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First-principles calculation of positron lifetimes in solids
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We present a first-principles approach for calculating the positron lifetime in metals. Convenient
expressions are provided for the electron-positron correlation function and the enhancement factor.
Calculations on a wide range of elemental metals and some monovacancies are found to be in excel-
lent agreement with experiment. The approximations inherent in this approach and the treatment
of the core-electron contribution are discussed.

I. INTRODUCTION

Positron annihilation provides a sensitive probe of de-
fects in materials, since the positrons often annihilate
preferentially at defect or vacancy sites. ' One of the out-
standing problems in the area is the characterization of
these defects based on positron-lifetime measurements.
Typically, the experimentally measured lifetime may give
some evidence for the presence of defect trapping, such as
a temperature dependence in the lifetime spectrum, but it
is very dificult to correlate this with a specific defect or
set of defects. In other cases, although the spectrum may
be temperature independent, it may still be dominated by
the defect structure, with almost all of the annihilations
due to positrons in trapped states in the material. As a
consequence, this lifetime could be misinterpreted as a
bulk, defect-free lifetime. Many of these problems of in-
terpretation could be resolved with theoretical calcula-
tions of the expected lifetimes for the bulk material and
associated defects. In the past, most attempts to calcu-
late the lifetime have been based either on parametrized
fits to experimental data, ' assuming that the samples
were sufficiently defect-free in some limit where the
bulk-annihilation rate could be fitted, or on calculations
using nonoverlapping atomic charge densities which take
no account of charge rearrangement in the solid or in the
vicinity of a defect. There have been few attempts to
calculate lifetimes from first principles for self-consistent
charge densities, and these have been confined to free-
electron-like metals.

In this paper, we present calculations of positron life-
times in metals based on first-principles electronic-
structure calculations for both the electrons and posi-
trons. The electron and positron many-body interactions
are computed using a density functional approach where
the parameters are derived from free-electron gas calcula-
tions. In contrast to previous approaches, we not only
avoid a parametrized fit to positron-lifetime experiments
but also use a more realistic self-consistent (as opposed to
superimposed atom ) electron charge density in the cal-
culation. The calculated bulk lifetimes are in excellent

agreement with experiment for a wide variety of elemen-
tal metals, including free-electron materials, transition
metals, and rare earths. Similarly good agreement is
found for vacancies and metallic alloys. These calcula-
tions serve to demonstrate the reliability of this theoreti-
cal approach.

II. METHOD

When a positron enters a solid, it thermalizes rapidly
and is either trapped in a defect in an imperfect crystal,
or enters a low-momentum Bloch state in a periodic sys-
tem. The positron subsequently annihilates with an elec-
tron, and the emitted annihilation radiation is observed.
The positron-annihilation rate A., the inverse of the life-
time v, is given by the equation '

~roc2
A. = 1/r= Id r n+(r)n (r)l (n(r)),2

where ro is the classical electron radius, n is the ground-
state electron charge density, n+ is the positron charge
density, and I is an enhancement factor which takes ac-
count of the fact that the electrons are attracted towards
the positively charged positron, so increasing the overlap
and hence the annihilation rate. The calculation of the
lifetime then involves three distinct steps. First, the self-
consistent electron charge density is determined, then the
positron charge density is calculated, and finally the in-
tegral in Eq. (l) is performed to yield the annihilation
rate.

The electron charge density is found by performing a
self-consistent electronic-structure calculation for the
material. We use the linear-muflin-tin-orbital (LMTO)
method with the atomic-sphere approximation (ASA) for
this step. Electron-electron interactions are treated in
the usual way through the local density approximation
(LDA) to density functional theory, using the von
Barth —Hedin form of exchange-correlation potential. '

The calculations presented here are all-electron calcula-
tions, so both the core and valence electrons are taken to
self-consistency in determining the ground-state charge
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density. The differences between the all-electron and
frozen-core calculations are generally small for the sys-
tems we consider.

The positron has relaxed into its lowest available ener-
gy state by the time it annihilates, so variational methods
can be employed to determine the positron wave function
and hence n+. The positron calculations are carried out
using the LMTO method in exactly the same way as the
corresponding electron calculations. We assume that the
positron wave function is periodic and perform the calcu-
lation at the I point to find the lowest-energy positron
state. The positron Schrodinger equation,

I
—

—,'V —V;,„(r)—VH„„„(r)+V + (n (r))]g+

E+y+

consists of the kinetic-energy term, the Coulomb interac-
tion with the ions V;,„, the interaction with the electron
charge density VH„„„,and an electron-positron correla-
tion term V + . The ionic and Hartree terms are

e e corr'
identical to those used in the electronic calculation, ex-
cept for a change in sign due to the positive charge on the
positron, and the Hartree term is determined directly
from the self-consistent electron charge density. We treat
the electron-positron correlation term by means of a local
density approximation. No assumptions are made about
the symmetry of the positron wave function, although, in
general, it is found to have the expected s-like symmetry.

In order to avoid errors introduced by the energy
linearization in the LMTO method, we use an initial
guess for the pivotal energy parameter and then iterate
until the positron eigenvalue and energy parameter are
equal. We initially set this parameter to the energy at
which the logarithmic derivative of the positron s wave
function vanishes on the atomic-sphere boundary, as ex-
pected on the basis of a Wigner-Seitz argument. ' For
monatomic species, this gives an excellent estimate of the
positron energy, and the energy parameter generally
needs no further iteration. For multiatom unit cells such
as metallic alloys or the vacancy calculations, each atom
will give a different estimate of the positron energy, so we
use the average to determine the initial guess for the ener-

gy parameter. In general, this initial value is not a
sufficiently accurate estimate of the positron energy and
iterating on the energy parameter is a more accurate way
of determining the positron energy. In some cases, par-
ticularly in multiatom unit-cell calculations, the energy
linearization breaks down for the higher-l orbitals. This
manifests itself most clearly in the calculation of unphysi-
cally low-positron energies. This problem is cured by
resetting the energy parameters on the relevant orbitals
to higher values. A convenient choice is the C parame-
ter, which represents an estimate of the center of the
canonical band for the given orbital. The positron ener-
gy invariably converges to a physical solution when this
procedure is adopted on p and higher orbitals, while the s
orbitals are still set to the iteratively calculated positron
energy. This procedure usually converges in no more
than three iterations.

The positron charge density is required to calculate the

(r, —4.092)
+0.1324 exp 51.96

+0.7207, (3)

where (4'/3)r, n= l. This fit has the correct limiting be-
havior at both low and high densities, but it deviates
slightly from the more complicated fit in the very-high-
density region. Since the positron will only sample re-
gions of relatively low charge density in solid-state appli-
cations, this difference will have a negligible effect on our
results. For r, values larger than about 1, our expression
provides an excellent fit to the values calculated by Ar-
ponen and Pajanne. "

While the positron charge density can, in principle, be
calculated exactly within density functional theory, this is
not the case for the enhancement factor I, which is relat-
ed to the polarization of the electron gas to the presence
of the positron. Nevertheless, the positron samples such
a Aat and featureless part of the charge density that a cal-
culation based on free-electron values is expected to give
an accurate description of this response function. We
have used the following expression, which is derived by
fitting to the free-electron gas calculation of Lantto:

1 (r, )= 1 +0.1512r, +2.414r, ~ 2.01r, —

+0.4466r, +0.1667r, (4)

This differs only slightly from the form proposed by
Boronski and Nieminen.

The fits that we have presented for the electron-
positron correlation energy and the enhancement factor
are numerically very close to those previously presented.
In general, the fitted functions lie within the uncertainties
of the electron-gas calculations on which they are based
and are in particularly good agreement over the physical-

lifetime, and this can, in principle, be computed by using
a two-component density functional theory to treat the
electron-positron interactions. ' In practice, we must
employ the same kind of approximations as are used in
the application of density functional theory to the
electronic-structure problem and find some approxima-
tion to the exact functional. The standard approach is to
use the LDA, where the potential at a given point r is
that which a positron would feel in a free-electron gas
with the charge density n (r). The LDA has been highly
successful in calculations of electronic structure, and we
expect it to be even more accurate in its application to
this problem, since positrons are strongly repelled by the
positively charged nucleus and so tend to occupy regions
of space where the electronic charge density is very slow-
ly varying.

The electron-positron correlation potential is obtained
by fitting it to the free-electron gas calculations of Ar-
ponen and Pajanne. " A previous fit to this data used
four different functional forms to represent this potential
across the entire range of electron densities. To simplify
the calculations, we have obtained an accurate fit to a sin-
gle functional form (in rydbergs):

V + (r, ) = —1.56(arctanr, )



13 S94 P. A. STERNE AND J. H. KAISER 43

ly interesting charge density range of r, -2—6. For the
electron-positron correlation function, the maximum er-
ror in our fits is only 0.07%, and Eq. (3) is significantly
easier to implement than the rather complicated form
proposed in Ref. 6. Our expression for the enhancement
factor is a more accurate fit of the electron-positron gas
data to the functional form used in Ref. 6. These
different fits to the correlation energy and enhancement
factor can give differences in calculated lifetimes of up to
about 2 ps and so contribute a relatively minor uncertain-
ty to the calculated lifetime, which is typically in the
range of 100 ps or more. Much larger changes, of order
10 ps or more, result from the use of the empirical
Brandt-Reinheimer expression.

It is important to realize that while density functional
theory is applicable to the calculation of the positron
charge density, the use of the LDA has much less validity
in the calculation of the enhancement factor I . This be-
comes particularly apparent when we consider the contri-
bution of the core electrons to the annihilation rate.
Theoretical estimates for the enhancement factor of the
core electrons range from the independent particle model
(IPM), value of 1 (i.e., no enhancement) to about 2. '

Since the core electrons are much less polarizable than
the valence electrons, we expect that using the same
enhancement factor on the core and valence electrons to-
gether will overestimate the response of the tightly bound
core electrons to the presence of the positron, and so re-
sult in a shorter lifetime. We have therefore investigated
two approximations for the core- and valence-
enhancement factors. The first consists of the straight-
forward application of Eq. (1), with the total (core plus
valence) electronic charge density appearing throughout.
In the second approximation, separate enhancement fac-
tors are used for the core and valence electrons. The core
terms are treated within the IPM, while the valence elec-
trons are enhanced by I (n „i) so that

2

fd3rn+(r)In„„(r)+n„, (r)I rn„,i(r)]I . (5)
e

Note that in both cases V + is calculated with the
full electronic charge density, in keeping with the tenets
of density functional theory.

lifetime calculated from Eq. (5). Complete agreement
with experiment would correspond to points lying on the
diagonal line. Note that we cover a wide range of sys-
tems, including alkali metals, transition metals, and even
the rare-earth metal gadolinium, and that the same
density-dependent enhancement factor is used
throughout. Note that the density dependence of the
enhancement naturally leads to different enhancements
on different orbitals. In contrast to earlier work, we do
not need to invoke separate enhancement factors for the
sp, the d, and the f electrons. All the valence electrons,
regardless of their symmetry, are treated in the same
way. The results for vacancies are also in excellent agree-
ment with experiment, confirming that the method is
applicable to systems other than close-packed metals.
We stress again that all of these results have been ob-
tained with the same criterion for the electron-positron
interactions, with the parameters determined by first-
principles calculations on the free-electron gas and that
there is no fitting to any experimental data on positron
annihilation.

As a further test of the method, we considered the in-
termetallic alloy Ni3A1 which has a well-characterized
bulk lifetime of 110 ps. ' This is also in very good agree-
ment with our calculations, where we find 110 ps from
Eq. (5) and 105 ps from Eq. (1).

The ASA in the LTMO replaces the polyhedral unit
cell with a sphere, and all integrals are carried out in the
sphere rather than in the cell. This shape approximation
generally has a small effect on the electrons, since they
are so strongly attracted by the central potential around
the atom. For the positron, however, it is possible that
the discrepancies introduced by the ASA may be some-
what larger, since the positron is located in the interstitial
region where the effects of the ASA are most pro-
nounced. In order to evaluate the severity of this approx-
imation, we replaced the atomic sphere with one mu%n-
tin-sized sphere around the atom and filled up the inter-
stitial volume with one empty sphere for fcc systems and

450

III. RESULTS AND DISCUSSION
350

The experimental and calculated theoretical lifetimes
are presented in Table I for a variety of metals and metal-
lic monovancies. The equilibrium lattice structures and
lattice constants are used for the elemental metals. The
LMTO basis set consists of s, p, and d orbitals on each
site in all cases except gadolinium, where the f orbitals
were also included. The same basis set is used in both the
electron and positron calculations. By and large, the
agreement with experiment is excellent; the calculations
are typically within about 5% of the experimental values
for both treatments of the enhancement factor. In only a
few cases does the discrepancy exceed 10%. This agree-
ment is graphically demonstrated in Fig. 1 where we have
plotted the experimental lifetime against the theoretical
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FIG. 1. Theoretical vs experimental lifetimes in ps for a
variety of elemental metals, monovacancies, and metallic alloys
calculated using Eq. (5). Theoretical calculations in exact agree-
ment with experiment lie on the diagonal line.
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three empty spheres for bcc. %'e recalculated the life-
times for some representative examples (potassium,
molybdenum, niobium, aluminum, and copper) and found
that they are almost independent of the way in which
space is divided; the lifetimes change by less than 3 ps in
all cases, confirming that the ASA gives an adequate
description of the positron wave function and potential.

The core and valence contributions to the annihilation
rate for the two treatments of the enhancement factor are
presented in Table II. In general, the core is taken to be
the last-closed rare-gas-atom shell of electrons. The total
annihilation rate is clearly dominated by annihilations
with the valence electrons. The core annihilation gen-
erally contributes only 5—12% of the total rate for Eq. (5)
and 15—25% for Eq. (1). This pronounced sensitivity to
the valence-band electrons makes positron annihilation a
valuable tool for studying the Fermi surfaces of metals. '

Even when the valence electrons comprise only a smaH

fraction of the total number of electrons in the system,
they still account for more than 75% of all the annihila-
tions. Positrons annihilate mostly with the valence elec-
trons because of the strong Coulomb repulsion between
the positron and the nucleus. This pushes the positron
wave function out to the interstitial region where the
overlap with the core electrons is minimal. This is illus-
trated in Fig. 2 where the radial part of the positron
charge density is plotted together with core- and
valence-electron charge densities for palladium.

For the transition metals, the core contribution tend to
increase toward the middle of the transition-metal series
and fall off at either end. This is due to the different rates
of contraction of the core and the lattice constant. To-
ward the beginning of the series, both the core and the
lattice constant contract with increasing atomic number,
but the lattice constant decreases more rapidly so that the
core actually occupies a larger fraction of the unit-cell

TABLE I. Positron lifetimes in ps for a variety of elemental metals and monovacancies.

Element

Alkali metals
Lithium
Sodium
Potassium
Rubidium
Cesium

Eq. (5)

311
348
394
403
414

Eq. (1)

295
319
363
372
385

Experiment'

291
338
397
406
418

3d transition metals
Titanium
Vanadium
Chromium
Iron
Nickel
Copper

159
127
109
107
102
107

143
115
101
101
97

103

147
130
120
106
110
110

4d transition metals
Zirconium
Niobium
Molybdenum
Palladium
Silver

174
135
114
109
125

156
121
104
103
120

165
119
103
96

131

5d transition metals
Tantalum
Tungsten
Platinum
Gold

129
110
101
112

116
100
96

108

116
105
99

117

Other metals
Aluminum
Lead
Gadolinium

170
189
221

163
187
199

163
194
230

Vacancies
Al vacancy
Cu vacancy
Ag vacancy

239
169
199

234
164
194

244
173
198

'Reference 13.
Vacancy experimental values from Refs. 14—16.
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TABLE II. Annihilation rates (in ns ).

Eq. (5) Eq. (1)
Element Core Valence Core Valence

Alkali metals
Lithium
Sodium
Potassium
Rubidium
Cesium

0.166
0.245
0.161
0.149
0.130

3.053
2.628
2.379
2.330
2.286

0.483
0.762
0.768
0.818
0.857

2.911
2.373
1.984
1.863
1.738

3d transition metals
Titanium
Vanadium
Chromium
Iron
Nickel
Copper

0.698
0.907
1.011
0.825
0.756
0.628

5.604
6.963
8.122
8.491
9.095
8.701

1.784
2.137
2.255
1.722
1.479
1.201

5.201
6.526
7.686
8.172
8.836
8.494

4d transition metals
Zirconium
Niobium
Molybdenum
Palladium
Silver

0.613
0.840
0.963
0.663
0.481

5.150
6.577
7.777
8.545
7.498

1.710
2.129
2.315
1.401
1.010

4.718
6.101
7.288
8.272
7.298

5d transition metals
Tantalum
Tungsten
Platinum
Gold

0.962
1.027
0.693
0.523

6.804
8.085
9.249
8 ~ 380

1.877
2.356
1.436
1.076

6.327
7.629
8.984
8.178

Other metals
Aluminum
Lead
Gadolinium

0.267
0.101
0.440

5.622
5.187
4.087

0.603
0.201
1.372

5.520
5.149
3.661

Vacancies
Al vacancy
Cu vacancy
Ag vacancy

0.097
0.270
0.194

4.086
5.659
4.819

0.223
0.526
0.415

4.046
5.565
4.734
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FIG. 2. Radial part of the core- and valence-electron densi-
ties and positron density for fcc palladium.

volume. The positron wave function, which is mostly in
the interstitial region, therefore increases its overlap with
the core, and the annihilation rate is raised. Maximum
overlap is achieved close to the middle of the transition-
metal series. As we continue to increase the atomic num-
ber, the lattice constant decreases more slowly, and even
begins to expand again towards the end of the series,
while the core continues to contract. The core-
annihilation rate is accordingly reduced as the positron
overlap with the core decreases, giving rise to the ob-
served behavior.

A comparison of the two approximations for the core-
enhancement factor indicates that while there are
significant dift'erences in the core contribution to the an-
nihilation rate, the resulting lifetimes are roughly compa-
rable and in almost equally good agreement with experi-
ment, although the all-enhanced results from Eq. (l) al-
ways give lower lifetimes than the IPM-core plus
enhanced-valence calculations of Eq. (S). The increased
core-annihilation rate in the all-enhanced case is slightly
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offset by a reduction in the valence-band annihilation due
to the inclusion of the core charge density in the calcula-
tion of the enhancement factor 1 [n (r)], since, from Eq.
(4), the enhancement factor decreases with increasing
charge density. It is dificult to decide which of these
procedures provides the better description in general.
Equation (1) is formally more elegant, but it certainly
overestimates the response of the core to the positron,
since these tightly bound electrons are not nearly as po-
larizable as the free-electron gas, which is used to calcu-
late the enhancement. In addition, the valence-band
response is probably underestimated due to the reduction
in the enhancement factor mentioned above. In contrast,
the IPM-core plus enhanced-valence calculation of Eq.
(5) is probably more accurate for the valence electrons
but is surely an underestimate of the core contribution.
Theoretical calculations suggest that a core-enhancement
factor in the range of 1 to 2 is appropriate, ' so a reason-
able argument can be made for adopting an average
enhancement on the core of 1.5, as suggested by Puska
and Nierninen. The average-core-enhancement values
obtained in the all-enhanced calculation are somewhat
larger, ' in the range of 2—3, and these appear to be in
reasonable accord with theoretical estimates based on a
polarizability model for the core. Experimental esti-
mates of the core enhancement based on the high-
momentum components of the two-dimensional angular
correlation of annihilation radiation spectrum have been
made, ' but these are dif5cult to interpret with any cer-
tainty, and those that have been made tend to favor lower
values for the enhancement factor. ' In general, we find
that the IPM-core plus enhanced-valence procedure of
Eq. (5) gives slightly better agreement with experiment,
so in the absence of a more realistic theory, we prefer to
use this approximation. This is not inconsistent with the
use of the density functional theory (DFT), where func-
tionals depend on the total electron density rather than
on valence and core charge decompositions, since the
enhancement factor, which is related to the polarizabili-
ty, is not rigorously determined in this form by DFT.
This approximation assumes that the polarization of the
slowly varying charge density in the region sampled by
the positron is well described by the polarization of a
constant charge density and would have no validity if the
positron overlapped strongly with the rapidly varying
charge density closer to the nucleus.

Although we prefer to use the results of Eq. (5), the
all-enhanced calculations are nevertheless informative.
The two calculated lifetimes give useful upper and lower
estimates for the true lifetime. In addition, if we wanted
to consider the relative probability of annihilation with
two different core states, the results of Eq. (1) may pro-
vide a more realistic description of the orbital-dependent
enhancement than the IPM calculations due to the
charge density dependence of the enhancement factor.

The difference in the two procedures depends to some
extent on the choice of the core. In the trivial extreme
case where we choose all the electrons to be treated as
valence, there will be no difference in the two calcula-
tions. The more electrons are treated as valence, the
smaller the differences between the two approximations.

We see this clearly in calculations on titanium and lead.
In the case of titanium, it seems reasonable to treat the 3p
electrons as core electrons. If we do this, there is a
difference of 16 ps between the results of Eqs. (1) and (5).
If, on the other hand, we decide that the 3p electrons
should be treated as valence electrons, there is a
difference of only 2 ps between them. This suggests that
the enhancement factor of the 3p core should be some-
what larger than the IPM value in this case. A similar
problem arises for lead. In Table II the reported value is
calculated assuming that the 5d electrons belong to the
valence charge density. The difference in the calculated
lifetime is only 2 ps. This increases to 22 ps when we re-
calculate with the Sd electrons treated as part of the core.
The choice of the core generally creates the single biggest
source of uncertainty in these calculations. The resolu-
tion of this problem must ultimately lie in a more sophis-
ticated treatment of the many-particle interactions in-
volved in the calculation of the enhancement factor.

The description of these many-body interactions is also
expected to affect the lifetimes seen in semiconductors
and insulators. For nonmetallic systems, the positron
wave function can still be calculated using the procedure
outlined above, with the same validity as the application
of LDA to electron calculations in these systems, which
are known to be highly successfu1. The enhancement
factor, however, must be calculated by taking into ac-
count the different nature of the polarizability in an insu-
lator as opposed to a metal. In electronic-structure cal-
culations on semiconductors, the LDA imposes a metal-
liclike screening which is responsible for the well-known
underestimate in the calculated energy gap. A more ac-
curate treatment of the screening restores the correct
gap. In a similar way, the local density form of the
enhancement factor in Eq. (4) presupposes a metallic
screening, and this must be modified to give an appropri-
ate description of the enhancement factor in nonmetallic
systems. Some simple models based on atomic polariza-
bilities have been proposed to account for this.

In order to get an estimate of the lifetime of a positron
trapped in a metal vacancy, we performed calculations on
undistorted vacancies by taking a simple cubic cell con-
taining four atoms arranged on an fcc 1attice and remov-
ing one atom to form the rnonovacancy. This corre-
sponds to putting vacancies a distance a apart at the
corners of a cubic cell, with atoms in the face-center posi-
tions. Since this is a fairly small supercell with a large
concentration of vacancies, we repeated the calculations
with an eight-atom fcc cell, where the vacancies are a dis-
tance a &2 apart, and occupy four of the eight corners of
the cube. The Al vacancy lifetimes reduced by about 3%,
suggesting a small spread in the positron wave function
around the vacancy site. The lifetimes for the Cu and Ag
vacancies were totally unaltered, indicating that the posi-
tron is so strongly trapped by the vacancy that the results
are not significantly affected by vacancy-vacancy itera-
tions introduced by the supercell geometry. In genera1,
accurate values of the lifetime may therefore be obtained
from fairly modest-sized electronic-structure calcula-
tions.

The vacancy calculations were performed using the
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same electron-positron interactions as have been used in
the bulk calculations. In principle, this is incorrect, since
the equations for the electron-positron interactions have
been derived under the assumption that the positron is
delocalized and so does not alter the electron charge den-
sity prior to annihilation. Once the positron becomes lo-
calized in a defect, the electrons in that environment will
be attracted by the increased positive charge, producing a
significant change in both electron and positron charge
densities. Furthermore, the expressions for the electron-
positron interactions must be altered to take account of
the finite-positron charge density in the localized defect.
Nieminen, Boronski, and Lantto have considered these
effects and conclude that the increase in the annihilation
rate due to the charge relaxation around the positron is
roughly compensated by the reduction in the enhance-
ment factor calculated for the two-component electron-
positron gas. This justifies our use of this approach in the
vacancy calculations.

IV. CONCLUSIONS

We have presented a first-principles method for calcu-
lating the bulk positron lifetimes in solids. The electron-

positron interaction parameters have all been taken from
first-principles many-body calculations and convenient
expressions for the electron-positron correlation potential
and enhancement factor have been presented. We find
very good agreement with experiment for the systems we
have considered, which encompass a wide range of ele-
mental metals. We also find good agreement for vacancy
calculations, and even for the intermetallic alloy Ni3Al.
This gives us the confidence to apply our method as a
predictive tool in metallic systems where the bulk lifetime
is not known in advance, or where there may be some
suspicion that the annihilation is defect related instead of
bulklike. Recent calculations on the high-temperature
superconductor K Ba& Bi03 have demonstrated the
versatility and reliability of this approach, as well as its
value in interpreting experimental data.
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