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The gradient-expansion approximation (GEA) and the generalized gradient approximation
(GGA) to nonlocal exchange energy in concert with the nonlocal correlation energy functional of
Perdew [Phys. Rev. B 33, 8822 (1986)] are analyzed when implemented in a fully self-consistent way
in conjunction with the Vosko-Wilk-Nusair parametrization for the local exchange-correlation en-
ergy. Itis shown that the lowest-order gradient expansion, even with corrected asymptotic behavior
in the large-density-gradient limit, is still unsatisfactory in the chemically important region of elec-
tron densities where the basic assumption of the GEA (|Vn|/2kpn <1) breaks down. In contrast,
the GGA expansion behaves better. A shift by a constant additive term of an effective one-body
Kohn-Sham potential in concert with the GGA nonlocal functional provides, within the framework
of density-functional theory, a way of interpreting excitation energies. The nonlocal functionals
significantly improve binding energies. The resulting nonlocal exchange-correlation potential is
state independent; thus the present method is convenient from the computational point of view.
Applications are presented for a number of atoms and small molecules, including O,, Mg,, CH,, and
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for a transition-metal cluster, Ni,.

I. INTRODUCTION

In traditional ab initio quantum chemistry the problem
of electronic correlation may be treated by expanding the
wave function as a linear combination of Slater deter-
minants. This configuration-interaction (CI) method,!
while providing very accurate descriptions of various
atomic and molecular properties, is usually restricted to
small systems due to its numerical complexity. Thus, in
transition-metal chemistry and physics, for example, al-
ternative methods are needed. Density-functional theory
(DFT) (Refs. 2 and 3) is showing great promise of provid-
ing such modern techniques. DFT provides an effective
one-particle description of many-electron systems.
Ground-state properties are given exactly by the theory.
At the same time, the theory provides, in principle, a sim-
ple numerical scheme for determining these properties
through the Kohn-Sham (KS) equations. Since its origi-
nal formulation DFT has been extended onto spin densi-
ties, built for relativistic and finite-temperature systems,
and it has a rigorous mathematical background.* ¢

In practice, this theory needed approximations. The
basic one—the local-density approximation (LDA)—has
been surprisingly successful in determining the electronic
properties of a wide class of systems.” At present, an
efficient computational method based on DFT-LDA
theory is the LCGTO-LSD one (linear combinations of
Gaussian-type orbitals—local spin density). Originally
proposed by Sambe and Felton® and further improved by
Dunlap et al.’ this method may be applied to atoms,
molecules, and transition-metal clusters. The high accu-
racy of the LDA in determining molecular geometries,
vibrational frequencies, electron densities, ionization po-
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tentials, etc. has led to modern LCGTO-LSD programs
that are highly efficient.!”

Along with the success of the LDA, the limitations are
also becoming progressively clear. For example, binding
energies are typically too high, atomic exchange energies
are underestimated by as much as 10-15 %, while corre-
lation energies are overestimated by as much as a factor
of 2. By its definition the LDA is exact in the limit of a
slowly varying electron gas. Because almost all systems
to which the LDA is applied show inhomogeneities in
electron density, the first natural way of going beyond the
LDA is to investigate nonlocal corrections via density-
gradient terms. From another viewpoint, one can ob-
serve that the local approximation to exchange and corre-
lation leads to imperfect cancellation of electron self-
interaction. Self-interaction corrections!"!? (SIC), how-
ever, result in an orbital-dependent potential and are,
therefore, outside of the Kohn-Sham formulation and we
will not consider them further. Since the pioneering
work of Langreth and Mehl (LM),'3 the essential aspects
of nonlocal density-gradient corrections have been under-
stood and new improved nonlocal gradient corrections to
both exchange and correlation have been proposed.
However, there are still many difficulties when incor-
porating these corrections into a computational scheme
especially in a fully self-consistent way, i.e., introducing
functional derivatives of these corrections to the
exchange-correlation energy into an effective one-particle
Kohn-Sham potential. Only recently has a self-consistent
implementation of the original LM functional been re-
ported in the literature.'* It is, therefore, the purpose of
this paper to investigate the recent nonlocal functionals
to exchange and correlation energy, and choose those
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which both satisfy the theoretical foundations of DFT
and can be implemented into a computational scheme
within the LCGTO method in a fully self-consistent way.
In Sec. II we recall briefly the density-functional formal-
ism presenting a minimum of formulas required to dis-
cuss the different schemes, which go beyond the LDA.
Next, we present different nonlocal functionals, showing
differences between them and we end that section with a
review of our computational procedure. Section III
presents results for total, exchange and correlation ener-
gies of a selection of atoms. These atomic values are
necessary for determining the binding energies. This is
done in Sec. IV, where we obtain also potential energy
curves and vibrational frequencies for O, and Mg,.
These cases are of particular interest because oxygen
displays the largest nonspherical effect resulting in the
worst LDA prediction of binding energy, whereas Mg, is
very weakly bound and the binding is entirely due to
correlation. The correlation effects play a key role in one
other relatively simple molecular system, methylene. The
singlet-triplet splitting in CH, as well as the geometry of
its ground ('B;) and first excited (! 4,) states are sensi-
tive tests for the efficiency of different theoretical
methods. Both these main features concerning methylene
have been tested using the LDA and the nonlocal func-
tionals of the exchange and correlation energy. At the
end of Sec. IV, we compare the correlation energy for
some simple molecules with other recently developed
nonlocal correlation energy functionals. Finally, in Sec.
V, we present the results of our method for a transition-
metal cluster, Ni,, and discuss the physical meaning of
the Kohn-Sham eigenvalues with the emphasis put on the
effect of self-consistency of the nonlocal corrections.

II. BEYOND THE LDA: ELABORATION
OF THE METHOD

In DFT the basic quantities are the electron density
n (r), and the energy functional of n (r):

Ev[n(r)]=fv(r)n(r)d3r+F[n(r)] R (2.1)

where v (r) is some external potential (in most cases, the
potential due to the nuclei), while F[rn(r)] is a universal
functional of the electron density, taken by Kohn and

Sham to be
Ly patmtn

Fl[n]= r’) d3 d’r wln(r)],

(2.2)

where T [n] is the kinetic energy of a noninteracting-
electron system of density » (r) in some external potential
vs(r), the second term is the classical Coulomb repulsion
energy, while E  [n(r)] is the exchange and correlation
energy of the interacting system. Assuming that v (r)
gives the same density in the noninteracting system as
v(r) in the interacting system, and applying the varia-
tional principle to (2.1) with an additional condition con-
serving the number of particles,
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[nra’r=n, (2.3)
one obtains a system of self-consistent equations:
vs(r) f |n(r d3r' +o (P +C=v4r),
(2.4a)
[—iViHvglr)—g J¥, =0, (2.4b)
n(r)= 2 l;(r)]?, (2.4¢)
i=1
where
(= (2.5)
e S () ‘

is the functional derivative of the exchange and correla-
tion energy functional. The ground-state energy is given
by

Ey=3 si—fveff(r)n(r)d3r+fv(r)n(r)d3r

+— ff nrn(r’) 43, d’r'+E, [n(r)].
In view of Eq. (2.3), the functional derivative of (2.2) is
defined only to within a constant since, for fixed N, we
have

[conird’r=

Therefore, the exact density-functional (DF) potential
differs from Vs by an r-independent additive constant,

which is given'” as

_EN+1+EN ’

(2.6)

C=¢eyni 2.7)

where € denotes the highest eigenvalue of the (N +1)-
particle system. Then, it follows from Egs. (2.4a) and
(2.7) that the exact DF potential of the KS scheme gives a
precise physical meaning to its highest eigenvalue—it is
an ionization potential of a given electron system. Up to
now, the set of equations (2.4a)—(2.4c) is still exact
E,.[n(r)] remains unknown. The main approximation
used in density-functional calculations—the local-density
approximation assumes E,_ [z (7)] in the form

= [ n(e(n(rd’r, (2.8)

where €, (n(r)) is the exchange and correlation energy
per particle of a homogeneous electron gas with density
n. Usually, €,.(n) is split into separate exchange and
correlation terms. The exchange energy per particle is
written as a Hartree-Fock (HF) contribution

1/3

Al 4 =_3

e, = A, A, 4

3 (2.9)
a0

and a remainder, the correlation energy per particle ¢,
which has been given in various approximate forms. The
most frequently used forms can be found in the works of
Gunnarsson and Lundqvist (GL),'¢ von Barth and Hedin
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(vBH),!” Perdew and Zunger (PZ),'® and Vosko, Wilk,
and Nusair (VWM).!Y The VWM parametrization using
the Padé-approximant technique, gives an accurate inter-
polation of the quantum Monte Carlo results of Ceperley
and Alder.?’ It is worthwhile to point out that the VWN
parametrization goes beyond the usual RPA (random-
phase approximation) treatment of the correlation ener-
gy. The RPA level is kept only in the spin dependence of
€,.. The corresponding potential of the VWN parametriz-
ation of g, is given by Painter.?! As the electron density
starts to vary slowly the exchange-correlation functional
E,.[n(r)] can be expressed in terms of the density and
density gradients:?

Exc[n(r)]=fd3r A,.(n(r))

+ [d* B, (n(N)(Vn )2+ - -+ (2.10)

Usually, the first term of this formal expansion is re-
placed by Eq. (2.8)—the local-density (LD) approxima-
tion as the limiting case for slow variations of the elec-
tron density. The expansion retaining only the lowest or-
der of density gradients is called the gradient-expansion
approximation (GEA). The GEA is applicable when the
density is slowly varying, i.e., when

[Vn|
<1 .

2pn (2.11)

and
[V2n]

—_<1, (2.11a)

2kp |V,
where k. is the local Fermi wave vector:

kp=3mn)'"3 . (2.12)

On the other hand, it was shown???? by dimensional
analysis that in “‘exchange”-only DFT the exchange ener-
gy has a gradient expansion of the form

2

Ex[n]zExLDA—bf—(Vf/g d’r, (2.13)
n

where b is a constant and EXPA is obtained by matching

Egs. (2.8) and (2.9):

EPA=4 [n*3d’r . (2.14)

Subtracting Eq. (2.14) from Eq. (2.8) one gets an expres-
sion for the correlation energy in the LDA:

EPA= [n(re (n(r)d’r . (2.15)

Therefore, Eqgs. (2.14) and (2.15) not only determine the
J
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A,.(n) function in the density-gradient expansion (2.10)
but also its division into separate local exchange and
correlation energies. Langreth and Mehl!® have made a
full wave-vector analysis of the B,_ function in the GEA.
The correlation energy has been expressed as a sum of
dynamic density fluctuations of various wave vectors k.
They have found a strong exponential peak around k =0
in the B, function for correlation. Because the GEA is
valid only if conditions (2.11) are satisfied, all contribu-
tions from the region where

kf@, £~0.15

are spurious, and in the LM functional were replaced by
zero. Also, their nonlocal correlation-only functional
contained terms coming from the GEA expansion for ex-
change. Perdew?* removed these two deficiencies of the
LM functional and proposed a new nonlocal correlation
energy functional, which, in contrast to LM, goes beyond
the RPA parametrization for correlation. It is written as
follows:

E (ngnpg)= [ neng ngdr

(Vn)?
473

+ [d~ e *C(n) d’r . (2.16a)

From now on, we use spin densities, i.e.,
n=n,+n B>
where (a,f3) stand for spin-up and spin-down, respective-
ly, and the spin polarization is defined in the usual way:
E=(n,—ng)/n .
Also, in (2.16) we have

®=1.7457[C () /C(m1 1AL (2.16b)
n

5/3 5/311/2

d=2'3 [1—;5] - 1_;g l , (2.16¢)
0.002 568+ ar, +Br2

C(n)=0.001667+ -, (2.16d)
1+yr,+06r +10°Br;

where
n=(4mr3/3)"", 2.17)

a=0.023266, 3=7.389X10"°, v =28.723, and 6=0.472.
The functional derivative of the correlation energy
functional (2.16) is given as

SE: _ 1 y-ty—oc(mp-1 | 2= _ |4 1@ 702 | IVul  &(@—3)VaV)|Va]
én,, ¢ n 3 3 6 n? n|Vn|
(n2*—n?3)
— Z 223 [(1=®)n_,|Vn|*—(2—®)nVn_,Vn]
n
—1 _¢1Vn|2 2y dC
+d e (@ —e -z (2.18)
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vl is the LDA correlation potential. In (2.16b), f plays
the role of a fitting parameter and is equal to 0.11. In our
self-consistent calculations we have used a slightly
different value, 0.104, chosen so as to reproduce the
correlation energy of the neon atom. The Perdew nonlo-
cal correlation functional matches very well the VWN
parametrization of the correlation energy per particle of
the homogeneous electron gas in that they both go
beyond the RPA level; however, the spin dependence of
the correlation energy is still described within the RPA.
For nonlocal terms this was done by Hue and Langreth.?
Recently new correlation energy functionals have been
reported. Becke’s?® correlation energy functional incor-
porating nonlocal effects is based on a coordinate-space
model. The resulting expression, however, is orbital
dependent and, therefore, does not belong to the family
of pure density-gradient-corrected functionals. An in-
teresting correlation energy functional has been proposed
by Lee, Yang, and Parr.?’ They have converted the
correlation energy formula due to Colle and Salvetti?®
into a purely density-dependent scheme, but it was done
by making the local approximation to the kinetic energy
and improving it by the addition of a gradient-type
correction—a ‘“Weizsacker’” term, so this is not a KS
scheme. A review as well as numerical results can be
found in Ref. 29. We turn now to the exchange com-
ponent.

In the context of condition (2.11) the GEA for ex-
change (2.13) is appropriate only for small density gra-
dients. Also, its functional derivative, the corresponding
exchange potential, becomes divergent in the large-
gradient limit. LM removed this basic deficiency for a
self-consistent scheme by multiplying this potential by a
cutoff parameter:

(Vn)?
0873

exp | —h R (2.19)

where 4 was taken as 1074,

There have been several post-LM attempts to remove
the deficiencies of the GEA for the exchange energy. A
summary of these works is given in Ref. 30. Becke®! has
found a form of exchange energy, which is correct in the
large-gradient limit:

E,~const [ n*5|Vn|*d%r (2.20)

Because the GEA is correct for small gradients, he pro-
posed a modification of the GEA, which also recovers the
limit of (2.20). Becke’s ‘“‘interpolated”” GEA for the ex-
change energy has the following form:

(Vn,)?

MGC _ LDA g
E,; =E, —EBf n4/3
o [og

(Vn )2 —4/5
1+y—2 ] :

ng/‘ﬁ

(2.21)

MGC denotes modified gradient correction, y =0.007,
3=0.00375, and o labels the spin density. The correct
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behavior of (2.21) in the large-gradient limit makes its
functional derivative free of divergence. Recently,
Becke®? reported another exchange energy functional
which has similar asymptotic behavior in the large-
density-gradient limit. On the other hand, Perdew?’ has
proposed an approach to the exchange energy which is
different from the GEA. His generalized gradient ap-
proximation (GGA), contrary to the GEA, satisfies two
conditions which hold for the exact exchange hole:

n(r,r+R)=0,

Jd*Rn,(r,r+R)=—1,

where n, (r, r +R) is the density at position » + R of the
exchange hole about an electron at position r.

A suitable form of the GGA for practical applications
is given in Ref. 34. The exchange energy is given as

ESOA= 4, [d’r n*FOCAGs) . (2.22)
A, is given by (2.9)
FOOA(5)=(1.08 64s%/m +bs*+cs®)™ , (2.23)
where m = .., b =14, ¢ =0.2, and s is defined as
_ |Val
s 2hpn (2.24)
The functional derivative of (2.22) is taken from>*
dE 4 dF
LS V) e i P N
Sn xlt 3 Fts ds
d _1dF
_ 4.3y 2 |
(u—3s7) s 1 ds ) (2.25a)
where
t=02kp) n "'V, (2.25b)
u=02kp) *n"AVnV)|Vn| . (2.25¢)

For any spin polarization, we have an exact relation’’

E [ngngl=3E.[2n,]+3E [2ng], (2.26)
thus

8E, OE,

dn,, " o n=2n, 2.27)

Perdew’s exchange energy functional has also the same
asymptotic behavior (2.20) in the large-gradient limit.
Thus, it is interesting to compare these two different non-
local exchange energy functionals using in both cases a
fully self-consistent scheme. The functional derivative of
Beck’s exchange energy functional (2.21) after consider-
able but straightforward algebra is given as follows:
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SEMGC [(1+yk)1+3yk)— Byk(1+L1yk)]B
x — LDA __ —9/5 |4,1/31.(3 _ 5 5 S
Sn. Uy B(l1+vk) ingPk(iyk —1)+ A7k , (2.28a)
3 g (Vn,)* 2Vn,
=% — , 2.
3 nl“ n?,” (2.28b)
(Vn,)?
k=W (2.280)

o

In order to compare the nonlocal exchange energy func-
tionals of Becke [Eq. (2.21)] and Perdew [Eq. (2.22)], we
obtained self-consistent densities for the Mg atom. In
both cases the same nonlocal correlation energy function-
al of Perdew [Eq. (2.16)] has been used.
Since the densities obtained within the LDA are close
to the exact ones, the differences between the densities
calculated with two different exchange energy functionals
can be measured with respect to the LDA density. In
Fig. 1 the first natural observation is that the density ob-
tained using Perdew’s GGA approximation to exchange
closely resembles the LDA density, whereas that of
Becke differs more. Generally, the “oscillatory” charac-
ter of these two curves shows density depletions in the re-
gions between orbitals due to exchange repulsion. In the
limit of small densities, i.e., when the density gradients
are large relative to the density, both these functionals
yield densities that approach the LDA limit, thus
confirming that they have no divergence in that limit.
However, there are big differences between them for “in-
termediate” density gradients. These differences become
more apparent in the corresponding self-consistent
exchange-correlation potentials, which are presented in
Fig. 2(a). Following LM we display the change in poten-
tial associated with nonlocal effects, and we start the dis-
cussion with the first large positive peak occurring near
0.5 a.u. This peak arises from an exchange effect occur-
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FIG. 1. Radial density difference between the LDA density
and densities obtained using nonlocal exchange energy function-
als: MGC (GEA) of Becke and GGA of Perdew for the Mg

atom.
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ring between 1s and 2s states. In the case of the Mg atom
such peaks must appear, at larger #’s also due to the pres-
ence of 2p and 3s shells, but these effects should be small-
er due to the fact that, except for the ls region which
gives the largest error in exchange, the following peaks
are dominated and screened by correlation. Indeed, in
the case of the GGA exchange functional the following
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FIG. 2. (a) The difference with respect to the LDA in self-

consistent exchange-correlation potentials for Mg using Becke
and Perdew exchange energy functionals. (b) Plots of the neces-
sary conditions for the GEA using Becke’s MGC (GEA) ex-

change energy functional.
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peaks are smaller. The third peak of Becke’s functional
appears near 4.5 a.u. This is exactly the region where the
assumption of GEA validity (2.11) breaks down [see Fig.
2(b)]. Also, the second large peak of Becke’s functional
appears in the region where, again, condition (2.11) is not
satisfied. For larger s (not seen in Fig. 2 but it can be
inspected from Fig. 1) both nonlocal V_ potentials match
the LDA potential. Both GGA and GEA exchange func-
tionals show the same and correct behavior in the limits
of small and large density gradients, whereas they differ
significantly in the intermediate range of density gra-
dients, especially near the region where s ~1 [Eq. (2.24)].
This is a fundamental failure of any GEA expression for
the exchange energy, apart from any modification of the
GEA leading to a correct behavior in the limit of large s.
The differences between GGA and GEA approaches to
exchange were also shown in Fig. 1 of Ref. 34.

The self-consistent implementation of any nonlocal
correction to the local approximation of exchange and
correlation energy raises the problem of the physical
significance of the KS eigenvalues. The detailed discus-
sion of that problem will be postponed until Sec. V, but
now we recall briefly an earlier conclusion that the
highest occupied KS eigenvalue corresponds to the first
ionization potential. Unfortunately, there are few litera-
ture data which address this problem in the context of
nonlocal density-gradient-type functionals, mainly be-
cause most of them have been tested in a non-self-
consistent way. Once again, we turn to LM, where this
problem is discussed. Their V. nonlocal potential based
on the GEA approximation to exchange did not improve
the position of the highest occupied orbital. With nonlo-
cal corrections it even got worse. However, they have
noticed that their highest eigenvalue could match the ex-
act KS value if the potential would be shifted by a con-
stant additive term ~0.2 Ry. This constant remained
uncertain in the large-gradient limit due to the fact that,
in this region, the exchange-correlation potential has
been multiplied by a cutoff parameter. This shift could
affect only the positions of eigenvalues but not differences
between them or other calculated properties such as the
total energy.

In our calculations, Becke’s functional also did not im-
prove the position of the highest occupied orbital with
respect to the LDA as can be seen in Table I. The GGA
functional improves that eigenvalue slightly. The most
likely reason that the GEA predicts a shift in the wrong
direction for the highest occupied orbital is due to the
fact that in the valence region the assumption (2.11)

TABLE 1. Eigenvalues of the Mg atom taken with the oppo-
site sign (in eV).

Orbital LDA GEA GGA GGA®
(Ref. 31) (Ref. 34)

3s 4.80 4.37 4.92 7.30

2p 46.99 45.84 47.02 49.65

2s 79.22 78.82 80.00 82.50

Is 1251.4 1250.2 1260.0 1262.8

*Using the GGA functional for exchange, the SCF potential has
been shifted by 0.17 Ry.

breaks down. Because the GGA functional behaves
correctly over a wider range of densities in self-consistent
calculations, it is more likely that an accurate ionization
potential will be obtained from a simple shift of the
effective one-body KS potential by a constant [following
Eq. (2.4b)]. However, electron gas calculations applied to
atoms are not appropriate for determining that constant,
so this was done in Sec. V, using a Ni, cluster. The con-
stant obtained was 0.17 Ry. The positions of KS orbitals
with Perdew’s GGA exchange functional and with this
shift for the Mg atom are presented in the last column of
Table I. This time the highest occupied orbital is placed
at —7.3 eV. The experimental IP for the Mg atom is 7.6
ev.

The results as discussed above have led us to choose
the GGA expression for the nonlocal exchange energy
and the Perdew nonlocal correlation energy functional as
nonlocal (NL) corrections, which have been built into our
LCGTO computational scheme. Also, the constant (0.17
Ry) term has been added in our self-consistent potential.

III. ATOMIC TESTS

Calculations of total atomic energies are necessary to
determine binding energies in molecules or cohesive ener-
gies in solids. In DFT these calculations raise the prob-
lem of determining the total energy of atoms with open
shells. Usually, in that case, the approximation is made
of spherically averaging the electron density. Generally,
the problem of obtaining multiplet energies within DFT
is still open. The exchange and correlation energy func-
tional approximated through electron gas data at both lo-
cal and nonlocal levels is symmetry independent. So, for
a given state the symmetry can be inferred only through
charge and spin densities.>® In the present calculations
the ground state of an atom with an open shell is de-
scribed by a single Slater determinant with M, =S and
M; =L, where S,L describe the multiplet with highest
spin S and the highest orbital angular momentum L cor-
responding to S. In total-energy calculations the electron
density has been spherically averaged, except for oxygen,
where the total energy has been obtained using both
spherical and nonspherical densities. Gaussian basis sets
of moderate size have been used. The contraction pat-

TABLE II. Orbital basis sets and auxiliary sets used in the
present work.

Atom Orbital Auxiliary
H (41/1) (5,1,1;4,1,1)
C (5211/411/1) (6,2,3;6,2,3)
(e (521/41/1) (6,2,2;5,2,2)
Ni? (43321/4211/311) (13,3,3;13,3,3)
Ni® (311/31/311) (7,3,4;7,3,3)
Si (5321/521/1) (10,3,4;10,3,4)
Mg (5321/411) (9,4,4;9,4,4)

*Two basis sets with the same contraction patterns have been
optimized for d®? and d°s! atomic configurations of nickel
atom (Ref. 37).

®A 16-electron valence basis set used with a model core poten-
tial (Ref. 38).
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TABLE III. (a) Total energy:
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—E,, (in hartrees). (b) Total (nonrelativistic) energy of nickel atom

(in hartrees). 3d®%(3F)-3d°s'(°D) excitation energy (in eV).

Atom LDA NL Expt.? HF?* SIC?
(a)
C 37.451 37.864 37.844 37.688 37.928
o 74.484 75.109 75.063 74.808 75.252
(o) 74.482 75.094
Mg 199.044 200.086 200.042 199.608 200.524
Si 288.128 289.402 289.349 288.849 289.950
LDA NL SDcCH
(b)
Ni (3d°%s!) —1504.221 515 —1507.16595 —1507.164 48
Ni (3d%?) —1504.206 938 —1507.167 81 —1507.166 89
3F3D +0.40 —0.05 —0.02

#Harrison, Ref. 39.
®Nonspherical electron density has been used.
‘Spherical density.

9Bauschlicher, Siegbahn, and Pettersson, Ref. 40. From that reference the experimental (nonrelativis-

tic) excitation energy: —0.03 eV.

terns for both orbital and auxiliary basis sets are present-
ed in Table II. The total energies of a few selected atoms
are given in Table III.

The total energy of an oxygen atom when using a
spherically averaged density is 0.413 eV higher than that
obtained with a nonspherical density. Oxygen shows the
highest nonspherical effect at the nonlocal level. Within
the LDA this effect is reduced to 0.06 eV.*! The present
NL results confirm that nonlocal corrections significantly
improve the total energies of atoms with respect to the
LDA and show that our self-consistent Gaussian im-
plementation is functioning correctly. Also, they are in
better agreement with experimental total energies then
SIC corrections. The total energy of the nickel atom is
presented in Table III(b). Nickel is a transition-metal
atom and any theoretical description of the electronic
states arising from sd”*! and s2d" configurations must
include important valence correlation effects.*>*? Table
I1I(b) shows that DFT, with its ‘“single-determinant” ap-
proach to the multiplet problem and with the use of
spherically averaged densities in concert with the present

TABLE IV. Exchange energy: —E, (in hartrees).

Atom and ion LDA NL Exact®
C 4.42 5.08 5.05
c* 4.09 4.73 4.72
(0] 7.29 8.21 8.18
o* 7.02 7.91 7.90
Mg 14.55 16.02 15.99
MgJr 14.41 15.88 15.86
Si 18.52 20.31 20.28
Sit 18.29 20.07 20.05
Ni 57.96 61.76 61.68"®

*Vosko and Lagowski, Ref. 43.
°HF exchange energy for nickel atom taken from Ref. 31.

choice of nonlocal corrections to the LDA, is comparable
with the single-reference-configuration CI method when
predicting the d"s?-d"*!s! excitation energy. At the
same time, the very good quality of the basis sets is also
confirmed. Using spherically averaged self-consistent
densities, exchange and correlation energies have been
obtained. They are presented in Tables IV and V, respec-
tively.

For that selection of atoms and ions the nonlocal ex-
change energies agree with exact ones within 0.2%, the
correlation energies are determined with ~3% accuracy
as has been found previously with different tech-
niques.3® 44

IV. “LIGHT” MOLECULES: BINDING ENERGY

The LDA calculations overestimate binding energies
for dimers of the first row of the Periodic Table. In the
worst case, for the oxygen molecule, the LDA is about

TABLE V. Correlation energy: — E, (in mhartrees).

Atom and ion LDA NL Expt.?
C 358 158 157
ct 321 128 139
(o) 538 260 258
ot 460 210 194
Mg 891 451 444
Mg* 845 413 406
Si 1042 531 521
Sit 1011 505 502
Ni 2438 1390

*Lagowski and Vosko, Ref. 44. From the same reference corre-
lation energy for nickel atom with LM functional: 1280 mhar-
trees and with SIC approximation 1540 mhartrees.



1406

2.3 eV higher than the experimental value, 5.21 eV. Nev-
ertheless, the LDA predicts equilibrium distances and
ground-state vibrational frequencies for these dimers with
good accuracy. Thus, it is interesting to see how the
present nonlocal corrections can improve this basic LDA
deficiency. The self-consistent implementation of the LM
nonlocal functional generally improves binding energies,
giving slightly better vibrational frequencies;'* however,
the choice of cutoff parameters which have to be incor-
porated in the LM scheme leaves a 0.3 eV uncertainty in
the binding energy. The LM result for the binding ener-
gy of the oxygen molecule with spherically averaged
atomic density is 6.87 eV, still too big. Our potential en-
ergy curve for oxygen has been obtained using both the
LDA and the present NL functional. In the case of non-
local corrections, spherical and nonspherical atomic den-
sities have been used. The spin-polarized version has
been used also in the molecular calculations. The
binding-energy curves are presented in Fig. 3. Table VI
summarizes our results

The binding energy obtained using the spherical densi-
ty is 6.22 eV. Further improvement is made if the spheri-
cal density constraint is removed. It lowers the binding
energy to 5.39 eV. The equilibrium distance is 0.02 a.u.
smaller than the LDA distance, which in that case agrees
with experiment. Standard procedures'* have been used
for determining the vibrational frequencies. The NL vi-
brational frequency is lowered with respect to LDA by
~90 cm ™!, however, this NL value itself is very close to
the experimental one.

As another example, the Mg, molecule provides a

1.0 T T T T

----------------- NL-spher
0.0 - \ —_— - NL—-Nspher -
£ e — LSD(VWN)
-10} i ————— EXPT .
-2.0F 4

ENERGY (eV)
|

-8.0 | .
-7.0} N o 8
- _.-
_8.0 . . . .
15 2.0 2.5 3.0 35 R (au)

FIG. 3. Potential energy curves for the oxygen molecule ob-
tained with LDA and NL functionals. In the case of NL calcu-
lations, the total energy of the oxygen atom has been calculated
with (NL-spher) and without (NL-Nspher) spherical averaging
of the electron density. The experimental curve has been taken
from Ref. 45.
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TABLE VI. Equilibrium distances, vibrational frequencies,
and binding energies for O, and Mg, molecules: Nuclear separa-
tions are in a.u., vibrational frequencies are in cm ™!, and bind-
ing energies are in eV.

0, LDA NL Expt.
7 2.28 2.26 2.28
o, 1657 1568 1580

E, 7.46 6.22° 5.21
Mg, 5.39°

7 6.50 6.95 7.35¢
o, 114.1 76.6 51.1¢
E, 0.171 0.034 0.05¢

#Experimental values taken from Ref. 45.
The spherical density has been used for atom.
“The nonspherical density.

dExperimental values taken from Ref. 46.

stringent test for the nonlocal exchange and correlation
functional. In the usual terms, the bonding is entirely
due to correlation. The HF level gives a repulsive curve,
as for any other van der Waals molecule. The natural ex-
tension is to use CI methods, but due to the strong cou-
pling between intra- and inter-atomic correlations during
the formation of Mg,, the conventional CI approach tak-
ing into account all double excitations (DECI) is not en-
tirely satisfactory. However, the use of many-body per-
turbation theory (MBPT), which properly describes the
mentioned coupling, gives a potential energy curve (Ref.
46) which is in very good agreement with experiment.
Our results for that molecule are presented in the second
part of Table VI. In the present calculations the basis set
for the Mg atom had no d-type polarization functions.
The NL binding energy of Mg, is in much better agree-
ment with experiment than the LDA value. It is even
better than the reported binding energy of the DECI cal-
culation,*® 0.018 eV, but worse than the MBPT (Ref. 46)
result, 0.045 eV. The NL equilibrium distance is closer
to the experimental one than the LDA result but still 0.4
a.u. less, while both DECI and MBPT methods predict
bond distances greater than experiment: 8.0 and 7.65
a.u., respectively.

As the final test for the present NL scheme we took the
CH, molecule, which is known to present some demand-
ing correlation effects. The geometry of methylene and
the energy gap between its two lowest states have been
the subject of extensive experimental and theoretical
studies. While the controversy in the interpretation of
experimental results has already been removed and there
are excellent experimental data, CH, is still an interesting
case for different ab initio methods.*’ Also a comprehen-
sive study on methylene has been made using the
density-functional approach within the LD approxima-
tion.* Both the LDA and CI methods confirm the im-
portance of including polarization functions in the basis
sets. Therefore, in the present calculations, basis sets of
double § plus polarization quality have been extended
with additional d- and p-type polarization functions for
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TABLE VII. Geometries, total energies, and the energy difference (AE) between singlet and triplet
states in methylene. Angles are in degrees, bond lengths in A, E; in hartrees, and AE in kcal/mol.
Contraction patterns for orbital and auxiliary basis sets used in calculations upon methylene: Carbon,
(5211/411/11), (8,3,4;6,3,4). Hydrogen (311/11), (5,2,2;4,2,2).

Method B, '4, AE
H-C-H Ry Rey -Er H-CH Rex —Er

LDA 137 1.08 38.745 54 102 1.12 38.724 57 13.2
NL 130 1.08 39.179 39 99 1.12 39.164 88 9.1
expt. 134 1.07 102 1.11 9.1

the carbon and hydrogen atoms, respectively. The ex-
ponents were taken from Ref. 49. The auxiliary basis sets
for C and H atoms were the same as those of Ref. 48.
The present results are summarized in Table VII. The
LDA already gives a good estimate of the *B,-! 4, energy
gap, 13.2 kcal/mol (Hartree-Fock yields 25 kcal/mol).
The NL functional decreases this gap to 9.1 kcal/mol,
which is in this case equal to the experimental value.
While the ground (®B,) state of methylene can be de-
scribed by a single determinant, the first excited state
('4,) requires two configurations to describe properly
the o- and m-electron pairs. However, the KS scheme, a
one-configuration method, in concert with a large polar-
ization space is able to describe the geometry of both
states of methylene to high accuracy.

We end this section with the results of the correlation
energy for some simple molecules using both LDA and
NL functionals at the experimental geometries.’® We
compare our results with the correlation energy function-
als of Becke (B) (Ref. 26) and of Lee, Yang, and Parr
(LYP) (Ref. 27) which, although outside of the KS for-
malism, have gained popularity. This is given in Table
VIII. Our NL results agree within a few mhartrees with
those of B and LYP.

V. Niy CLUSTER: ORBITAL ENERGIES

The Ni, cluster, when viewed as a model for the elec-
tronic properties of transition-metal surfaces, is a small
one, however, as a ‘“‘simple” transition-metal complex it
helps to provide a wider basis of tests for different com-
putational methods. Indeed, this cluster was the subject
of a detailed study by Messmer and Lamson.’! Using a
very extensive basis set they have obtained their results
within the Xa approximation to exchange correlation
both in linear combination of atomic orbitals (LCAO)
and scattered-wave (SW) techniques. Within each

TABLE VIII. Correlation energy —E, of some simple mole-
cules (in mhartrees).

Molecule LDA NL B LYP
(Ref. 26)* (Ref. 27)*
0, 1110 579 586 572
H,0 662 350 347 341
C,H, 872 441 451 444

*Calculated using HF density.

method, Slater’s transition-state concept was used in cal-
culations of ionization potentials. Also, using an all-
electron basis set optimized for the present VWN-LSD
method, results for the Ni, cluster have been reported.*?
In the present calculations we apply our (NL) method
along with a recently developed model-core potential for
the Ni atom.*® All results were obtained using a spin re-
stricted framework, 7, symmetry, and the bulk Ni-Ni
distance, 4.707 a.u. A 16-electron split-valence basis set
has been chosen, thus taking into account important 3p-
3d interactions.

As can be seen in Fig. 4 the ordering of levels and their
relative spacing are similar in the present LDA calcula-
tion and the cited Xa-LCAO results; however, all eigen-
values are shifted toward more negative values in the
LDA variant because of the correlation term. The Xa-
SW eigenvalues are placed even below the LDA ones.
Also, there is a reordering in orbital energies with respect
to both LDA and Xa-LCAO results. One of the most
important features of the eigenvalue spectra is their rela-
tion to ionization potentials. Sometimes, Koopmans’

Ni, spin unpolarized calculation

E(eV
(eV) LDA X,~LCAO X,—SW
AN
-3.0r 2t, 12tx>
e
lzt; _— 3t2/ 2t
/ 1t
3t 2ty 1
: 1e/) Q3te
2t2/ 2e
le/, 2;:: kzt,
—e.0f 27 : te
1t; la, 1t
2a,
lay
la,
—90¢Ft
—12.0+

FIG. 4. Eigenvalues of the Ni, cluster obtained within the
LD approximation. For comparison, Xa results of Messmer
and Lamson are also shown. The positions of Xa eigenvalues
were found with Figs. 2 and 3 of Ref. 51 and may be in error by
+0.1eV.
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theorem is used as the first estimate of ionization poten-
tials for an atomic or molecular system. However, this
does not apply to Xa eigenvalues because the local ex-
change approximation introduces a spurious Coulomb
self-interaction term; Slater’s transition-state method re-
moves this, approximately.

The present self-consistent-field (SCF) method, which
introduces nonlocal corrections to both local exchange
and local correlation, provides a physically appealing way
to interpret eigenvalue spectra. It avoids, in a natural
way, the use of the transition-state method. Also, this is
a fully correlated treatment for a molecular system. Fol-
lowing the discussion given in Sec. II on the correspon-
dence between highest eigenvalue and the ionization po-
tential of a given system, we shifted our effective one-
body potential in the nonlocal version to get the highest
eigenvalue equal to the difference between total energies
of neutral and singly ionized Ni, clusters. This was ob-
tained when the constant shift was —0.17 Ry (a value
close to that reported in the LM work: —0.2 Ry) giving
the position of the highest eigenvalue of the neutral Nig
cluster at —6.26 eV. For comparison, the total-energy
difference of these nickel clusters within the LDA was
6.47 eV, while the position of the highest eigenvalue was
—3.81eV.

The entire eigenvalue spectrum obtained in the present
nonlocal method with a —0.17 Ry potential shift and
both Xa-LCAO and Xa-SW transition-state (TS) orbital
energies are presented in Fig. 5. All eigenvalues move
down in the nonlocal treatment with respect to those ob-
tained within the local approximation (the vertical energy
scale is the same in Figs. 4 and 5). The global positioning
of NL orbital energies is comparable with those of Xa-
LCAO(TS]; however, there are some differences in the
relative positions of particular eigenvalues and a reorder-

Niy spin unpolarized calculation
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FIG. 5. Eigenvalues of the Ni, cluster obtained by NL calcu-
lations. Also shown are results of Xa calculations obtained us-
ing the transition-state method, from Ref. 51. Values of Xa or-
bital energies were found in the same way as in Fig. 4.

ing of closely spaced levels.

Finally, we close this section by emphasizing that we
have used a spin-restricted formalism. Also the geometry
of Ni, has not been optimized. We did this in order to
compare our results with other calculations reported in
the literature. In general, a spin-polarized version is re-
quired if one wants to investigate magnetic properties of
transition-metal clusters along with geometry optimiza-
tion. Both these factors are essential for magnetic phe-
nomena. Also, it will be interesting to investigate these
properties with respect to cluster size, using a nonlocal
treatment of exchange and correlation. Such calculations
are in progress.

VI. CONCLUSIONS

In the present paper nonlocal corrections to the
LCGTO-LSD method have been incorporated. There
was an initial constraint that any step beyond the LD ap-
proximation should retain in a reasonable manner the
high efficiency of the present computational method
based on the Kohn-Sham scheme and fitting procedures
used to reduce the N* problem for the integrals. Our pri-
mary area of interest is usually molecular clusters con-
taining several transition-metal atoms. Any ab initio
treatment of such systems is nontrivial. If the basic
feature of the KS approach to practical DFT is satisfied,
then any improvement over the LDA should be, in prin-
ciple, incorporated in a self-consistent way. The nonlocal
corrections involving electron density gradients are natu-
ral candidates for such improvements. The formal
density-gradient expansion of the exchange-correlation
functional usually has the form of a GEA. This is an ap-
proximation and as we have shown in the present study,
using the Mg atom as an example, its SCF implementa-
tion, which requires functional derivatives of nonlocal
functionals is not entirely satisfactory. The highest occu-
pied KS eigenvalue, which has direct physical meaning as
the IP for a given electron system, corresponds to the
valence region in electron density where the basic as-
sumption of GEA validity breaks down. Modifications of
the GEA which correctly predict the asymptotic behav-
ior in the large-gradient limit remove the artificial asymp-
totic divergence of the nonlocal potential, but still the
electron density which controls the highest occupied ei-
genvalue is not improved. From a chemical point of
view, this is the most important region. It is worthwhile
to point out that any nonlocal corrections which have the
form of a GEA, when applied in a non-self-consistent
way, i.e., using, for example, HF densities, predict total,
exchange and correlation energies for atoms and simple
dimers with high accuracy. This is, however, an approxi-
mation, which works very well for small systems like
atoms or simple molecules. For larger systems, this has
not been tested, since HF densities are less available and
they are also likely to be less accurate due to increasing
correlation effects. A possible way out is to use the LDA
density instead, but in that case the exchange and corre-
lation energy functional does not correspond to its func-
tional derivative, i.e., the exchange and correlation poten-
tial.
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The choice of nonlocal corrections made here is a very
promising one. The GGA exchange energy and correla-
tion energy functionals of Perdew and Wang are free of
the basic GEA deficiency. The resulting nonlocal
exchange-correlation potential is orbital independent.
Moreover, an effective one-body self-consistent KS poten-
tial could be shifted by a constant additive term, thus ap-
proaching the exact DF “local” (state-independent) po-
tential more closely. Atomic tests confirm the resulting
quality of the nonlocal corrections, the efficiency of basis
sets used in the present calculations, and the particular
choice of a single Slater determinant to describe the mul-
tiplets considered. The numerical results of the
s2d"-s'd"t! excitation energy for nickel, the binding en-
ergies of oxygen and magnesium dimers as well as the
singlet-triplet splitting in methylene, are comparable with
corresponding CI results. The VWN parametrization of
local correlation energy in concert with Perdew’s nonlo-
cal correlation energy functional offers a very good and
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practical representation of the correlation energy of the
inhomogeneous electron gas, especially in the range of
metallic densities. In practical applications, the self-
consistent implementation of nonlocal corrections pro-
vides increased accuracy for a variety of systems and yet
still retains the convenience of the LCGTO method.
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