The strengths of the “forbidden”
modes provide information on the coupling strengths be-
tween the Am =1 and — 1 modes.
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VI. CONCLUDING REMARKS

The study of quantum-dot systems is a developing field.
The understanding of FIR experiments on quantum-dot
systems has been very limited. It is not our intention to
explain every possible phenomenon in this paper, al-
though we have tried to discuss the topics that have al-
ready attracted the attention of workers in this field.

So far only the FIR transmission-absorption method
has been used to study collective excitations in quantum
dots. Its drawback is that it cannot directly measure
single-particle energies to offer comparisons to collective
energies. It will be interesting to try other optical
methods, such as Raman scattering, which can directly
measure single-particle energies.

According to our explanation, anticrossings occur in
the excitation spectrum of quantum-dot arrays if the
confining potential of a dot deviates from the ideal para-
bolic shape. The breaking of azimuthal symmetry or de-
viations from the parabolic shape by artificial means
should enhance the anticrossing behavior. This suggests
that samples with rectangular-shaped cap layers instead
of square-shaped cap layers should exhibit stronger an-
ticrossing behavior. No experiments on samples with
rectangular-shaped cap layers have been performed.
Such experiments will be very interesting. It is likely that
the confining potential in the sample studied in Ref. 2 de-
viates significantly from the parabolic model.

We also propose the following experiments to be done
in future research: experiments with circularly polarized
lights; experiments on samples with small n,; indepen-
dent measurements of single-particle energy spacings in
comparison with FIR resonance energies; and the tem-
perature dependence of multiple branches and anticross-
ings. Several effects which should or might be observable
are yet to be observed. They include the following: the
disappearance or reduction in signal strengths of some
branches when circularly polarized lights are used; the
disappearance of anticrossing when n, is changed from
ny>2 to ng=2; the lifting of degeneracy at B =0; the
effect of electron transfer between energy levels; and the
dispersion in the collective energy spectrum for a disper-
sionless single-particle energy spectrum.

Our discussions have been limited to lower magnetic
fields, where spin splitting is negligible. At higher mag-
netic fields we can expect large spin splitting which can
affect the collective spectrum. So far no experiments
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have reported effects of spin splitting. We leave this topic
to future research.

Excitonic effects are neglected in the present theory.
Their importance in quantum-dot arrays remains to be
clarified. One may argue that such effects should be
small in quantum-dot arrays because they represent local
field corrections, while the depolarization shift in
quantum-dot arrays is mainly due to interdot coupling.

The parabolic confinement model is very useful, but it
has its limitations. For any finite-size quantum dot this
model must break down near the edges. It should be the
best for lower-energy states whose wave functions are
more squeezed toward the central region. Thus it should
work at its best when n, is small, such that excitations do
not involve states too high in energy. The symmetric
parabolic confinement model does not allow us to study
anticrossing effects in the single-particle energy spectrum,
which can happen for confining potentials without circu-
lar symmetry.?

In conclusion, we have developed a nonlocal quantum
theory of collective excitations in quantum-dot arrays.
We hope this theory will encourage experimentalists to
carry out additional experiments, which will in turn raise
more interesting questions for theorists to answer.

Note added in proof. There has been some confusion
over the interpretation of the confining potential used in
the self-consistent-field formalism. Some authors inter-
pret it as the external confining potential, others interpret
it as the screened self-consistent confining potential. We
note that, from the diagrammatic Green-function ap-
proach,?* it is clear that within the random-phase approx-
imation the correct interpretation of the confining poten-
tial should be the external confining potential. To see
this, the Hamiltonian of the system is written as
H=H,+V, where H, is the free-electron part plus the
external confining potential, V is the electron-electron in-
teraction part. The unperturbed polarization I in (2.11)
is derived from products of unperturbed Green functions
corresponding to H,. Thus the eigenstates used in II
should be those corresponding to H, and the confining
potential should be the external confining potential.
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