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Two-stream instabilities in solid-state plasmas caused
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We employ the linear-response theory of collisionless plasmas and the linear-response theory of
carriers in a static, homogeneous electric field, with collisions approximated by the relaxation-time
approximation [Phys. Rev. B 39, 8464 i1989)] to study instabilities with respect to charge-density
perturbations of counterstreaming charged particles. We treat both bulk (three-dimensional) sys-
tems and systems where the carriers drift along adjacent two-dimensional conducting planes (as in a
semiconductor heterostructure). Instabilities occur in both the three- and two-dimensional systems,
for both the collisionless plasma case (as in conventional plasma theory) and for the case of carriers
driven by an electric field (which we call "electric-field-induced instability" ). The physical mecha-
nism that causes the electric-field-induced two-stream instability is linked to the presence of the
driving electric field and scattering and is different from that of the conventional collisionless plas-
ma instability. In a pair of adjacent quantum wells with Al& „Ga As/GaAs-type parameters, we
obtain an instability at very large drift velocities that may not be experimentally attainable. We
speculate that by drifting carriers in a superlattice of alternating electron and hole layers, an insta-
bility could be obtained experimentally, and that such an instability could be used to produce a
terahertz oscillator.

I. INTRODUCTION

Plasma instabilities that are caused by the counter-
streaming of particles in a plasma, which generally go by
the cognomen "two-stream instabilities, " are a well-
known phenomena. ' The two-stream instability is an
instability with respect to density perturbations in the
plasma; under certain conditions, density perturbations
in the plasma with counterstreaming particles will initial-
ly grow exponentially. The presence of these instabilities
in plasmas has been confirmed experimentally, and their
appearance in some areas of plasma physics, such as the
loss-cone instability in magnetic confinement, has been
considered an outright nuisance.

For reasons described in Sec. II, it is interesting to in-
vestigate the possibility of seeing an analogous instability
in solid-state plasmas. A simple scheme would be to drift
electrons and holes in a solid in opposite directions
through the application of a static electric field. Spurred
by this possibility, many theoretical studies of the two-
stream instability in solid-state plasmas have been at-
tempted. ' In general, these theories were simply a
rehashing of the classical two-stream instability theory
that was well-known in plasma physics, with the physical
parameters adjusted to describe a solid-state system. In
all the above treatments, in place of explicitly treating the
effect of the driving electric field on the carriers, an
ad hoc drift of the carriers relative to the lattice was as-
sumed. Also, in many cases the scattering of the carriers

due to the lattice was ignored or glossed over. Clearly,
these theories do not give an adequate description of the
physics of carriers drifted by an electric field and scat-
tered by the lattice. Fortunately, technology and fabrica-
tion techniques have progressed to the point where the
simplifying assumptions of these old theories can be at-
tained in some devices (see Sec. II), and for this reason we
direct some of our effort in reproducing these theories in
this paper.

Nevertheless, after all these years, the initial concept of
achieving an instability by drifting the oppositely charged
carriers with an electric field remained theoretically
unexplored. Recently, a nonequilibrium linear-response
formalism has been developed' ' that allows us to cal-
culate, among other things, the collective modes of car-
riers in a solid that are being drifted by a large static
homogeneous electric field and being scattered by the lat-
tice. In this paper, we apply this formalism to the case
where we have two species of carriers which are counter-
streaming, as in the two-stream instability. We show
both that this system admits a two-stream instability and
that the mechanism for this instability is diferent from
that for a collisionless plasma.

We devote a significant amount of our efforts to study-
ing the two-stream instability of two-dimensional charged
planes placed close to one another. The reason is as fol-
lows: with the existing technology of experimental
semiconductor-device physics, in particular that of
molecular beam epitaxy, experimentalists can make high
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mobility quasi-two-dimensional conducting layers in
artificial semiconductor structures. By putting these con-
ducting layers close together, and drifting the carriers in
the layers against each other, it should be possible to ob-
tain an instability in these quasi-two-dimensional struc-
tures.

The outline of this paper is as follows. In Sec. II we
discuss the possible experimental realizations and the
uses of the two-stream instability in solid-state devices.
In Sec. III we review the theory of collective modes in
bulk (three-dimensional) systems and the method for ob-
taining linear response from transport equations. In Sec.
IV we study the two-stream instability in collisionless and
electric-field-driven semiconductor plasmas in bulk
(three-dimensional) systems. We also discuss the
differences between the collisionless plasma and the
electric-field-induced instabilities. In Sec. V we introduce
the formalism for collective modes in coupled two-
dimensional planes, and in Sec. VI we calculate the insta-
bilities in collisionless and electric-field-driven semicon-
ductor plasmas in coupled two-dimensional planes. Sec-
tion VII contains a discussion of the results and a sum-

mary of the paper.
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FIG. 1. Schematic diagram of the Heiblum THETA device.
The electrons are injected from the emitter through a tunneling
barrier into a base that is n-doped at 10' cm . The injected
electrons are quasiballistic in the base region. The injected elec-
trons and "cold" electrons in the base form a two-stream plas-
ma which should be unstable to density perturbations.

II. POSSIBLE REALIZATIONS
AND USES OF THE TWO-STREAM

INSTABILITY IN SOLID-STATE DEVICES

In this section we briefly describe two possible experi-
mental solid-state device realizations of plasmas with
components that drift relative to one another, which
could show the two-stream instability. We then discuss
why such a device might be technologically useful ~

A two-stream instability might be seen in a device in
which electrons are injected into a relatively short doped
base region from a tunnel barrier. Such a device, called
the tunneling hot-electron transfer amplifier (THETA)
device, has been fabricated by Heiblum, ' and in a
modified form, by Levi. This device is shown schemati-
cally in Fig. 1. When the device is biased, electrons from
the emitter tunnel through the barrier into the base re-
gion. These injected electrons are essentially monoener-
getic, and they stream quasiballistically relative to the
"cold" electrons that are present in the base. This situa-
tion could lead to a two-stream instability, as was pointed
out by Gruzinskis et al. ,

' who used the two-stream in-
stability to explain the anomalously short mean free
paths of the injected electrons in these THETA devices.
The physics of the two-stream instability in such a device
is essentially identical to that of classical collisionless
plasma physics. However, in practice, there are a few
difficulties associated with obtaining an instability with
this scheme. First, the injected electrons have relatively
short mean free paths of a few hundred angstroms.
Therefore, the base region must be thin, which makes the
instability difficult to observe. Furthermore, as we show
in Sec. IV, the system needs to be a minimum size for in-
stabilities to occur, and, for the parameters of the device
fabricated by Heiblum, ' this minimum size is larger than
the mean free path of the electrons. Since the theory that
is used to predict this instability assumes that the carriers
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FIG. 2. Schematic diagram of the two-stream instability de-
vice in semiconductors. The electrons and holes are confined to
adjacent two-dimensional planes and are drifted relative to one
another by application of a static electric field parallel to the
planes.

are collisionless, the fact that the carriers undergo several
collisions as they stream through the base might invali-
date the prediction of the instability.

A second scheme for obtaining a two-stream instability
in a solid-state plasma would be to drift electrons and
holes in a semiconductor (or perhaps a semimetal) in op-
posite directions by application of a static electric field.
One could photoexcite electrons and holes, and drift
them in opposite directions, but the electrons and holes
would recombine on the time scale of the order of hun-
dreds of nanoseconds and continuous "pumping" of
electrons to the conduction band would be necessary. An
alternate idea would be to put electrons and holes in adja-
cent conducting planes (see Fig. 2). The electrons and
holes cannot recombine, but since there is still a Coulomb
coupling between the electrons and holes in the separate
layers (which is one of the key ingredients in the two-
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stream instability), it is possible that one will observe an
instability in this structure. There are important
differences between this electric-field-induced two-stream
instability and the THETA device. Namely, in the region
in which the carriers are counterstreaming, the carriers
in the electric-field-induced two-stream instability device
are (1) accelerated by the electric field, and (2) scattered
by phonons, lattice imperfections and other carriers,
whereas in the THETA device, acceleration and scatter-
ing in the base region (where the carriers are counter-
streaming) are minimal. Since there is an electric field
and strong scattering, the formalism that we have
developed' ' is suitable for describing the electric-
field-induced two-stream instability.

In this paper we investigate the possibility of obtaining
instabilities in both these device configurations described
above. The theory of instabilities in the THETA device
is given by the conventional collisionless plasma theory,
and this case has been explored previously. ' The ori-
gin of the electric-field-induced instability, where the car-
riers are driven by an electric field, is somewhat different
from the collisionless plasma instability because of the
presence of the driving electric field and the scattering.
In Sec. IV we compare the characteristics of the instabili-
ties for the collisionless plasma and the field-induced
cases.

Why should we attempt to make these unstable devices
at all? Ultimately, the devices described above might be
good infrared radiation sources. There seems to be a lack
of a good robust coherent source of radiation in the
infrared-frequency regime, since the highest frequency of
radiation that can be produced from the venerable Gunn
oscillator is approximately 100 GHz. Various other de-
vices have been proposed, from resonant-tunneling diodes
to Josephson junction arrays to inversion population of
Landau levels in a magnetic field, but none of these de-
vices to date has performed as envisaged. The motivation
for studying two-stream instabilities in two-dimensional
structures is this: the plasmons in two-dimensional
electron gases in GaAs MOSFET's (metal-oxide-
semiconductor field-eff'ect transistors) with wavelengths
on the order of thousands of angstroms have frequencies
in the terahertz regime. Therefore, if these plasrnons
could be made to grow exponentially in amplitude, they
could radiate at terahertz frequencies, giving us an in-
frared radiation source.

III. COLLECTIVE MODES AND LINEAR RESPONSE

A. Collective modes in bulk (three-dimensional) systems

e(q, co)=1—V, (q)y(q, co)=1—
~ y(q, to) .

4me
(2)

In the case of a solid-state plasma, in which the carriers
move about in a solid-state lattice, the expression for
e(q, o~) divers slightly from the form given by Eq. (2) be-
cause of the polarizability of the lattice. The lattice po-
larizability reduces both the external potential and the
Coulomb interaction V, (q) by the lattice dielectric con-
stant eo. Therefore, in Eq. (2), the overall dielectric func-
tion is increased by a factor of ep, while the
V, (q)=4me /q is decreased by a factor of eo. Hence,
the dielectric function for carriers in a lattice is given by

4~e
e(q, co) =eo 1 — y(q, co)

epq

Since V„,= V,„,+ V;„d (where V;„d is the potential in-
duced by the charge-density oscillations of the carriers in
the system), Eq. (1) yields

e(q, co) V;„d(q, o~) = [1—e(q, co)]V,„,(q, co) . (4)

Equation (4) implies that if e=0, a nonzero V;„d, caused
by the oscillation of the charge density of the carriers in
the system, can exist when V,„,=O. This oscillation of
the charge density of the carriers in the absence of an
external potential is called a collective mode of the sys-
tem. Hence, the condition of the occurrence of a collec-
tive mode with wave vector q which oscillates at the an-
gular frequency co(q) is

e(q, co(q)) =eo 1 — y(q, co(q)) =0 .
4~e
E'pq

The time evolution of the mode with wave vector q
goes as e ' 'q". The frequency oi(q) for a given collec-
tive mode is in general complex,

In a charged system the relationship between the po-
tential of an external perturbing source V„, and the total
potential (sum of external and induced potential in the
system) V„„for a longitudinal electric field is

V,„,(q, co)
V„,(q, co) =

e q, co

The expression for the dielectric function for a bulk plas-
ma, e(q, co), in terms of the linear density response of the
system's carriers to the total potential (or "susceptibili-
ty"), y(q, co) =n (q, co)/V„, (q, to), is

co(q) =co„(q)+ico; (q) . (6)

In this section we review the conditions for the ex-
istence of collective modes in a charged system. A collec-
tive mode of a system is a self-sustaining coherent oscilla-
tion in the system, i.e., the system oscillates without hav-
ing an external driving "force." We show that a collec-
tive mode exists when the dielectric function vanishes.
We also review the method for calculating linear response
from transport equations, since the linear response of a
charged system determines its dielectric function.

Hence, the time evolution of the induced potential of the
collective mode is proportional to

V;„~(t)~ Re(e " )e

In general, for a system in stable equilibrium, the collec-
tive mode that is excited in the system will be damped ex-
ponentially, i.e., co; (0. However, there are certain situa-
tions where one or more collective modes exist with
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co; &0. Then, the collective mode is unstable and grows
exponentially (C. learly, the exponential growth of a col-
lective mode cannot persist indefinitely. Since the linear-
response theory only deals with small perturbations, the
theory fails when the amplitude of the mode becomes too
large. All the linear-response analysis tells you is if a par-
ticular mode will initial/y start to be damped or to grow. )

This paper deals with instabilities that may occur when
two streams of charged particles are drifted relative to
one another. We find the unstable collective modes in
these systems by searching for the roots of e(co) =0 on the
complex co plane. The presence of one (or more) of the
roots cu in the upper half complex plane indicates the ex-
istence of an unstable mode (or modes). As indicated by
Eq. (3), to obtain the expression for the dielectric func-
tion e(q, co) of the system, one needs to know the system's
susceptibility, g(q, co). In Sec. III B we describe the
method for calculating the susceptibility from the
Boltzmann transport equation.

B. Linear response from the Boltzmann equation

The Boltzmann equation is a very versatile tool for
describing systems with carriers, especially in nonequili-
brium situations. In particular, carrier linear response in
both equilibrium and nonequilibrium situations have
been successfully described by the Boltzmann equation
and its extensions.

The summary of the method for calculating y(q, co)
from the Boltzmann equation is as follows: (1) Solve the
Boltzrnann equation for the situation being investigated.
(2) Perturb the Boltzmann equation with a small
sinusoidal force term, iq V& e '"'" ", to produce a

response in the distribution function f, (v)e''i'" " that
is linear in the V&, and solve for fi(v). (3) Integrate fi(v)
with respect to v to obtain n &, the linear density response
to V, . The susceptibility y is given by the ratio ni/V, .
This method can be used to calculate the y for both col-
lisionless plasmas and for carriers drifting in an electric
field. Below, we quote the results obtained for both these
cases.

(i) y(q, co) for a collisionless plasma F.or a collisionless
plasma with a distribution function ' offo(v), the suscep-
tibility is given by

BFo(u ) /Bu
y(q, co) = du

m c u —co/~q~

Here, m is the mass of the carrier,

Fo(u)= Jdv fo(v)5(u —v q)

(7)

Bfo'
ap

fo(p) —f, (p)

where f, (p) is a Maxwell-Boltzmann distribution. By
applying the method summarized above to calculate the
susceptibility, we obtained

is the projection of the distribution on the q axis, and C
denotes an integration contour that goes below the pole
at u =co/~ql.

(ii) y(q, co) for carriers in an electricgeld. Recently, we
calculated the susceptibility of nondegenerate carriers
drifting in a static, homogeneous electric field exerting a
force Fo on each carrier, with the collisions described by
a relaxation-time approximation. ' The Boltzmann equa-
tion for this situation is

no s2 x exp[ is wdx l—2 x(1 iQ—) s—x /4]—
dx 1 — 6'

k~T 2 o 1+lXS Wd 1 iA Q—s +2is w&S Wd

(10)

where wd =vd lu, h =For/mu, h is the normalized drift ve-
locity, s =qv, h ~ is the normalized wave vector,
0 =cur is the normalized frequency, and W(g)=&a./exp(g )erfc(g). Here, erfc(g) is the complimentary
error function and the radical in Eq. (10) denotes the
principal part of the square root. In the following sec-
tions, the expressions (7) and (10) are used to obtain the
dispersion relation for the collective modes of systems
with counterstreaming charged particles.

IV. TWO-STREAM INSTABILITIES IN BULK SYSTEMS

In this section we discuss the instabilities that result
from streaming two sets of charged particles relative to
one another in bulk (three-dimensional) solid-state sys-
tems. The two-stream instability is an instability with
respect to density perturbations, and under certain condi-

tions (as described below), perturbations in the density of
the plasma will (initially) grow exponentially We find . the
unstable modes for counterstreaming charged particles in
the following situations.

(1) Collisionless plasma (no driving electric field), where
the distribution function of the particles are (a) 6 func-
tions in velocity (which we call the "pure beam instabHi-
ty") and (b) thermally broadened (which we call the
"thermalized beam instability" ). The pure beam instabil-
ity is, of course, the limit of the thermalized beam insta-
bility where the thermal spread of the distribution goes to
zero. Because the mathematics of the pure beam instabil-
ity is considerably simpler than the thermalized beam in-
stability, it is discussed first. This theory describes a plas-
ma instability that might occur in a THETA device,
where carriers are injected into a doped base region, and
where the injected carriers travel quasibaHistically over a
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distance of several hundred angstroms.
(2) Carriers in a driving electric field, with lattice

scattering (which we call the "electric-field-induced insta-
bility"). This theory describes a plasma instability that
might occur in a continuously photoexcited bulk intrinsic
semiconductor, or a semimetal.

Unfortunately, good physical explanations for the oc-
currence of two-stream instabilities in the literature is
lacking. At the end of this section, we review a few ex-
planations that have been advanced for the physical
mechanisms responsible for the two-stream instability.

A. The pure beam two-stream instability in bulk systems

The simplest case of a two-stream instability is the
pure beam instability, where there are two monoenergetic
beams of charged particles drifting relative to one anoth-
er in the absence of both collisions and a driving static
electric field. Here, we review the theory of this instabili-
ty.

Let one beam of particles be called component a and
the other component b. The distribution functions for
this system are

To get an idea of how one obtains an instability from a
plasma with two counterstreaming beams, we first discuss
the simplest case, where the plasma frequencies of the
two components are equal. Let component a be drifting
at velocity vd and let component b be at rest (we can do
this without loss of generality because we can always
make a Galilean transformation into the moving frame of
reference of one of the components). With these parame-
ters,

COp a COp, b =Cup

Vd t2
—Vd

Vdb 0,
Eq. (15) implies that collective modes are given by the
equation

2 2
Cgp

e(q, co)= 1—
(co q'vd ) Q)

1

2(y+Q)

f, (v)=no g5(v —vd, )

fb(v ) =no b6(v vd b ) .—
'We show that this system is unstable to perturbations in
the density.

Equation (2) in the previous section gave the relation-
ship between the dielectric function for a bulk plasma
and the susceptibility of a one-component bulk plasma.
The generalization of this relationship for a many-
component bulk plasma is simply

w~ere

co q'vd /2
3' =

v 2'&

q'vd

2+2'&

From Eq. (17), we obtain

(y ) —y (2Q +1)+(Q —Q2)=0,

(17)

(18)

e(q, cv) = 1 —V, (q) g g (q, co),
&o

(12) which can be solved to yield

where V, (q) =4vre /eoq is the three-dimensional Fourier
transform of the Coulomb potential, and y is the suscep-
tibility of the ath component of the plasma.

Substituting the distribution functions of the com-
ponents for the pure-beam case, Eq. (11), into Eq. (8)
gives the projected distribution function

y =—'[I+2Q +(1+8Q )' ] (20)

2
q vd q.vd

2 2'p

2 1/2 1/2
q vd+ 1+

COp

Equation (20) gives the four roots for the collective mode
frequencies

Fo,.(u)=no, .n(u —
q v„„) . (13)

(21)
Substituting this into Eq. (7), the general expression for
the susceptibility for a collisionless plasma, gives the sus-
ceptibility for each component of the pure beam of

(14)

These four roots are plotted in Fig. 3. If q vd (2V'2',
then two of the roots have imaginary components,

2 1/2
q vd . q vd

CO- +5 co ' 1+
2 COp

2'1/2
From Eq. (14) and Eq. (12), the relationship between the
susceptibility and the dielectric function, we obtain 2cop

J

(22)

2

e(q, co) = 1—
(co —q.vd, )

2
COp b

(co —q vd „)
(15)

where co =4~n o e /rom denotes the plasma frequen-
cy of component a.

The collective modes are given by the zeros of e(q, co).

Since one of these imaginary roots is in the upper-half
complex plane, the mode it describes grows exponentially
and is therefore unstable.

Note that the range of wave vectors that are unstable
scale linearly with the inverse of the drift velocity. The
maximum wave vector at which the system is unstable to
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q ~ v, /co,
4.0

density perturbations, q „,is given by

qmax
= 2i 2'&

(23)

Therefore, the larger the drift velocity, the smaller the
q,„. This can be explained heuristically as follows. The
continuity equation is

BnV.j+ =0
Bt

(24)

where j is the current. Consider the static case for sim-
plicity. For a small perturbation in the average velocity
(caused by a small modulation in the potential, say)
v(x) =vo+5ve'~'" and in the density, n (x)=no +5ne'~'",
the continuity equation gives

5n q-5v
(25)

This equation states that the larger the drift velocity, the
smaller the effect of a velocity modulation on the density
modulation. We expect that a smaller modulation of the
density hinders the occurrence of the instability (since in-
stabilities are density modulations that increase in magni-
tude), and therefore Eq. (25) implies that large drift veloc-
ities tend to suppress instabilities. Therefore, we expect
that an increase of the drift velocities decreases the range
of wave vectors over which the instability occurs, which
is consistent with Eq. (23).

FIG. 3. The dispersion relation for a three-dimensional col-
lisionless plasma comprising two pure beams of particles, each
having the same plasma frequency, co~. All the particles in the
first beam are moving with velocity vd while all the particles in
the second beam are at rest. There are a total of four collective
modes in this system. The two modes starting at +&2co~ at
q =0 are the plasmon modes, where the charge oscillations of
the two beams are in phase. The other two modes have imagi-
nary parts (which are shown by the dashed lines) and the same
real part for q vd & 2&2am~. These two modes correspond to the
charge oscillations of the two beams being almost ~ out of phase
for small q-vd, resulting in a nearly total cancellation of the
Coulomb potential, and hence a mode that is acoustic in charac-
ter. The mode with the positive imaginary part is the unstable
mode.

9'vd
co= ( I+i) (q —+0) .

2
(26)

Substituting Eq. (26) into the expressions for the linear
response of components a and b,

5n,
x (q~)

2
no, aq

m, (co —
q vd)

5nb no bq
2

x~(q ~)=
m co'

(27)

gives the expression for the density response in the low-q
limit,

5n,
5V

5nb

5V

2ino, a

m, (q vd )

2in0, b
0

mb(q, vd )

(28)

The analysis given above seems to be unphysical, since
it seems to imply that even the smallest drift vd of one
component relative to another makes the plasma unstable
to the growth of density perturbations. Indeed, Eq. (23)
seems to indicate that the smaller Ud is, the larger the
range over which q is unstable. The reason for this
strange result lies in the derivation of the dielectric
function —based on the linearized Boltzmann
equation —which assumed that the perturbation was
weak. The linearized Boltzmann-Vlasov equation does
not conserve energy —the total kinetic energy of the par-
ticles, Jdv(mu l2)1 dx f (v, x, t), does not change, but
the electric-field energy JdxE (x, t)I4vr changes with
time. Because energy is not conserved in the linearized
theory, the theory predicts that a minuscule drift in one
component relative to another will cause the density per-
turbation (and hence the electric-field energy) to grow ex-
ponentially forever. However, if higher-order terms in
the perturbation are added, as in the quasilinear
Boltzmann-Vlasov theory, one regains conservation of
energy, and hence the size of the electric-field energy
grows at the expense of the total kinetic energy of the
particles. Therefore, if there is a minuscule drift of one
component relative to another, the kinetic energy that is
free for "conversion" to the plasma-wave electric-field en-
ergy is small, and so the exponential nature of the growth
shall be limited to very short times before energy conser-
vation stops the increase of the growth of the plasma
wave. Another important feature that is neglected in the
pure beam case is the fact that, in general, the particles in
a given component of the plasma are not all moving with
the same velocity. The effect of a spread in the velocities
of the particles is treated in Sec. IV B.

In the unstable mode, the charge oscillations of the two
components are out ofphase and tend to cancel We il.lus-
trate this with the symmetric pure beam instability
(where the plasma frequencies of the two beams are
equal). By expanding the inner square root, Eq. (22), in
powers of q, we find that the frequency of the unstable
mode in the limit of small q.vd /co is
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—5nb/5V, the charge-density oscilla-
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[(CO +CO b ]
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1/2
4~nbe =5X10' sCOp b—

me Ep
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1/2

4~n, e
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'Vd

2[CO, +CO b)]

CO~ COp b
2
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(29) 1.5

1.0
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B. The thermalized beam two-stream instability
in bulk systems

In Sec. IV A the distribution functions of the two com-
ponents were assumed to be 5 functions in velocity. In
any real plasma, the distribution functions will have some
width in momentum space, since not all the particles will
be traveling at exactly the same velocity. Since one way
to drift a collisionless plasma is to uniformly boost an
equilibrium plasma with some drift velocity, the most
natural distribution function that one can put in is a
drifted Maxwellian

no, a
fo = ,—'

exp
"v ~vth a

(v —vd ~)
2

V th, a
(35)

where v,h is the width of the distribution of component
a. (In the limit, V,„~O, we regain the 5-function distri-
bution of Sec. IVA. ) The instability that occurs when

Using these numbers, we calculate the conditions for col-
lective modes, shown in Fig. 5, in the Heiblum et al.
THETA device. The x axis is in units of co, /vd =5 X 10
cm. Therefore, since the maximum wave vector q „for
the instability is on the order of co„,/ud, the minimum
wavelength X,„of an unstable mode is on the order of

;„=2m/q, „=1000A. The oscillation frequency and
growth rate at this wave vector are on the order of
a)=co, =SX10' s ' and y=0. 1Xco,=5X10' s
respectively.

Since the base of the Heiblum THETA device is only
approximately 300 A long, it is not long enough for an in-
stability to occur. By making a base with a higher doping
level (to decrease A, ;„) and/or engineering a longer base
with an increased mean free path, an instability might be
observed.

z(g)= ' f "'
v'~ e z —

g
(36)

where the contour of integration C in Eq. (36) goes under
the pole at g, as in Eq. (7), the expression for the suscepti-
bility of a collisionless plasma. Substituting the drifted
Maxwellian distribution, Eq. (35), into Eq. (7), and in-
tegrating by parts, we obtain

"o,a 1x.(q, ~)=
m~

a
exp[ —(u —

q vd /v, i, ) ]

f

dic
BQ

e u,„u—co/~q~

nO, a
Z'(u~ ~

—
ud ~),

~Vth, a
(37)

collisionless Maxwellian plasmas are counterstreamed is
called the thermalized beam two-stream instability. In
this section, we review the results of the instability in the
thermalized beam two-stream instability in bulk sys-
tems. '

The question is: does the thermal broadening have any
effect on the range of drift momenta and wave vectors
over which the system is unstable? The answer is, for
vd, + vd b v,h, +v,h b there is a profound effect —at
drift velocities that are small or comparable to the
thermal velocities, there is no instability, as we expect.
This immediately leads us to another question: does the
thermal and degeneracy broadening of the distribution
function in the Heiblum THETA device result in the
disappearance of the two-stream instability? Using the
results in this section, we argue that the answer is "no."

To describe the linear response of a thermalized beam,
we use the plasma dispersion function

2.0

where u& =co/(~q~v, „)and vd, =vd, .q/v, „are the
normalized phase and drift velocities, respectively, and
Z'(g) is the derivative of the plasma dispersion function.
The dielectric function, from Eq. (12), is

0.0

-1.0

qsc a
e(q, co) = 1 — ' Z'(u&, —ud, )

2q
2

qsc, b Z (Vgb Vdb)
2q

where

(38)

-2.0
0.0 0.5 1.0

q ~ v, /o)„
2.0

FICr. 5. The unstable modes in a collisionless pure beam
two-stream plasma, for the parameters corresponding to the
Heiblum THETA device (Ref. 19). As in Fig. 2, the dashed
lines correspond to the imaginary parts of the acoustic modes.
In the Heiblurn device, co~,

—= (co~, +~~ „)' =5X10" s ' and
ud/co~, =2X 10 em=200 A. This implies that the minimum
wavelength that is unstable is on the order of
A, ;„)(1/1.3)(2mud /cop, ) = 1000 A.

q'„.=4~n, .e'/(eoi v,'„,./2)

=477 El 0 ae /Eok~ Ta

is the screening wave vector of a classical plasma with
temperature T . The function Z'(g) for complex g can
be numerically evaluated without much difficulty [Z'(x)
for real x is plotted in Fig. 6].

To find the collective modes of this plasma, we numeri-
cally searched for the roots co(q) of e(q, co(q)) =0 by util-
izing the downhill simplex method to search for the
minima of the function 1+ ~e~ on the complex co plane.
Figure 7 shows the region of instability in phase space for
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C. Electric-6eld-induced instability in bulk semiconductors

We have described two-stream instabilities for particles
that are collisionless and not driven by an external ap-
plied electric field. This accurately describes the situa-
tion of a plasma of ions and electrons, and it describes the
physics of the THETA device, where electrons that are
injected into the base region stream quasiballistically
across the electrons at rest in the base. However, the sit-
uation changes when one tries to drive the instability by
the application of a large static electric field on carriers in
a solid-state device. The carriers are accelerated by the
field and scattered by phonons, impurities and lattice de-
fects, and therefore, the formalism must take into ac-
count both the effect of the applied external electric field
and the scattering. The linear response of nondegenerate
semiconductors with carriers driven by a static, homo-
geneous electric field and with collisions described by a
single-rate relaxation-time approximation was calculated
in Ref. 15. In this section, we use the results from Ref.
15 (which we quoted in Sec. III B) to investigate instabili-
ties in solid-state plasmas driven by an electric field.

In this section we treat bulk (three-dimensional) semi-
conductors, where we assume that there are electrons and
holes occupying the same volume of space. In practice, it
is impossible for the electrons and holes in a semiconduc-
tor to survive indefinitely in the same volume of space,
since recombination occurs on the time scale of hundreds
of nanoseconds. One could envisage photoexciting an
intrinsic semiconductor, and performing the experiment
before recombination occurs, or continuously photoexcit-
ing the system so that the generation is matched by the
recombination. One could also imagine using a semimet-
al like bismuth, which has both a small pocket of elec-
trons and holes. By applying an electric field to system,
the electrons and holes are drifted in opposite directions,
creating two streams of charged particles Aowing relative
to one another. Is this system unstable to density pertur-
bations, as in the case of the collisionless plasmas? The
answer is yes, but we argue below that the mechanisms
for the instability for the field-induced case and the col-
lisionless plasma case are not the same.

The collective modes are found from the zeros of the
dielectric function. We obtained the dielectric function
from Eq. (12), using the y (q, co) given in Eq. (10), which
was derived from the Boltzmann equation for a nonde-
generate semiconductor in a static homogeneous electric
field, within the relaxation-time approximation. The col-
lective modes are those co(q) that satisfy e(q, co(q))=0.
We find these numerically, using the simplex method (as
in Sec. III B) for finding the roots in the complex co plane.
Figure 9 shows the plot of the real and imaginary fre-
quencies of the unstable collective mode, as a function of
the drift velocity and wave vector, in a bulk system with
electrons and holes. The densities and relaxation times
are assumed to be equal, while the mass ratio of the holes
to the electrons is taken to be 7 (as in GaAs). The con-
tour line on the 1m[co] plot is at 1m[co]=0, and therefore
it separates the regions where the mode is damped
(1m[co] &0) and where it is unstable (1m[co]) 0). For

these parameters, the collective modes become unstable
at approximately vd, =0, 8v,&, . For typical values of
densities and relaxation times

n0, oh

(40)

(co,r, ) =10,
and at 100 K, the thermal velocity of electrons in GaAs is
approximately 10 cm/s. Given a relaxation time of ap-
proximately 10 ' s, it would take an electric field on the
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FIG. 9. The (a) real and (b) imaginary parts of the unstable
collective mode frequency co as a function of drift velocity and
wave vector, in a bulk (three-dimensional) nondegenerate semi-
conductor with equal density of electrons and holes drifted by a
static electric field. The linear response y(q, co) was calculated
from the Boltzmann equation within the relaxation-time ap-
proximation. The ratio of the masses, mI, /m, =7, and the ratio
of the relaxation times ~z /~, =1, and (e~,~) =10. The contour
line 2 A' in (b) separates the ~; &0 (stable) and co; )0 (unstable)
regions.
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order of E = 5 X 10 V/cm to obtain the instability.
We claim that the mechanism for the instability in the

electric-field-induced two-stream instability is different
from the mechanism for the instability in the collisionless
plasma two-stream instability. We present three argu-
ments to support this statement.

(1) Figure 9 shows that the instability occurs in the
q &(U,zr) ' and cour ' regimes. In Ref. 15, we showed
that the susceptibility y(q, co) in this wave vector and fre-
quency range is not given by the collisionless plasma form
[the y(q, co) reduces to the collisionless plasma form only
in the large q and/or large co regimes]. Therefore, in the
phase-space region of Fig. 9 where the collective modes
are unstable, the dielectric function (which gives the col-
lective modes) is determined by y(q, co) which is not of the
form for collisionless plasmas. Since the instability in the
electric-field-induced case occurs in regime where the
dielectric function is not described by the collisionless
plasma form, we conclude that the mechanism of the in-
stability in the field-induced case is different from the col-
lisionless plasma case.

(2) In the case where the electrons and holes are identi-
cal except for charge (i.e., same masses, thermal veloci-
ties, scattering rates, etc. , but opposite charges), if we use
the y (q, co) from Eq. (10) (the calculation that takes the
efFects of the electric field and scattering into account),
we can show that there is a two-stream instability for
u& &u,&/2. However, if exactly the same electron and
hole distribution functions that were used in the calcula-
tion to obtain Eq. (10) were substituted into Eq. (7) [the
expression for y(q, co) for collisionless plasmas], we get no
unstable modes at any drift velocity (see the Appendix).
Therefore, the fact that y(q, co) given by Eq. (10) (the ex-
pression for g in which the effects of the electric field and
scattering are included) predicts the occurrence of an in-
stability, while the y(q, co) given by Eq. (7) (the suscepti-
bility for a collisionless plasma in the absence of any driv-
ing electric field) does not, implies that the electric field
and scattering are somehow responsible for the oc-
currence of the instability. Hence, the cause of the
electric-field-induced instability described in this section
must be different from the cause of the collisionless plas-
ma two-stream instability.

(3) The dependence of the growth rate y of the instabil-
ities as a function of q for the collisionless plasma and the
field-induced cases are different. Table I shows the
small-q behavior of y for these cases, as well as for the
Gunn effect for comparison.

D. Attempts at a physical explanation
of the two-stream instability

What is the origin of the two-stream instability in col-
lisionless plasmas? This question, to the best of our
knowledge, does not have a satisfactory answer. The
mathematics of the pure beam instability is simple
enough, as was shown in Sec. IV A, but the physical ex-
planation of the instability is not a trivial matter. The
problem with understanding this phenomena is that this
is an inherently nonequilibrium phenomenon, and in gen-
eral, there is a dearth of real understanding of nonequili-
brium situations. For example, Bohm and Gross de-
scribe the instability as a bunching of space charge in the
direction of motion of each beam, which modulates the
beam and feeds the disturbance back to the source in an
amplified form. While their description is probably tech-
nically correct, it gives no real physical insight into why
the instability occurs, and no quantitative prediction of
where the instability onsets [e.g. , no explanation for Eq.
(31)].

Another way to explain the instability is from the point
of view of Landau damping. The same mechanisms that
are responsible for Landau damping (i.e., the exponential
decay of electrostatic waves) in equilibrium collisionless
plasmas are probably responsible for the unstable grow-
ing waves in the two-stream plasmas. In Landau damp-
ing, a plasma wave loses energy to the individual parti-
cles, and hence it eventually damps away. The unstable
modes in a two-stream plasma, on the other hand, gain
energy from the particles. Therefore, in some sense, one
can think of the unstable modes as "reversed" Landau
damped modes, and so perhaps an explanation for the in-
stability might be found in the physical description of
Landau damping.

The usual explanation for Landau damping in equilib-
rium is the "surf-riding" explanation, ' which states that
damping occurs because particles "surf-ride" a plasma
wave. The particles moving slightly faster than the plas-
ma wave give energy to the wave, while the particles
moving slightly slower than the wave remove energy
from it. In equilibrium, since the distribution is mono-
tonically decreasing, there are more particles moving
slightly slower than faster than the wave, and therefore
the wave loses energy and damps away. In some of the
two-stream thermalized beam instabilities, the mode
occurs with a phase velocity such that there are more
particles traveling slightly faster than particles traveling

TABLE I. Characteristics of instabilities in bulk samples.

Type of instability

Gunn effect

Collisionless two-stream
Field-induced two-stream

Behavior of y at small q

y independent of q

Instability mechanism

Negative duzldF due to
scattering to upper valleys
Newton's laws
A(dI'/dx) term in the drift-diffusion
equation due to ballistic carriers
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slightly slower, and so the reverse situation occurs and
the plasma wave grows. However, this explanation does
not suKce for the pure beam instability, where there are
usually no particles at the phase velocity of the plasma
wave. Neither does it explain the instability in the totally
symmetric thermalized beam case, as discussed Sec. IV B,
since the phase velocity of the unstable wave is at the
same velocity as the minimum of the distribution, and so
there are just as many particles moving slightly faster
than slower than the wave. Thus, the "surf-riding"
description is not a universal explanation for the unstable
modes in two-stream collisionless plasmas. Furthermore,
in any case where it might be relevant, it gives no quanti-
tative prediction of where the instability onsets.

One thing that can be said generically about instabili-
ties in charged systems is that in order for an instability
to exist, it is necessary (but not sufficient) that the e be
pure real and negative at some real co (this is a direct
corollary of the Nyquist criterion —see the Appendix).
Therefore, since e(q, co)=e0[1—(4me /e0q')g(q, ~)], the
linear response y(q, co) must be pure real and positive at
some real cu for an instability to occur. This condition
makes sense physically, since a y with a positive real part
implies that the charged particles tend towards the crests
of the potentials where these particles further enhance
the potential and draw in more particles, leading to an
exponential growth in the density.

The linear response g for an unstable two-stream plas-
ma certainly meets the condition stated above. To illus-
trate this, let us look at the symmetric thermalized beam
case, as discussed in Sec. IVB. A Maxwellian distribu-
tion with a drift velocity v& has a linear response,

co/iqi —q v~n0' Z
2

fPlV (g
(41)x(q, ~)=

V&h

From Fig. 6, one can see that the real part of this g is
greater than zero for ~co/~q —q vz ~

)0.95v,z. The zero-
frequency response for this drifting Maxwellian distribu-
tion is y, (q, co=0)=(n0/mu, „)Z'( —q vz/uu, ). Similar-

ly, a Maxwellian distribution of the same particles with
the same density and thermal width, but with a drift ve-
locity —

v& (i.e., in the opposite direction) has a static
linear response gb(q, co=0) =(n0/mv, „)Z'(q vz/u, „).
Since the imaginary part of Z (x) is an odd function of x,
the imaginary parts of y, and yb cancel, and therefore
the total static linear response, y(q, co =0)
=y, (q, co=0)+yb(q, co=0), is pure real. Furthermore,
the real part of Z'(x) is an even function of x, so the real
parts of g, and gb add up. Since Re[Z(x)])0 for
~x ~

)0.95, when ~q vz ~

)0.95v,z (so that the relative drift
velocity between the two is greater than 1.9u,„),
y(q, co=0) is pure real and positiue As one can s.ee from
Fig. 6 instabilities occur when the relative drift velocity
between the two components is greater than approxi-
~~t~ly 1-»,~.

From the above example, we see that the key in-
gredients that make an instability in a charged system
possible are as follows: (1) one component must have a g
with a positive real part over some frequency range, and
(2) in this frequency range, the second component must

have a g which cancels the imaginary part of the first
component, to make the total y pure real. The real part
of the y of the second component must not be so large
and negative that it cancels the positive real y of the first
component. As we have shown above, the linear
response for a collisionless plasma with a Maxwellian dis-
tribution satisfies ingredient (1), and by drifting another
component relative to the first, we can achieve ingredient
(2).

These two ingredients are also present in the field-
induced two-stream instability. In Ref. 17, we showed
that the real part of the static g for a nondegenerate
semiconductor drifting in an applied static electric field,
within the relaxation-time approximation, is positive
around q -0 for vz ) v,z /2. Furthermore, from Eq. (10),
one sees that y(q, co=0, vz) and y(q, co=0, —vz) are com-
plex conjugates (as is required by refiection symmetry),
and hence two streams of oppositely charged, but other-
wise identical, particles drifting in opposite directions un-
der application of a static electric field have imaginary
parts of y (q, co=0) that cancel each other. Therefore,
within the relaxation-time approximation, by counter-
streaming two oppositely charged, but otherwise identical
(i.e., equal masses, relaxation times, etc. ) components by
the application of a large static electric field, one obtains
a total y that is pure real and positive at co=0, implying
that an instability is possible. Of course, there is a possi-
bility of an instability even when the parameters of the
two components are different, so long as Re[y(q, cu)]) 0
for some real co. Figure 9 shows that an instability occurs
for the components with mass ratio of 7.

While both the collisionless plasma and the field-
induced two-stream instabilities share the same property
that at least one component has a Re[y]) 0 over some
real frequency range, the mechanisms that cause
Re[@])0in both these cases are very different. In the
collisionless plasma case, it is simply the fact that the
particles move faster over the troughs of the potential
(because they have more kinetic energy) than over the
crests. By the continuity equation, this means that the
particles spend more time on the crests than on the
troughs, and hence 5 /5nV) 0. (Incidentally, this is not
true at equilibrium because some particles get "trapped"
in the troughs of the potential, which increases the densi-
ty at the troughs, resulting in on/5V (0.) In the field
driven case, Re[y]) 0 because of the presence in the
Thornber-Price drift-diffusion equation of the field-
gradient term, ' A (dF /dx ). This field-gradient term is
present because of the interplay between the streaming
motion of the carriers in the electric field and the scatter-
ing of the lattice. Therefore, in a sense, the instability in
the field-driven case is indirectly caused by the scattering,
which is somewhat surprising since scattering normally
tends to damp out collective modes. Some years ago, To-
sima and Hirota also came to the conclusion that
scattering would actually enhance rather than diminish
the two-stream instability in a semiconductor. While
their conclusion was based on a somewhat unrealistic
model, it serves to show that scattering can affect insta-
bilities in unpredictable ways. Another example of an in-
stability which has its roots in scattering is the Gunn in-
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stability, ' in which Re(y) )0 because of the negative
differential mobility caused by scattering of the electrons
from the I to the upper valleys.

As shown in Table I, the characteristics of the growth
rates y for the Gunn instability, the collisionless plasma
two-stream instability, and the electric-field-induced
two-stream instability are all different. This is expected
since the mechanisms for the three instabilities, as listed
in Table I, are all different.

V. COULOMB COUPLING, DIELECTRIC FUNCTION,
AND COLLECTIVE MODES IN TWO-DIMENSIONAL

STRUCTURES

—.Al~ Ga+&As

Ai&Ga&&As~s
A X iX~1~X.g/y~

Q GaAs 8
Al ~Ga ++A

~GaAs o o o
1Ã&iA~''G:&A. :.p:::YMIR
LLLN+N.~."'~".';&~";:LiLLWLNLLL+LL~

FIG. 10. A possible experimentally feasible realization of the
field-induced two-stream instability. The electrons and holes
from the Al& Ga As layers migrate into the intrinsic GaAs
quantum wells, producing adjacent high-mobility wells of elec-
trons and holes. An electric field placed parallel to the planes
causes the electrons and holes to drift in opposite directions.
This device configuration was suggested by F. Capasso and A.
Vengurlekar.

To drift the carriers in opposite directions by applica-
tion of an electric field, it is necessary to have oppositely
charged carriers. In a solid-state system both electrons
and holes must be present. As mentioned previously, the
problem with putting the electrons and holes in a semi-
conductor in the same space in a bulk sample is that they
will ultimately recombine. To avoid recombination, one
would have to physically separate the electrons from the
holes. On the other hand, to obtain an instability, the
electrons and holes have to be as close as possible to each
other so that there is significant Coulomb coupling be-
tween them (since it is the Coulomb coupling that is pri-
marily responsible for the instability). So, we want the
electrons and holes to be close together, yet physically
separated. Is there a solution to this dilemma?

The solution lies in recently developed fabrication
techniques, such as molecular-beam epitaxy (MBE).
With MBE, precisely controlled layers of different solids
can be grown on top of one another. By controlling the
doping profiles, one could envisage juxtaposing two
modulation-doped GaAs quantum wells, one filled with
electrons and the other with holes. Figure 10 shows a
possible experimental realization of this device. n- and

A. Coulomb coupling in two-dimensional structures

The two-dimensional Fourier transform of the
Coulomb potential source located a distance d away from
the Fourier transform plane is

e2

(d 2+ r 2)1/2

rdr=2me Jo(qr)
o (r +d2)'~2

&c(q, d)= Jd'r e'q'

27Te qd
2

e
q

(42)

For the case of adjacent planes of electrons and holes
separated by a distance d, the intraplane and interplane
Coulomb interactions are, respectively,

2me
~C, intra( q) =

eoq

2 e

Eoq

= V„„„,(q)e- ".

(43)

Equation (43) shows that the two-dimensional Coulomb
interaction at large distances, given by q~0 limit, is
weaker than the corresponding three-dimensional
Coulomb interaction. As we show in Sec. VI, this fact
makes it much harder to obtain an instability in adjacent
two-dimensional charged planes than in the three-
dimensional bulk samples.

B. Dielectric function for a pair of adjacent
two-dimensional conducting planes

Denote the linear density response to the total perturb-
ing potential for the electrons and holes by y, (q, co) and

yz(q, co), respectively. Hence, the change in the electron

p-doped Al& „Ga As layers are placed adjacent to the
two juxtaposed intrinsic GaAs quantum wells. The car-
riers migrate from the Ali Ga As layers into the GaAs
quantum wells, which serve as high-mobility quasi-two-
dimensional planes. Application of an electric field along
the plane drifts the carriers in opposite direction. We
show in the next section that, within the relaxation-time
approximation, such a configuration is unstable to densi-
ty perturbations.

Since we are studying two-dimensional structures, we
must first familiarize ourselves with the results of the
Coulomb interaction and screening in two-dimensions.
In this section, we review these results. ' In particular,
we concentrate on the formalism for screening and collec-
tive modes for two adjacent conducting planes of charges.



14 022 BEN YU-KUANG HU AND JOHN W. WILKINS 43

~+e +e Vtot e

&&~ =&I Vt.t, ~ .
(44)

and hole densities due to the total potentials V„, , and
V„, h on the electron and hole planes are

The total potential in the electron plane,
V„, , (q, co)e'q" "",in the presence of an external poten-
tial V,„, ,(q, co)e' " " in the electron plane is the sum
of the external potential (screened by the lattice polariza-
bility) and the induced potentials caused by the density
response in both the electron and hole planes, i.e.,

V„, , (q, co) = V,„,,(q, co) + Vc;„„,(q)5n, (q, co)+ Vc;„„,(q)5nj, (q, co)
Fp

V,„,, (q, co) + Vc ~ (q)y. (q co)Vo (q cu)+ V~, ' .(q)g (q co)Vo, (q co)
Ep

(45)

which implies

[1—Vc;„„,(q)y, (q, ~)]V„, , (q, ~)

VC, i ( 7)+h('q ~) V«t, h(q ~)= V,„,z(q, co)

6'p

that are suKciently thin so that only the lowest subband
is filled, the assumption of zero-thickness planes is satis-
factory. For simplicity, this assumption will be used
throughout this paper.

C. Collective modes in a pair of adjacent conducting planes

—Vc;.t.,(e)X, (q ~)V«t, (q ~)= V,„,, (q, co)

Fp

(47)

Equations (45) and (46) can be written as a matrix equa-
tion

Similarly, the equation for the total potential in the hole
plane is

I 1 —Vc, ;.„.(9)Xh(q ~)]V.t, h(q ~)

A collective mode is marked by a nonzero total poten-
tial in the absence an external potential. In a three-
dimensional translationally invariant system, where

E(q, co) V„,(q, co) = V,„,(q, co),

the condition e(q, co) =0 implies that V«, can be nonzero
when V,„, is zero, and hence implies the existence of a
collective mode. In the case of two adjacent two-
dimensional planes, a nonzero V„, in the absence of V,„,
can occur if the determinant of the matrix e(q, co) in Eq.
(48) is zero. Therefore, the condition for occurrence of a
collective mode in this two-dimensional system is

Vtot Vext &
(48) det

~ e(q, co)
~

=0 . (51)
where V is a two-component vector whose elements are
the potentials on the electron and hole layers,

V,
(49) det ' =1— [y, (q, co)+y„(q, co)]

e(q, co) 2me

Ep E'pg

From the form of the dielectric matrix, Eq. (50), the con-
dition for the collective mode is

and the e(q, co) is the dielectric matrix given by

1 —Vc,;.~,X,(q ~) —
Vc,;.t.,rh(q ~)

—
Vc, ;.t„X,(q ~) 1 —Vc, i t ash(q ~)

(50)

2 2
2m.e

E'pg
(1—e q")y, (q, co)yl, (q, co)

(52)

While we have called the carriers on the adjacent layers
electrons and holes, we should note that Eq. (50) is valid
also when carriers in the adjacent planes are of the same
charge.

The formalism described in this section assumes that
the charges are completely confined to planes with zero
thickness. Actually, the quantum wells which confine the
carriers have finite widths and therefore there are gen-
erally several subbands of carrier states, each with a
different transverse wave function. However, for wells

In the next section, we use Eq. (52) to identify the collec-
tive modes of two-stream semiconductor plasmas in adja-
cent two-dimensional planes.

VI. TWO-STREAM INSTABILITIES IN AD JACENT
TWO-DIMENSIONAL CONDUCTING PLANES

In this section we repeat the sequence of calculations
described in Secs. IV A—IV C, this time for counter-
streaming plasmas in adjacent two-dimensional planes.
We first treat the collisionless plasma case, where we dis-
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+co~ 2D(q)(1 —e (54)
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2m.e no
2

(55)

'near res onse for collisionless 5-function distrib-po

substituted into Eq. (52), we obtain

1
p2D

( )

=1—co (q) +
d'

This leads to an equation quadratratic in (co —vd. q/2),

vd q
CO

2

4
Vd q

2 co
2

Vd q
2

2

+CO 2D(q) +
2

4 2

( )+m4 (q)(l —e 2'vd)=0 .q

(56)

4 )e
—2qd]1/2+ ( )+[(vd q) co 2D(q)+co 2D q e+~p, 2D q — d
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2
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wave vectors down to zero. In the case of electrons in
GaAs with d = 100 A and n p

= 10 cm the maximum
growth rate, y~»=5X10' s ' occurs when q =0.5X10
cm ' and v&=10 cm/s.

B. Thermalized beam instability in t~o-dimensional structures

npf, (v)= exp
WU ~h

(v —vz )

2
Ua

(59)
np V

fl, (v)= exp
7TU tg U ih

As in Sec. IV, we generalize the study of the collision-
less plasma instabilities by inserting a thermal broadening
in the distribution functions and studying how this
broadening affects the parameter-space regions of insta-
bility. As in the three-dimensional case, we expect that
the thermal effect we serve to reduce the regions of insta-
bility in q- and vz-parameter space around vz/v, z 1.

Assume that the plasmas in the adjacent planes are
identical, except that one is at rest and the other is drift-
ing at some drift velocity v&. Each distribution has a
thermal width Uti„so that their distribution functions are

0
0

I

0.5
I

1.0
1

'1 .5 2.0

FIG. 12. Contour plot of the linear-response growth rates y
of a collisionless thermalized beam two-stream plasma in which
the counterstreaming components are flowing in adjacent planes
separated by a distance d, with v,z(4m.e npd/cpm)' =3. The
distributions are assumed to be Maxwellians, and the ratio
alp/m and thermal velocities of the two components are equal.
For large Uz, when the drift velocity is much greater than the
thermal velocity, the plot is almost identical to the pure beam
case {Fig. 11), but for vz U,b, the instability disappears.
As in Fig. 11, the contours are spaced in steps of
0.025(4me np/epmd)'

The expression for y (q, co) for these distributions is given
by Eq. (37). Substituting these expressions for y into Eq.
(52) gives

0= 1 — [Z'(v~ )+Z'(v~ —
v~ )]

2

qse+ (1—e ~")Z'(v~ )Z'(V~ —
vq ),

where q„=4me n 0 /E'pal U, I, is the two-dimensional
screening wave vector, and v& =co/( ~q~ v, z ) and
vz =vz q/v, z are the normalized phase and drift veloci-
ties.

We numerically searched for the roots of Eq. (60). In
this case, where np/m and vt& of both components are
equal, the real part of the phase velocity of the unstable
mode, by symmetry, is the average of the drift velocities
of the two Maxwellians. The numerical search is there-
fore limited to one dimension, and is much simpler than a
two-dimensional search. Figure 12 is a contour plot of
the imaginary part of co (the growth rate) as a function of
q and v&, for the thermalized beam two-stream instability
in adjacent two-dimensional planes. The Uti, for this
plot is given by v,zl(4~e nod/mom)' =3, which, for
electrons in GaAs with no=10' cm and d =100 A,
corresponds to an effective temperature of
T =mv, z/(2k~ ) = 100 K. Note that, as in the bulk case,
at small drift velocities (i.e., vz - v,z) the instability disap-
pears.

C. Electric-field-induced instability
in two-dimensional structures

~e 1

Ulh 7
"O,e =1,

hnp, h

1 /2
2&np e

epk~ T Uti 7 =200, =1.
Uth, e+e

(61)

These parameters correspond roughly to the following
physical parameters in a pair of GaAs wells:

As mentioned in Sec. V, using MBE, it may be possible
to grow a device with a pair of adjacent quasi-two-
dimensional quantum wells, one containing mobile elec-
trons, the other containing mobile holes. By application
of a static electric field parallel to the planes, the elec-
trons and holes drift in opposite directions. We show
below that, within the relaxation-time approximation,
this device is unstable when a large enough electric field
is applied.

We used the expression in Eq. (10) for y (which was de-
rived for carriers in a static, homogeneous electric field
within the relaxation-time approximation) in Eq. (52), the
equation giving the collective modes of the system. We
used the simplex method to search for the roots of Eq.
(52) to obtain the dispersion relation of the collective
modes.

Figure 13 shows the real and imaginary parts of the
collective-mode frequency of the mode that is unstable at
certain drift velocities. The parameters used for this cal-
culation are as follows:
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The contour line A in Fig. 13(b) separates the regions
where the modes are damped [Im(co) (0] and where they
are unstable [Im(co) )0]. As one can see, this region is an
"island" in q and vd space, i.e., the unstable region does
not go down to q =0, unlike the three-dimensional case
(see Fig. 9). The cause of this strange feature seems to be
the weakening of the two-dimensional Coulomb in-
teraction at q-0. For the parameters that we used,
the instability occurs at v« =25 —35U,h, where
U,h=(2k&Tlm, )' =2X10 cm/s for T =100 K. The
oscillation frequency in the unstable region is on the or-
der of Re[co(q)]=2X10' s '. Since the negative
differential mobility regime in GaAs occurs at
vd =4X 10 cm/s, " the drift velocity needed to produce
an instability in this model seems experimentally out of
reach.

This negative result would seem to be rather discourag-
ing. However, there are positive aspects to this result.
First, it shows the theoretical possibility of obtaining an
instability in an idealized situation. Furthermore, the
relaxation-time approximation does not accurately de-
scribe collisions in GaAs, and therefore a prediction
based on a theory using this approximation can only be
trusted on a qualitative level. It may be the case that, in
GaAs, we need not go to such high drift velocities to see
such an instability. Second, it should be possible to in-
crease the parameter space over which the instabilities
occur by having a superlattice of adjacent electron and
hole conducting planes, instead of just a pair of them. It
has been shown that, in a superlattice, when the wave
vector of the collective mode that is perpendicular to the
superlattice is small compared to the inverse of the inter-
layer spacing, the collective-mode dispersion goes to the
bulk (three-dimensional) limit. ' Therefore, in this
small perpendicular wave-vector limit for a superlattice,
the parameter-space region of instability should be given
by Fig. 9 in Sec. IV C, and hence the drift velocities need-
ed to obtain the instability should be experimentally at-
tainable.

FIG. 13. The (a) real part (angular oscillation frequency) and
(b) imaginary part (growth rate) of the unstable collective-mode
frequency for adjacent zero-thickness planes separated by a dis-
tance d, doped with electrons and holes that are drifted by an
electric field. The scattering is treated within the relaxation-
time approximation. The contour line A in (b) separates the re-
gions where the modes are damped from where they are unsta-
ble. The parameters used are as follows: no, =noh, ~, =~h,
~ h 7~e 9 sc e U th e +e 200 and d = U th, e +e Such Parameters
could correspond to the case of a heterostructure that has layers

0
of GaAs a distance d =200 A apart, with densities on the order
of no, =no h =5X10' cm . Relaxation times on the order of
~, = ~h = 10 " s, and a temperature on the order of T = 100 K
would imply that the drift velocities are on the order of 5 X 10
cm/s, which is unfortunately much higher than the drift veloci-
ty at which negative differential mobility occurs. The oscilla-
tion frequency in the unstable region is Re[co( q) ]=2 X 10' s

VII. DISCUSSION AND SUMMARY

In this section we discuss some future directions for the
continuation of this project. We also speculate how this
work might lead to a viable terahertz oscillator. We then
give a brief summary of the paper.

A. Future directions

In the field-induced instability, we made extensive use
of the relaxation-time approximation. It would be in-
teresting to see if the results we obtained with this ap-
proximation can be reproduced when a more realistic
scattering term is used, e.g. , one that takes into account
the discreteness of the loss of energy from optic-phonon
emissions. Furthermore, the question of electron-hole
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scattering has not be addressed. These interactions are
responsible for the negative mobility of minority carriers
in photoexcited quantum wells, as the majority carriers
"dragged" the minority carriers along in their wake. The
presence of these scatterings would unfortunately tend to
decrease the possibility of the two-stream instability since
they would reduce the mobility of both species. Future
investigations into the two-stream instability using Monte
Carlo or other such numerical techniques could include
the more realistic scattering terms and carrier-carrier
scattering.

As mentioned at the end of Sec. VI, it is interesting to
see how the instability behaves when there is a superlat-
tice of alternating planes of counterstreaming electrons
and holes. A calculation for unstable modes in superlat-
tice, within the pure beam collisionless plasma approxi-
mation, has been done. ' Performing the calculation for
thermalized beams and for the field-induced instability in
a superlattice should be a worthwhile project.

B. A possible terahertz oscillator~

A motivating factor behind the effort to investigate in-
stabilities in solid-state plasmas is the possibility that
these instabilities could be utilized to provide an inexpen-
sive source of infrared radiation. The Gunn oscilla-
tor ' ' is an example of an instability that has given the
world a reliable source of radiation up to the 100-Ghz re-
gime. For the spectrum close to the visible range, there
are lasers. However, in between these two regimes, there
is a dearth of good sources.

Assuming that the device described in Sec. VIC is
indeed unstable to density perturbations, the charge-
density oscillations in the two-dimensional conducting
sheets must be coupled in some manner to the radiation
field if a successful oscillator is to be fabricated. This
coupling has been experimentally achieved by placing an
antennalike structure in close proximity to the two-
dimensional conducting planes. This antenna,
comprised of a metal grating of period a, is placed close
to the electron layer so that it couples the radiation field
to density oscillations of wavelength na in the electron
layer. Some work has been done on the theory of the
coupling of the radiation field to a two-dimensional
charged conducting plane situated near a metallic grat-
ing, and to similar types of structures. However, a
complete theory of the coupling of the electromagnetic
field to a two-dimensional charged conducting sheet in
close proximity to a metallic grating sheet does not exist
yet, and therefore this problem should be addressed in
the future.

C. Summary

We have used the theories of linear response for both
collisionless plasmas and carriers in an electric field
within the relaxation-time approximation to study insta-
bilities with respect to charge-density perturbations in
the presence of counterstreaming charged particles —the
two-stream instability. We find that both these theories
predict that instabilities occur in both three-dimensional

structures and two-dimensional heterostructures when
the charges are counterstreamed; however, the mecha-
nisms that cause the instabilities in the collisionless plas-
ma case and the electric-field-induced case are different
and are not fully understood. For parameters chosen to
correspond roughly to an Al, „Ga„As-GaAs hetero-
structure of a pair of adjacent two-dimensional conduct-
ing planes, an instability is predicted at very high drift
velocities, which might not be experimentally attainable.
We speculate that a superlattice provides a better possi-
bility for experimentally achieving the instability, and
that this instability might be used as a terahertz radiation
source. To conclude, we have shown that interesting pos-
sibilities for creating plasma instabilities in quantum-well
structures exist, and this matter should be pursued fur-
ther.
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APPENDIX: THE NYQUIST CRITERION
FOR INSTABILITY

In this appendix we sketch the argument behind the
Nyquist criterion for the occurrence of an unstable mode
in a plasma. Roughly, the Nyquist criterion states that if
the path that the dielectric function e(co) traces as co goes
from —~ to ~ winds around the origin of the complex
plane, then there exists an unstable collective mode. We
also furnish an example for the usefulness of this cri-
terion.

The system is unstable to small perturbations if there
are roots to the equation

e(q, ro) =0 (A 1)

in the upper-half complex plane, i.e., if there are roots
co(q) such that

1m[co(q)]) 0 .

Define the quantity

1 Be(co)
e(co) Bco

B in@(co)

Bco

(A2)

(A3)

The zeros of e(co) are the poles of G(co). Assume that
G(co) falls faster than ~co~

' for ~co~ ~~ in the upper-half
complex plane. Then, since an integral of G(co) over a
large semicircle on the upper-half plane contributes noth-
ing, we have

f G(co)dc@= . f G(co)de, (A4)

where C is a contour enclosing the upper-half plane. By
the residue theorem, and Eq. (A4), the integral
(2~i ) ' J " G (co)de is equal to the sum of the residues
of the poles of G(co) in the upper-half plane. The reader



43 TWO-STREAM INSTABILITIES IN SOLID-STATE PLASMAS. . . 14 027

can convince him or herself that the residues at the poles
of G(co) are equal to the order of the zeros of e(co).
Therefore, we have the relationship

G co dm=lVo, (A5)

G co de= in@ co

=
I1 n[ Ie( co) Ie' '"']I "„

= [ln I e( co ) I
+i 9( co ) ] (A6)

Since e(+~ )=1 (there is no screening at very large fre-
quencies), the lnIe(+ ~ ) I

terms in Eq. (A6) vanish. Also,
the phase 8(+~) must be equal to 2rcN where N is an in-
teger. Since 9(co) must vary continuously as co varies
from —co to ~, the difference between 8(~) and 8( —Oc )

is given by 2~ times the number of times the path has
wrapped around the origin. Therefore, we have

where Xo is the number of zeros of e in the upper-half
plane.

Furthermore, (2vri) ' I G (co)dco is equal to the
number of times that the path that e(co) traces on the
complex plane wraps around the origin, as co is varied
continuously along the real axis from —~ to ~. This
is because

f, (v)=ft, (
—v) . (A8)

Fo(u)= fdv[f, (v)+ ft, (v)]5(u —q v) .

The collisionless plasma theory gives that the linear
response for real co as

Using these distribution functions, and assuming col-
lisionless plasma linear-response theory, we evaluate the
dielectric function e for this system. We show, using the
Nyquist criterion, that the e obtained by using the col-
lisionless plasma linear-response theory in conjunction
with the relaxation-time approximation distribution func-
tions gives no unstable collective modes.

The Nyquist criterion states that, in order for a system
to be unstable, the dielectric function e( q, co )
=1 4~e—y(q, co)lq has to encircle the origin as co

varies from —~ to ~. To do this, e(q, co) has to be pure
real and negative for some finite co, and hence y(q, co) has
to be pure real and positive for some finite co. We show
that, in this system, y(q, co) is never both pure real and
positive, and hence a system with this e has no unstable
modes.

Define Fo(u) as the projection of both distributions
onto the q axis

G cu dc@=A&„, (A7)

where X&„ is the number of times the locus of e winds
around the origin.

Putting Eq. (A5) and Eq. (A7) together, we conclude
that the number of times the locus that e(co) traces on the
complex plane as co varies along the entire real axis is
equal to the number of zeros that e has in the upper-half
complex plane. Since a zero of e in the upper-half plane
indicates that there is an instability, a corollary to the
above statement is as follows: in order for a mode to be
unstable, the locus that e(co) traces on the complex plane
as co varies from —~ to ~ must wrap around the origin
at least once.

Example of a use of the Nyqust criterion

In Sec. IVC we stated that the electric-field-induced
two-stream instability was caused by a diA'erent mecha-
nism from the collisionless plasma two-stream instability.
Here, using the Nyquist criterion, we sketch an argument
to justify this statement.

We study a system of nondegenerate electrons and
holes in a bulk sample with distributions given by the
Boltzmann equation, Eq. (9) (i.e., the relaxation-time ap-
proximation in a static electric field). The masses and
relaxation-time approximations of the electrons and holes
are assumed to be equal, so that for all values of the elec-
tric field, the distribution function of the electrons is a
reflection of the distribution function of the holes about
the origin in velocity space, i.e.,

aF, you
y(q, co)= f du—- u —co/IqI io+-

ar, you aF,=Pf du +i~ (co/Iql )
/IqI au

F (u) —F (co/Iql) aF,
2

du+i' (co/ q ) .
(u —co/ q )

(A 10)

The last equality in Eq. (A10) came from an integration
by parts [where the Fo(co/IqI ) term is necessary to
prevent a spurious divergence of the integral at
u =co/I qI ].

Recall that we want to show that Re[y(q, co)] is never
positive when Im[y(q, co)] is zero. The imaginary part is
zero at frequencies co such that dFo(co/IqI)lc)u =0, i.e.,
at the maxima and minima of Fo(u). The projected dis-
tribution function Fo(u), being the superposition of two
singly peaked distribution functions, is twin peaked with
a minimum in the middle. Therefore, there are three
values of co/IqI (not counting + ~) at which Fo(co/IqI ) is
at an extremum. For the two co/IqI such that Fo(co/IqI )

is at its maximum, it is obvious from Eq. (A10)
that y(q, co) is negative, since the integrand [Fo(u)

Fo(co/Iq )]l(u ——co/IqI) is always negative. The ques-
tion is, for co/IqI such that Fo(co/IqI) is at its minimum,
what is the sign of y(q, co)?

Since we assumed the masses and relaxation times of
the holes and electrons are equal, by symmetry, the
minimum of Fo ( u ) occurs at u =0. Therefore, we must
evaluate the sign of y(q, co) at co/IqI =0. The y(q, co=0)
is given by
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y(q, co=0)= f + du—~ u —lO

. aF(u)
dy du e'"~I oo Bu

f dyy f du e'"~F p(u)

is the Fourier transform of the equilibrium distribution
for nondegenerate carriers. Hence, the Fourier transform
of the sum of the electron and holes distributions with
drift velocities vd and —vd, respectively, is found to be

fcq y feq y

1 iq—vdy 1+iq vdy

1 f dy yap(y), (A 1 1) 2f„(y)
1+(q.vdy)

(A15)

where

Fp(y) = f e'"~ Fp(u) (A12)

„(y)
f(y) =

1 —i q.v„y

where

(A13)

f q(y) =npexp —
2

y

4Utb,
(A14)

is the Fourier transform of the projected distribution
function of the electrons and holes. From Eq. (9), the
Fourier transform of a nondegenerate relaxation-time
semiconductor drifting in an electric field with drift ve-
locity vd is

From Eqs. (Al 1), (A15), and (A14), we see that

2np y exp( —y /4v, b)
dy

1+(q vdy)
(0 . (A16)X(q ~=0)=—

We have shown that for y(q, co) calculated using the
collisionless plasma formalism, with the electron and hole
distribution functions from the relaxation-time approxi-
mation Boltzmann equation, at all real (and finite) co for
which Im[g(q, co)]=0, the real part of y is negative at all
drift velocities. This implies that the locus of e does not
encircle the origin as co goes from —~ to ~. This means
that the e calculated using the collisionless plasma for-
malism, with the electron and hole distribution functions
from the relaxation-time approximation Boltzmann equa-
tion, does not support an unstable mode.
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