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Phonons and librons in nitrogen monolayers adsorbed on graphite
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For the ordered commensurate and incommensurate N2 monolayers that are formed at low T on
the basal plane of graphite, we have calculated the structure and lattice dynamics by means of the
quantum-mechanical mean-field and time-dependent Hartree methods. The potential used is an ab
initio potential for the N, -N~ interactions, with its anisotropy expanded in spherical harmonics, and
an empirical atom-atom potential for the N2-graphite interactions, with variable parameters. The
molecular center-of-mass vibrations are expanded in three-dimensional harmonic-oscillator func-
tions and the librations in a free-rotor basis; translation-rotation coupling is explicitly included. We
discuss the anharmonic shifts in the frequencies of the in-plane and out-of-plane phonons and lib-

rons, but we find that these shifts, with the exception of the soft out-of-plane libration in the
compressed incommensurate herringbone phase, are not larger than in bulk nitrogen in the ordered
a and y phases. For the incommensurate monolayer, we find at zero pressure that the planar her-
ringbone ordering, which occurs also in the commensurate phase, is more stable than the pinwheel
structure. At higher pressures, but probably still before bilayer formation, the pinwheel structure
seems to be more stable, however. For the commensurate monolayer we obtain good agreement
with the phonon frequencies from inelastic neutron scattering, except for the acoustic-phonon gap.
Since this gap is directly related to the corrugation in the N2-graphite potential, we must conclude
that this corrugation cannot be correctly reproduced by an atom-atom model, even when the pa-
rameters are varied within reasonable limits.

I. INTRODUCTION

Physically adsorbed layers of N2 molecules on graphite
occur in a variety of quasi-two-dimensional phases. Of
basic interest are the stability and dynamics of these
phases, the transitions between them and the way in
which their behavior depends on the intermolecular and
molecule-substrate interactions. Especially over the last
few years a number of experimental and theoretical stud-
ies have appeared. Structures and phase transitions have
been characterized by neutron, x-ray, and low-energy-
electron di8'raction and by specific-heat measure-
ments. ' ' The adlayer dynamics has been investigated
recently by inelastic neutron scattering' ' and, in the
near future, will be studied probably in more detail by in-
elastic helium scattering. ' ' Theoretical investigations
have started from empirical-model potentials; they in-
volve static potential-energy calculations' and the use of
harmonic' ' or quasiharmonic lattice dynamics
and classical Monte Carlo or molecular-
dynamics ' ' (MD) methods. An excellent review of
the results that have been obtained from these studies is
given in the recent paper by Roosevelt and Bruch.

In the present paper we concentrate on the commensu-
rate (&3Xv'3)R30 monolayer for which the most ex-
perimental data are available, and on the incommensu-
rate monolayers. These phases are orientationally or-
dered and stable at low temperature, for lower and higher
coverages, respectively. For the (&3X&3)R30 phase a
herringbone ordering of the N2 molecules is well estab-
lished. ' " Also the uniaxially incommensurate phase

has the herringbone structure, but for the so-called tri-
angular incommensurate phase that occurs at higher
pressures both a herringbone and a pinwheel structure
are still considered possible. ' ' We study the dynam-
ics of these phases; the (theoretical) method that we use
for this purpose is in several respects complementary to
the (quasi)harmonic and classical MD methods used be-
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The pair potential assumed between the N2 molecules
in the adsorbed layer originates directly from ab initio
calculations. It is not fitted to a site-site model as used
in the other calculations, ' ' but instead its anisotropy
is explicitly expressed by a converged expansion in spher-
ical harmonics. In recent work on solid nitrogen it
has been confirmed that this representation of the orien-
tational dependence of the potential is essential for ob-
taining accurate librational frequencies. With a site-site
model fitted to the same ab initio data the librational fre-
quencies in solid ct-N2 and y-N2 are 30%%uo too high. The
use of this anisotropic expansion of the potential implies
that the molecular quadrupole and higher multipole in-
teractions are exactly included, without recourse to a
point-charge model. For the molecule-substrate interac-
tions we use the same empirical atom-atom potential of
Steele that was used in other calculations. ' ' Because
of the uncertainty in these interactions we apply a sys-
tematic variation of the parameters in this potential.

The method that we use to perform the lattice-
dynamics calculations is the time-dependent Hartree
(TDH) method. ' ' At zero temperature this method is
equivalent to the random-phase approximation (RPA). It
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is also equivalent to the susceptibility approach
which has been used for the (semiempirical) description
of orientational order-disorder phase transitions. In our
group this method has been extended in order to include
the anharmonic center-of-mass vibrations of the mole-
cules, which are expanded in a basis of three-dimensional
harmonic-oscillator wave functions. The librational wave
functions are expanded in spherical harmonics and the
effects of rotation-translation coupling are explicitly tak-
en into account. As illustrated by applications to solid a
and y nitrogen this method is suitable for the calcu-
lations of motions with larger amplitudes. The anhar-
monic effects enter in two ways. First, there is a dilation
of the lattice by the averaging over the (zero-point or
temperature) vibrations of the molecules in the anhar-
monic potential wells. This effect, which leads in general
to a downward shift of the frequencies, is also included in
the quasiharmonic theory. In commensurate overlayers
it cannot occur in the directions parallel to the surface,
but in the perpendicular direction it is expected to be
rather important. Secondly, there is a direct effect of
the (mainly cubic and quartic) anharmonic terms in the
potential, which leads to an upward shift of the frequen-
cies in bulk nitrogen. Classical MD calculations ' indi-
cate that these anharmonic effects are larger for adsorbed
layers than they are in bulk solids. On the other hand,
our TDH study is complementary to the classical MD
treatments ' ' in that it includes the quantum-
mechanical zero-point vibrations and librations which
reduce the cohesion or adsorption energies in these sys-
tems by about 15%. This is essential in considera-
tions about phase stability.

II. FORMALISM

A. The Hamiltonian

The center-of-mass positions of the molecules in the
adsorbed layer are denoted by r =R +u, where R are
the equilibrium positions and u the displacements of the
molecules p. The orientations of the molecules are de-
scribed by a set of polar angles co . We assume that the
motions of the molecules in the adsorbed layer are separ-
able from the graphite lattice vibrations which have
much higher frequencies and small amplitudes. We use a
rigid graphite substrate, so that the molecule-substrate
potential V for a given molecule p depends only on the
coordinates u and ~ of that molecule. The pair poten-
tial between the molecules within the adsorbed layer is
denoted by @ . Many-body interactions, as well as
substrate-mediated interactions between the adsorbed
molecules, are neglected. Then, the Hamiltonian for the
adsorbed layer is given by

H = g T(u )+ g L, (co )+ g V (u, co )

+2/yepp(upycopyup)a)p)
P &P

It contains the kinetic-energy terms for the translational
center-of-mass motions T and the rotational motions I of
the molecules, the molecule-substrate potential V and

the intermolecular potential N
The anisotropic intermolecular potential is written in

the form of a spherical expansion

pp p' p' p' p

I2 I3 (I )

XC ' (ro .)C '
(rpp ) .(I2 ) (~3 )

(2)

pp p' p' p' p

A) A2

where u =(u, u ) are the displacement vectors in polar
coordinates and the label A stands for the set of the in-
dices Ia, k, ,p, l, mI. The expression for XA ~ (R ) which

1 2

is given in Appendix A is much faster to evaluate than
the expression in Ref. 37. The summation over a& and cx2

extends to a&+o.2
~ o. ,„,where o. ,„ is equal to the order

of the Taylor expansion in the displacements. An expan-
sion with a,„=2, for instance, yields a potential N
which is harmonic in the center-of-mass displacements uP
and u . In the present calculations we carry this expan-
sion up to o, ,„=4 inclusive. For the summations over A,

and p the following holds: 0 ~ X, ~ a, and —k; ~ p;
where A,; has the same parity as a;. After this expansion

The intermolecular vector is given by
r .=(R .+u„.) —(R +u ) and r is the unit vector
along r p. The Racah spherical harmonics C'"(ro) that
describe the orientational dependence of the potential are
coupled to a scalar function by the summation over
m= (m „m2, m 3 I, with the large parentheses denoting a
3-j symbol. The first summation runs over
l= tli, lz, l3I and the factors y&(rpp ) are the expansion
coefficients that reAect the anisotropy of the potential.
Each expansion coefficient y&(r) consists of dispersion
contributions ( —r, r, and r '

) and short-range
contributions, which depend exponentially on r. The
quadrupole-quadrupole interaction ( —r ) appears in
the l „lz,l3 =2,2,4 term and the higher multipole interac-—

13
—1

tions ( —r '
) in the other terms with l i + l2 = I3. The

parameters in all these contributions have been directly
obtained from ab initio calculations on the N2-N2 di-
mer. The expansion appears to be converged for
I &, lz ~ 6 with I

&
+ Iz ~ 10.

The potential as written in Eq. (2) depends on the
molecular center-of-mass displacements u and u ~

through the intermolecular vector r . Its dependence
on u and u ~ can be made explicit by a double Taylor ex-
pansion. In Appendix A we describe a more efficient
expansion in u —u which leads to essentially the same
result
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we have a pair potential which is explicitly dependent on
the displacement coordinates of the molecules and thus
easy to use in lattice-dynamics calculations.

The interaction V of a molecule p with the substrate is
considered as a sum of pair interactions between the mol-
ecule and the individual substrate atoms. The most gen-
eral form for such molecule-atom interactions is of course
a spherical expansion, i.e., a special case of Eq. (2). We
model this interaction by the atom-atom model

tial explicitly dependent on the displacement coordinates
of the molecule. Thus we have obtained the molecule-
substrate potential in the following form:

V„(u, c0 )= gF~(R )(u ) C' (u )C'"(co ),

where again A indicates the set of indices In, A, , p, l, mI.
The coefficients F~(R~ ) can be written as a two-
dimensional Fourier series

V (u, r0 )= g Iv [/R +u„+a(ro~) —Rc/I
C

+U [iR„+u~ —a(c0 ) —Rc i ]I, (4)

FA(R )= QF~(g~z )exp(ig r ),
g

where the vectors R~ denote the positions of the carbon
atoms C in the substrate and the orientation dependent
vectors a(r0 ) describe the positions of the nitrogen atoms
with respect to the N2 center of mass. Just as in the pre-
vious calculations' ' we choose an atom-atom potential
U(~r ) of the Lennard-Jones type as parametrized by
Steele, but we investigate systematically the eA'ects of
the variation of these parameters (see Sec. III).

In Ref. 50 it is shown that the atom-atom interactions
can be summed to an atom-substrate interaction with the
aid of an analytical Fourier transformation. Next, a
spherical expansion of the molecule-substrate interaction
can be made to expose its anisotropy explicitly and, final-

ly, a molecular-displacement expansion of the spherical
expansion is used to make the molecular-substrate poten-

with ~ denoting the projection of R on the graphite
basal plane (the xy plane), so that R =r +z e, . The
vector I is a vector in the two-dimensional reciprocal lat-
tice of a substrate layer. Analytical expressions for the
expansion coefficients FA(g~zz ) are given in Ref. 45. The
terms with g=0 describe the flat (but anisotropic and
anharmonic) potential which depends only on the height
z of the molecules above the graphite surface; the terms
with g&0 contain the effects of the surface corrugation.

In order to summarize the result of these manipula-
tions we introduce the notion of dynamical variables.
In the harmonic method these are the center-of-mass dis-
placements and the infinitesimal (linearized) angular dis-
placements of the molecules. In our treatment the
dynamical variables are

C'"(co&) with v=p=(l, m) for the molecular rotations (k =r)
k, v

(u ) C„' '(u ) with v=r=(a, A, ,p) for the center-of-mass vibrations (k =t)

and the lattice Hamiltonian for the adsorbed molecular layer can be written as

p, k p p, 7 p p7p&pp

The kinetic energy T" is either translational, T' = T (u ),
or rotational, T"=L(co ), and the coefficients F,(R )

and X. ..(R, ) are the same as in Eqs. (5) and (3). The
complete expressions for these coefficients can be found
in Ref. 45 and in Appendix A, respectively.

k, v y (gk, v) F (R )

V

B. The time-dependent Hartree method

The first step in our treatment is a mean-field (MF) cal-
culation. The translational and rotational motions are
decoupled at this level so that we obtain two effective
particles per molecule. This yields the following MF
Hamiltonian:

~k Tk+ ~ k, v~k, v

wit. h

(10)

( gk, v) Tr(pk)(dkgk, v)
p p

i.e., by a single-particle trace with the MF density opera-
tor d . The MF equations

Hk~yk, a) k, a~qk, a)
p p p p

(12)

are solved self-consistently in a basis of tesseral harmon-

where k denotes the complement of the type of the
motion k, i.e., r =t and t =r. The thermodynamic aver-
age of a dynamical variable is defined by
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M(q)=E P—Q W(q)Q T . (13)

ics (real spherical harmonics) for the rotational states
(k =r) and three-dimensional harmonic oscillator func-
tions for the translational vibrations (k = t). For the case
at hand, we have included tesseral harmonics up to
l „=12or 13, for ortho- or para-N2, respectively, and
spherical harmonic oscillator functions up to principal
quantum number nm» =6.

The coupling between the molecular motions, neglect-
ed at the MF level, is regained with the aid of the time-
dependent Hartree method. This method is briefly sum-
marized in Appendix B. The excitation and deexcitation
energies of the adsorbed layer that correspond with the
translational phonons, the librons or, in general, with
mixed modes of wave vector q, are the eigenvalues of the
following dynamical matrix:

Eikab;i'k'a'b ' ~ii ~'kk'~aa ~bb'(Sp ep
ka k, b (14)

Pikab;i'k'a b ''~ii'~kk'~aa'~bb'(dp dp (15)

Q, k b;'k =&'&kk &V"'lQ"' ie"' )

Qikab;i k'v 'Qikba;i'k'v
(16)

of the dynamical variables. The coupling information is
contained in the Fourier transforms

The molecules are labeled here by p = [n, i I, where n la-
bels the unit cells and i the sublattices. Furthermore, Eq.
(13) contains transition matrix elements

This matrix comprises the MF excitation energy matrix c,

and the density operator difference matrix P with the ele-
ments

W,„., „.(q)= gexp[iq. (R„,—R, )]W,";,'"' ',

with p = IO, i },p'=
I n, i 'I and

(17)

Wk, , k' '=(1 g, ) y y (Qk )X, , (R, , )(Q",'"')+5,|i„„, F„,, (R )+ g gX . ,(R „-)(Q„": )(Q"')
+PP 7

(18)

The first term in Eq. (18) couples the motions of the mol-
ecules at different lattice sites; the other terms are
translation-rotation couplings on the same site. Both the
molecule-substrate potential and the intermolecular po-
tential are active in the latter.

It is proved in Appendix B that the TDH method is ex-
actly equivalent to the approach that uses generalized
susceptibilities. " The frequency-dependent single-
particle susceptibility corresponds with the MF model
and it is given in terms of the matrices in Eqs. (13), (14),
and (15) by

s =().2631 kJ/mol in the atom-atom model for the
molecule-substrate potential. Only the top layer of the
graphite substrate contributes to the corrugation (i.e. , the
terms with gAO) in this potential. It is summed over
molecule-atom pairs within a range of 30 A. The next
ten underlying graphite layers are taken into account in
the first Fourier term (g=O) in Eq. (6) by analytic sum-
mation. The intermolecular potential in the adsorbed
layer is summed over 8.1 A and the rotational constant of
N2 is taken as B=2.013 cm '. All calculations are per-
formed at zero temperature.

y' '(ro)=Q (ai —E) 'P Q (19) III. RESULTS AND DISCUSSION

The generalized crystal susceptibility y(q, io) for wave
vector q is related tox' '(co) and to the coupling matrix
W(q) in Eq. (17) by the Dyson equation

L(q, co) '=g' '(co) '+ W(q) .

It is shown in Appendix B that the frequencies of the
poles in L(q, co) are exactly equal to the eigenvalues of the
dynamical matrix M(q) in Eq. (13), i.e., to the
(de)excitation frequencies of the crystal calculated by the
TDH method.

Before we present the results we mention some further
computational details. The width parameter A in the
three-dimensiona1 harmonic-osci11ator basis for the
center-of-mass vibrations is chosen as 2 =(me@/fi)'
where m is the nitrogen molecular mass and co is the
average of the MF fundamental excitation frequencies.
We use 1.42 A as the nearest-neighbor distance between
the carbon atoms within the graphite layers and 3.37 A
as the distance between the layers. If not indicated other-
wise, we have used Steele's parameters cr =3.343 A and

In order to illustrate the effects of the anharmonicity
and the corrugation in the potentia1 we compare the re-
sults of the full TDH calculations with more approximate
treatments. The first approximation consists of limiting
the dynamical variables, see Eq. (7), to the terms with
u&++2~a, „=2. This approximation implies that the
Hamiltonian in Eq. (8) becomes harmonic in the transla-
tional displacements. The anharmonicity in the libra-
tions is fully retained through the expansion in spherical
harmonics. The next level of approximation is a pure
harmonic treatment based on the spherical expansion
(SE) of the ab initio intermolecular potential, cf. Eq. (2).
The required first and second derivatives of this potential
with respect to the translational and librational displace-
ments are given in Ref. 39. Finally, we compare also
some results obtained with the site-site (SS) model poten-
tial that was fitted to the ab initio data. In order to
study the effects of the surface corrugation we may
switch o6' this corrugation at the various levels, as has
been done previously in (quasi)harmonic calculations.
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We will not distinguish between ortho- and para-N2 lay-
ers, since the MF and TDH calculations with even or odd
l free-rotor functions in the basis yield practically the
same results for the ordered phases considered here.

A. Commensurate monolayers

First we discuss the results for the commensurate
(&3X &3)R 30' monolayer with the nearest-neighbor dis-
tance of 4.26 A fixed by the substrate. It is illustrative to
begin with the fundamental excitations at the single-
particle level (see Table I). Even in the fully anharmonic
TDH treatment it is easy to recognize the normal mode
contents of the translational vibrations and librations and
to assign the corresponding quantum numbers. Especial-
ly for the librations this is striking since their wave func-
tions have been expanded in a free-rotor basis. The fre-
quencies of overtones and combination bands are surpris-
ingly close to the sums of the fundamental frequencies.
Also the adsorption energy is close to the harmonic value
including the zero-point motions.

Still, one clearly observes the frequency shifts which
are due to the anharmonicity. For the out-of-plane
translational motions there is already a difference be-
tween the harmonic calculations and the MF calculations
with a „=2. This may be unexpected since these calcu-
lations use exactly the same potential and the MF scheme

with a „=2 involves a Hamiltonian that is harmonic in
the center-of-mass displacements. We have found that
the difference is due to the averaging over (anharmonic)
librations which is performed in the MF calculations
with o. „=2,but not in the harmonic treatment. When
the cubic and quartic (a=3 and 4) displacement terms
are switched on, we find an upward shift of about 4.5
cm for the in-plane vibrations and a downward shift of
5.4 cm ' for the out-of-plane vibration. In order to un-
derstand this result we remind the reader that the com-
mensurate adsorbed layer cannot expand in the parallel
directions, but it can be lifted from the surface by the
anharmonicity. It has been observed already that the
potential is strongly anharmonic in the z direction and we
find here that the average center-of-mass positions are
higher by & u, ) = &z &

—z, =0.054 A than the static equi-
librium positions. For the librations we find anharmonic
shifts of about —3.2 cm ' and a further shift of —4. 1

cm in the out-of-plane libration when the anharmonic
displacement terms are switched on. The latter shift is
caused by the lifting of the adsorbed layer.

In Figs. 1 and 2 we show the phonon and libron disper-
sion curves calculated by the TDH method. These
curves are similar to the harmonic results. ' Due to an
artificial symmetry which is present only at the harmonic
level one can decouple ' the in-plane motions from the
out-of-plane motions by switching off the corrugation in

TABLE I. Single-particle excitations in the {&3 X &3)R 30' monolayer.

Mean field

+max 4 max

Harmonic
self-term

Mode
character'

m~ (cm ') 34.7
42.0
55.7
71.3
77.4
86.0
90.4
96.7

30.4
37.3
61.1
61.5
68.0
74.7
92.0
98.7

29.7
36.7
57.7
59.4
66.4
73.4
87.4
94.4

1 00
I010

001
200
110
020
101
011

(in-plane)

(out-of-plane)

(overtones
and

combinations)

~~ (cm ')

z, (A)
(M, ) (A)(")'"(A)
(~,'&'" (A)
(0 )' (A)
y, (deg)
(cos 8&
( sin 8 cos2q& &

(sin Bsin2y&
E (kJ/mol)

48.0
52.4
96.6
99.0

104.8
3.305
0.054
0.124
0.128
0.117

42'
0.040
0.059
0.884

—11.143

52. 1

52.8
102.3
103.7
108.2

3.305
0.025
0.132
0.136
0.103

42
0.037
0.060
0.887

—11.145

55.3
55.9

110.6
111.2
111.8

3.305

42.0

—11.130/ —12.537'

1 0
0 1

2 0
1 1

0 2

(out-of-plane 8)
(in-plane p)
(overtones

and
combinations)

'Three vibrational quantum numbers are assigned to the translations and two to the librations.
These numbers indicate the maximum in orientational probability.

'Including or without the zero-point vibrations.
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the molecule-substrate potential. At the TDH level only
the natural symmetry of the system occurs and we study
the effect of the in-plane and out-of-plane (de)coupling by
the omission of the corresponding coupling terms in the
TDH matrix given by Eq. (13). Even in the decoupled
curves in Fig. 1 we have retained the gAO contributions
in the molecule-substrate potential, as evident by the
presence of the phonon gap. Comparison of Figs. 1 and 2
shows that also in the full TDH computations there is a
near separation between the in-plane and out-of-plane
motions. This separation and also the observed near sep-
aration between the translational phonons and the librons
holds in the entire Brillouin zone, except near the avoid-
ed crossings. The in-plane motions are primarily deter-
mined by the N2-N2 intralayer potential, the out-of-plane
motions by the N2-substrate potential. Yet, we observe in
Figs. 1 and 2 that the dispersion of the out-of-plane lib-
ron frequencies is substantial. The out-of-plane transla-
tional phonon band is very Bat indeed.

The q=o phonon and libron frequencies, as computed
at the different levels of approximation, are given in
Table II. The lowest two values are the frequencies of the
acoustic-phonon modes which are not equal to zero be-
cause of the corrugation in the molecule-substrate poten-
tial. These values characterize the so-called phonon
gap. ' ' The translational and librational anharmonici-
ties appear to have very little inhuence on this gap. The
anharmonic shifts in the optical-phonon frequencies and
in the libron frequencies are strikingly similar to the

TABLE II. Lattice frequencies for q=O (in cm ') for the
commensurate ( &3 X &3)R 30' monolayer.

Symmetry
group
p 2gg

TDH
max =4 Olmax

Harmonic
SE' SS

In-plane
translations

Bl
B2
B2
B,

6.9
7.1

35.6
48.8

7.4
7.7

33.0
43.2

6.2
6.8

32.7
42.7

6.4
6.6

35.9
43.9

Out-of-plane
lib rations

B2
B,

40.6
51.6

44.7
54. 1

47.6
57.1

47.5
57.2

Out-of-plane
translations

55.9
55.5

60.6
61.1

57.4
57.7

57.4
57.7

In-plane
lib rations

60.4
69.9

61.2
70.5

63.3
75.0

59.7
68.9

shifts discussed at the single-particle level. So, these
shifts are mainly determined by the anharmonicity in the
field experienced by an adsorbed molecule, which is due
to the other molecules in the layer as well as to the sub-

'Using the same spherically expanded ab initio N2-Nz potential
as in TDH; equilibrium height z, =3.305 A, angle cp, =42.0,
and static absorption energy E = —12.537 kJ/mol.
Using the site-site model (Ref. 33) for the ab initio N2-Nz po-

tential; equilibrium height z, =3.305 A, angle y, =44.0', and
static adsorption energy E = —12.618 kJ/rnol.

80
80

60

O
C

40

60

O
C

F 40

0
CL

20

0
C0

CL

20

0 I f I

r I I I

Wave vector

FIG. 1. Phonon-libron dispersion curves for a commensurate
(&3X&3)R30' N2 monolayer on graphite from TDH calcula-
tions (a,„=4). In-plane (solid curves) and out-of-plane (dashed
curves) branches have been decoupled by the omission of cou-
pling blocks in the TDH matrix of Eq. (13).

Nave vector

FIG. 2. Phonon-libron dispersion curves for a commensurate
(&3X&3)R30' N& monolayer on graphite from TDH calcula-
tions (a,„=4). Symmetry group p2gg, Brillouin zone points
I =(0,0), X =(~/a, 0), F =(0,~/b), and S =(m. /a, m, b).
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strate atoms. The difterence between the site-site model
of the N2-Nz potential and its representation by the
spherical expansion is mostly apparent in the frequencies
of the in-plane phonons and librons, as might be expect-
ed. The eAect on the libron frequencies is substantially
smaller than in bulk nitrogen, however.

Next we compare our results with the data obtained
from inelastic neutron scattering. ' ' The quantities
that have been measured are a phonon gap of 13.4 cm
the frequency of the out-of-plane translational phonons
=SO cm '„ the width of the in-plane phonon and libron
density of states =4S cm ', and the average frequency of
this density of states =36 cm '. The latter two quanti-
ties are rather global and they are consistent with the cal-
culations. For the frequency of the out-of-plane phonon
band we And a value of S6 cm '. The corresponding har-
monic value is S8 cm ', both in our calculations and in
Ref. 21. The calculated phonon gap of 6.9 cm ' is too
small by a factor of 2, as in the previous harmonic calcu-
lations. ' ' '

Since the largest uncertainty in the calculations con-
cerns the molecule-substrate potential we have systemati-
cally varied the Lennard-Jones parameters o. and c in the
atom-atom model for this potential. The results, which
are listed in Table III, can be summarized as follows. As
expected, the frequencies of the in-plane optical phonons
and librons are rather insensitive to the parameters in the
N2-substrate potential. The out-of-plane frequencies de-
pend only slightly on the parameter o, although the
height of the adsorbed layer and the adsorption energy
change considerably with o.. The dependence of the out-
of-plane frequencies on the well-depth parameter c. is
nearly as E' . The acoustic-phonon gap depends on cr

and c, but it does not reach a value that is close to the ex-
perimental number. So we must conclude that an atom-

atom model as used here and in other calculations' '
for the molecule-substrate potential cannot represent the
correct surface corrugation. This holds even when the
parameters in this model are varied, within limits that are
reasonable in view of the measured adsorption energy '

and the out-of-plane phonon frequency of =50 cm

B. Incommensurate monolayers

The results for the incommensurate monolayers have
been calculated by switching oIII'the corrugation, i.e., om-
itting the g&0 contributions, in the molecule-substrate
potential. First we have optimized the structure, i.e., the
two-dimensional lattice parameters and the height of the
adsorbed molecules above the substrate. For the herring-
bone structure with p2gg symmetry the lattice parame-
ters a and b have been varied independently; there are
two molecules in the unit cell with the same height,
which may lie (on the average) within the layer plane or
they may be tilted out of the plane. For the pinwheel
structure with p6 symmetry there is only one indepen-
dent lattice parameter and there are four molecules in the
unit cell. The height of the pin molecule above the sub-
strate will be difterent from the height of the three wheel
molecules, so these heights have been optimized indepen-
dently. The wheel molecules may be tilted out of the lay-
er plane.

Minimization of the static energy for the herringbone
structure at zero pressure yields a=4.224 A, b=7. 124 A
and the energy E = —12.486 kJ/mol. The MF calcula-
tions yield a =4.36 A and b =7.21 A with energy
E = —11.036 kJ/mol, so it is essential to include the
zero-point motions. The latter value of a is even larger
than the corresponding lattice parameter for the com-
mensurate monolayer, but we note here that the incom-

TABLE III. Lattice frequencies (in cm ) for the (&3 X&3)R30 monolayer as a function of the molecule-substrate interaction
parameters o. and c (from harmonic calculations with the spherical expansion of the N2-Nz potential).

c (kJ/mol) 0.20
o. (A) 2.5

0.20
3.0

0.20
3.5

0.20
4.0

0.25
2.5

0.25
3.0

0.25
3.5

0.25
4.0

0.30
2.5

0.30
3.0

0.30
3 ' 5

0.30
4.0

Height z, (A)
Angle cp, (deg)
Static energy E

(kJ/mol)

2 436 2 957 3 463 3 958 2 436 2 957 3 463 3 958 2 436 2 957 3 463 3 958
41.96 41.98 41.99 41.99 41.95 41.98 41.99 41.99 41.94 41.98 41.99 41.99—6.88 —8.68 —11.00 —13.89 —7.87 —10.15 —13.04 —16.66 —8.91 —11.61 —15.09 —19.43

In-plane 8,
translations 8&

82
8I

5.1

1.4
29.9
41.5

6.1

6.2
31.6
42.4

5.1

5 ' 5

32.4
42.5

3.8
4.5

32.4
42.5

5.5
4.3

31.3
42.2

6.7
7.2

32.4
42.7

5.7
6.2

32.6
42.6

4.2
4.7

32.5
42.4

5.9
5.5

32.0
42.7

7.4
8.1

32.7
42.9

6.2
6.8

32.8
42.7

4.6
5.1

32.6
42.5

Out-of-plane 82
librations B,

40.8
50.6

38.9
49.7

39.0
50.2

40.2
51.2

46.8
55.8

45.5
55.3

46.2
56.0

47.6
57.2

52.5
60.8

51.6
60.4

52.5
61.3

54.0
62.6

Out-of-plane
translations A2

49.2
49.6

49.6
50.0

50.3
50.6

51.2
51.5

55.0
55.3

55.5
55.7

56.3
56.5

S7.2
57.5

60.3
60.6

60.7
61.0

61.6
61.9

62.7
63.0

In-plane
librations

63.4
75.1

63.3
75.0

63.3
75.0

63.3
75.0

63.4
75.1

63.3
75.1

63.3
75.0

63.3
75.0

63.5
75.1

63.3
75.1

63 ~ 3
75.0

63.3
75.0
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mensurate phases are stable only at higher pressure. For
the pinwheel structure the MF calculations yield
nearest-neighbor distance a=4. 14 A and E = —10.895
kJ/mol with average heights (z ) =3.382 and 3.742 A for
the wheel and pin molecules, respectively. The wheel
molecules lie within the layer with @=40, 160, and 280
and the pin molecules are indeed localized around the z
direction. The amplitude in the angle 8 is substantially
larger for the pin molecules (23') than it is for the wheel
molecules (11 ) and the fundamental librational frequency
is considerably smaller (33.0 cm ', twofold degenerate,
versus 49.7 cm ', out-of-plane, and 52.3 cm ', in-plane).
All these results for the wheel molecules are similar to
the corresponding values for the molecules in the herring-
bone layer shown in Table I, but the pin molecules
behave rather differently.

In order to perform the calculations for non-zero two-
dimensional pressures we proceed as follows. For the
herringbone structure we choose a grid of three points a
and three points b around the values of the lattice param-
eters which we expect to find for a given pressure. We
calculate the MF energies at these grid points and we fit
these energies by a second-order form in a and b. From
this form it is easy to determine the ratio b/a that mini-
mizes the MF energy for constant surface s =

—,'ab. At
zero temperature the MF energy is equal to the
Helmholtz free energy A. On the curve of optimized b/a
ratios we calculate the two-dimensional pressure
p = —(t) A /t)s) 7., as well as the chemical potential

p = A +ps. This procedure has been repeated for
different grids, i.e., different ranges of s and p, in order to
obtain the p(s), p(p), and p (s) curves for the herringbone
structure. The corresponding procedure for the pinwheel
structure is trivial, since there is only one independent
lattice parameter. Only the optimization of the heights
of the pin and the wheel molecules is tedious.

The molecules in the herringbone layer stay within the
plane and the optimized b/a ratio is equal to about 1.65
for the whole range of pressures investigated (p ~0.090
N/m which corresponds to a ~4.15 A). For still higher
pressures corresponding with a=4.05 A and b=6.68 A
the herringbone structure becomes unstable; one of the
TDH frequencies is imaginary. The ratio b/a=1. 65 im-
plies a reduction of S%%uo with respect to the value of &3
that holds for the commensurate monolayer, in good
agreement with the experimental observation that the
monolayer structure for a range of pressures is uniaxially
incommensurate with a reduction in b that ranges from 2
to 5%%u~. For the pinwheel structure the wheel molecules
stay within the layer also. The calculated p(p) curves for
the herringbone and pinwheel structures are similar to
those in Ref. 23. At zero pressure we find with the use of
the ab initio Nz-N2 potential that the herringbone struc-
ture is more stable than the pinwheel structure by 0.14
kJ/mol. The pinwheel structure is considerably more
compact, however, so it will be favored at higher pres-
sures. Since the p(p) curves run nearly parallel it is hard
to determine the transition pressure. From the difference
in surface per molecule, s=15.76 A for the herringbone

O

layer and s=14.84 A for the pinwheel layer, we estimate
that the transition occurs around p=0.025 N/m. The

100 I I I i I I

I I

80

60

O
C
0)

CT

F 40
C0
0

CL

20

Wove vector

FIG. 3. Phonon-libron dispersion curves for an incommensu-
rate N~ herringbone monolayer on graphite from TDH calcula-
tions (a,„=4) with the uncorrugated (y =0) molecule-

0
substrate potential. Lattice constants a =4.15 A, b =6.87 A.

chemical potential p= —8.62 kJ/mol at this pressure is
considerably lower than the bulk value of —5.92 kJ/mol
(Ref. 37) and it is lower also than the value of —7.3
kJ/mol estimated for the beginning of bilayer forma-
tion. So we conclude that the incommensurate mono-
layer may adopt the pinwheel ordering at higher pres-
sures.

The phonon and libron dispersion curves for the opti-
mized incommensurate herringbone layer with a=4. 15
A, 6=6.87 A, and s=14.25 A are shown in Fig. 3 and the
optical (q=0) frequencies are listed in Table IV. Al-
though some of the avoided crossings occur at different
points in the Brillouin zone, Fig. 3 is qualitatively not so
different from Fig. 2. The frequencies of the in-plane
modes are considerably higher, however, and their
dispersion is larger, due to the compression of the ad-
sorbed layer. Note that there is no phonon gap for q=o,
of course, since there is no corrugation in the molecule-
substrate potential. The anharmonic frequency shifts are
similar to those discussed for the commensurate mono-
layer, but slightly larger. Especially the large downward
shift of the lowest out-of-plane libration is noticeable.
The low frequency of this libration and its large anhar-
monicity are the signs of this mode becoming soft and the
molecules wanting to rotate out of the plane at still
higher pressures. The phonon and libron curves for the
pinwheel structure are drawn in Fig. 4 and the character
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TABLE IV. Lattice frequencies for q=O for the incommensurate herringbone monolayer (lattice
0 0

constants a=4. 15 A and b=6.87 A).

Symmetry
group
p 288 +max =4

TDH
+max =2 SE'

Harmonic
SS'

Height

Angle
Energy

z, (A)
(u, ) (A)
y, (deg)
E (kJ/mol)

3.324
0.064

40
—10.716

3.324
0.031

40
—10.705

3.324

38.9
—12.380

3.324

40.3
—12.393

In-plane
translations

B)
B2
Bq
B(

Lattice frequencies (cm ')
0.0 0.0
0.0 0.0

51.4 48.7
80.5 74.8

0.0
0.0

49.2
76.3

0.0
0.0

55.1

78.9

Out-of-plane
libration s

B~
B)

19.5
37.5

27.3
42.7

25.2
44.2

30.3
46.9

Out-of-plane
translations

53.0
56.1

60.0
62. 1

55.0
57.5

54.9
57.6

In-plane
librations

78.6
88.4

79.6
89.9

84.5
96.2

79.6
88.7

'With different N&-N2 potentials, as in Table II.
Not including zero-point motions.

80

E 60

O
C
(D

40

0
C0

CL

20

I

I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

I

of the modes for q =0 is indicated in Table V. Due to the
different symmetry and the fact that this structure con-
tains two distinct types of molecules the resulting picture
is rather different from the dispersion curves for the her-
ringbone layer. We observe also that the frequencies are
much lower, although the calculations leading to Figs. 3
and 4 have been performed for the same surface per mol-

Symmetry
group

p6

In-plane
translations B

B

0.0
31.4
38.8
62.4
73.5

TDH
+max =4

pin+ wheel
wheel
pin+ wheel
pin+ wheel
wheel

TABLE V. Lattice frequencies for q=O (in cm ) for the in-
commensurate pinwheel monolayer (nearest-neighbor distance
a=4.075 A).

Wave vector

Out-of-plane
libration s B

EI

24.3
50.6
52. 1

pin+ wheel
wheel
pin+ wheel

FIG. 4. Phonon-libron dispersion curves for an incommensu-
rate N& pinwheel monolayer on graphite from TDH calculations
(a „=4)with the uncorrugated (g=O) molecule-substrate po-

0
tential. Nearest-neighbor distance a =4.057 A. Symmetry
group p6, Brillouin zone points I"=(0,0), E =(2n/3a, 0), and
M =(w/2a, m/2a+3).

Out-of-plane
translations

In-plane
libration s

51.7
53.1

54.5

41.7
68.8

pin
wheel
pin+ wheel

wheel
wheel
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ecule (s=14.25 A ). This is related to the pressure which
is substantially lower for the pinwheel ordering than for
the herringbone structure. To our knowledge the phonon
frequencies for the incommensurate monolayers have not
been measured yet.
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APPENDIX A

In Ref. 37 the intermolecular potential given by Eq. (2)
is written as a double Taylor expansion in the center-of-
mass displacements u and u .. Here, we derive a similar
expansion in a form that is amenable to much faster nu-
merical calculation. First we expand the part of the po-
tential that depends on the displacements as a Taylor
series in u =u .—u

((3 ) (up@ "~) (I3 )
(l)i(i )C (r )= g pi(R .)C ' (R ) .

af

(A 1)

We can evaluate this expression by means of the gradient
formula in spherical tensor form

u Vyi(R. ~~ )C ' (R~ )=u g Ai k (Rpp, )yi(R, )( —1)
n& n2 —m3 1 2

1 nl, n2

where the operator Ai k (R~~ ) is given by
3 1

(A2)

13(213 —1 )

213+ 1

d l3+1+
dR ~ R

(l3+ 1)(2l3+3)—6k 1,13+1
3 dR ~ R

(A3)

The use of this relation in Eq. (Al) gives

(B )
yi(r~)C '(r )=g, g '8'i(, k) (R„) g (

—1)
a kl k2 1' 2

ki k2 l3

n& n2 —m3

The coefficients 'Wk i, (R ) can be calculated with the following recursion relation:
1 2

ji 1 k,
'Wi, k (R )=(2k, +1)(—1) '

~1 ~2

k2 k, I3

j I jp 1 ~2 ~ » ~1~2
(A5)

'JYI', 'k (R )=ok Oo„( +213+ ly, (R,),
while the expression in curly braces is a 6-j coefficient.

(kl )
Now we can split (u ) C„(u~, ) in factors dependent on the molecular displacements u and u (Ref. 54)

1

al ITIII1(k
1
+ A. l, a2)

al 0 ~1 0 ~2 Ik I ~1I pl p2

where a2 is given by +2=a —a, and the coefficients are

(A7)

(a+k +1)!!(a—k )!!(2)(, +1)(2A, +1) k) ~) ~z

(a)+X(+1)!!(ai—A, i)!!(a2+A.2+ 1)!!(az—k )!! P& P2
(A8)

Introducing this into Eq. (2) and Eq. (A4), the intermolecular potential reads

@~~(u~,co~, u~, co~ )= gg(u ) 'C„' (u„)C ' (co )X~ ~ (R )(u ) 'C„' (u )C ' (ro ),
Al A2

(A9)

where A stands for the set of indices I a, k., )M, l, m I and XA z is given by
1 2



13 936 T. H. M. van den BERG AND A. van der AVOIRD 43

l3

13,m3 - - kl, k2 n& n2
n ) n2 tfl3

(A10)

This expansion is considerably simpler than that given in
Ref. 37 because only one recurrence relation is needed for
the coefficients 'Wk k (&~„),instead of two.

1 2

APPENDIX 8

The TDH method can be derived ' ' by looking at the
response of a system to a time-dependent perturbation. It
is assumed that this perturbation can be represented by a
sum of single-particle operators h "(t) and that the per-
turbed density operator is a product of single-particle
density operators d "(t)=d"+5"(t) The. density opera-
tors d correspond to the unperturbed MF model and the
operators 5~(t) describe the response of the system to the
perturbation. The column vectors h(q, ro) and 5(q, co)
contain the space-time Fourier transforms of the transi-
tion matrix elements of the single-particle operators h "(t)
and 5"(t) in a (finite) basis of MF states itj~'

h(q, co)= —
Q E(q, co), (84)

Y(q, ro) = Q 5(q, co) (85)

and the generalized susceptibility L(q, co) is defined by

Y(q, o~) =y(q, co)E(q, co)

then it follows from Eq. (83) that

X(q, co) =Q [co—M(q)] 'P Q .

(86)

(87)

The TDH (de)excitation energies of the system, i.e., the
eigenvalues of the matrix M(q), correspond with the
poles of the susceptibility L(q, co). Analogously, we define
the MF single-particle susceptibility by

where the matrix Q is given by Eq. (16). When the
response of the system is also expressed in terms of the
dynamical variables

h;k b(q, co ) X"'(~o)= Q (o~ —E) 'L' Q, (88)

and

=(2irN) ' Idt exp(i~ot)

X g exp(iq R )(P"'~hz(t) ~g~' )

(81)

where the matrix E contains the MF (de)excitation ener-
gies; see Eq. (14). If we insert Eq. (13) for M(q) into the
linear-response equation (83), multiply the latter by

Q (co —E) ' and substitute Eqs. (84), (85), and (88) we
obtain

[I+L' (co) 8'(q)]Y(q, co) =I' '(ro)E(q, ro) . (89)

=(2irN) ' J dt exp(icot)

X g exp(iq R~ )(P„' 5"(t)~P
' ) .

(82)

As shown in Ref. 37 the Liouville equation, which de-
scribes the time evolution of the density operator, reduces
in first order to the linear response equation

[co—M(q)]5(q, co)= I' h(q, co) . — (83)

The density operator difference matrix P is given by Eq.
(15) and the matrix M(q) by Eq. (13). The TDH
(de)excitation energies are the eigenvalues of the matrix
M(q).

The response properties of the system as given by Eq.
(83) can also be expressed by the generalized susceptibili-
ty g(q, co). To that end, we define the perturbation h "(t)
as the action of an external field with components E ' (t)
on the dynamical variables Q"'; see Eq. (7). For the
Fourier component with frequency co and wave vector q
this yields, in matrix form,

Comparing this result with Eq. (86) we find that the rela-
tion between the collective TDH susceptibility L(q, ro)
and the single-particle MF susceptibility Z' '(co) is given
by the Dyson equation, Eq. (20).

In considerations about orientational order-disorder
phase transitions ' the rotational MF Hamiltonians are
replaced by free-rotor Harniltonians, with well-known
eigenstates. The rotational single-particle susceptibility
I' '(~o) can then be evaluated relatively simply, in some
models even analytically. The translational susceptibility
is usually approximated by the analytical formula for
harmonic oscillators. At higher temperatures, these sus-
ceptibilities are sometimes calculated within the classical
approximation. Cubic and quartic terms in the lattice
Hamiltonian, Eq. (8), are neglected and only the lowest-
order dynamical variables for the rotations, see Eq. (7),
are retained. This yields a simplified coupling matrix
W(q) which does not depend on averaged dynamical
variables as occurring in Eq. (18). In our calculations we
avoid such approximations. The accuracy to which Eq.
(20) is equivalent to TDH is only limited by the use of a
finite basis.
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