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Voltage drop in mesoscopic systems: A numerical study using a quantum kinetic equation
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In this paper, we present a numerical method for evaluating the full Wigner function throughout
a device by solving a steady-state quantum kinetic equation in two dimensions, in the linear-
response regime. This method has two advantages over conventional treatments of mesoscopic de-
vices. First, dissipative processes can be included within the device, thus allowing a smooth transi-
tion from the quantum to the semiclassical regime. Second, the contacts are treated in the same
manner as in semiclassical device analysis. A short phase-breaking time can be used in the contact
regions so that oscillations in the electron density due to interference e6'ects die out quickly; this is
particularly useful when obtaining self-consistent solutions with the Poisson equation. Any quanti-

ty of interest, such as electron density or current density per unit energy, can be computed
throughout the entire device. We will first show that under low-bias, low-temperature conditions,
the diagonal elements of the Wigner function can be used to define a local electrochemical potential
(p) that lends insight into the internal transport physics. We show that separate electrochemical
potentials pL and p& for left- and right-moving electrons show unphysical behavior when defined in
a local sense. But sensible results are obtained when these potentials are defined in an average sense
over regions the size of a de Broglie wavelength. We then examine the diKculties associated with

measuring p, with numerical examples. Next, we use the local electrochemical potential profile to
clarify the nature of the spreading resistance associated with the narrowing of a current lead. Final-
ly, we show that the electrostatic potential (P) can be viewed as a convolution of p with a screening
function and present example computations of P.

I. INTRODU(L'TION

Mesoscopic devices are usually composed of a small
"interesting" region connected through wide leads to an
external source. It is common to neglect the details of
the connection to the external source, which hopefully
contributes only a small series resistance. Instead, it is
assumed that the external source imposes the following
boundary condition on the structure: The region to the
left of 3 ' is maintained at a constant electrochemical po-
tential p&, while the region to the right of 8 is main-
tained at p2 (Fig. 1). It can be shown that the current I is
related to the total transmission T through the struc-
ture

as arising from the contact regions between the device
and the wide leads. To compute the conductance of the
device alone, we need to determine what fraction of the
voltage applied between A' and B' is usually dropped
across the device between points 3 and 8. This question
was originally raised by Landauer in his pioneering pa-
per and has led to many difTerent Landauer-type conduc-
tance formulas, ' depending on how the voltage drop
across the device is measured.

Engquist and Anderson" suggested that an electro-
chemical potential could be measured at various points
within a structure by attaching additional reservoirs and
allowing them to equilibrate with the sample. Biittiker

where

T =Tr
I t tt I,

and t is the transmission matrix between the leads (from
A' to B'). Since the voltage drop between A' and B' is
(pi —p2), the conductance of the overall structure is
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For a device having perfect transmission, one might ex-
pect the conductance to be infinite, since there is no
scattering. Equation (1.3), however, predicts a finite con-
ductance. Imry has interpreted this finite conductance

FIG. 1. A typical quantum device has a small interesting re-
gion connected to an external source through wide leads. The
external source is assumed to maintain the region to the left of
A' at a constant electrochemical potential p& and the region to
the right of 8' at p2.
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recognized' that such voltage probes could be treated on
an equal footing with current probes in the Landauer
model, and he generalized the expression for the current
(1.1) to account for multiple leads,

(1.4)

where T," represents the total transmission from lead j to
lead i. This equation has proven to be remarkably suc-
cessful at explaining experimental four-terminal measure-
ments, such as the symmetry properties of magnetoresis-
tance and the integer quantum Hall effect. Recent re-
views of this work can be found in Refs. 13—15. Usually
the coeScients T; are computed from the Schrodinger
equation, assuming coherent transport within the device.
However, Biittiker has shown' that the presence of
phase-breaking scatterers can be simulated by including
additional voltage probes in the analysis.

Indeed the equation that we use for most of this paper
looks like a generalization of (1.4) to a continuous distri-
bution of voltage probes:

(1.5)

However, a direct generalization of (1.4) is purely phe-
nomenological and does not tell us how to evaluate the
function To(r, r'). Moreover, it raises subtle questions
about whether a local electrochemical potential p(r) can
be meaningfully defined within a device. For this reason
we start from a general quantum kinetic equation and
through various approximations reduce it to the form
shown in (1.5). The kinetic equation allows us to com-
pute the energy distribution of carriers directly and thus
verify the conditions under which this distribution has a
Fermi-Dirac form, so that a local electrochemical poten-
tial p(r) can be defined unambiguously. Moreover, we
can compute the full Wigner function and thus obtain
any quantity of interest such as the electron density or
the current density anywhere within the device.

Our starting point is the formulation of quantum trans-
port developed by Kadanoff and Baym and Keldysh. '

This approach was originally applied primarily to homo-
geneous systems, and several excellent reviews are avail-
able. ' ' lt has also been applied to tunneling devices
and to current fluctuations in mesoscopic devices. The
fundamental quantity in this formulation is the Wigner
function iG (r;k;E—; t ), which can be computed by
solving a quantum kinetic equation. Any observable,
such as the electron density or the current density, can
then be obtained by taking appropriate moments of this
function. From this standpoint, the Wigner function
plays a role analogous to the semiclassical distribution
function. This approach has two advantages over con-
ventional treatments of mesoscopic devices.

(1) Arbitrary dissipative processes can be included
within the device. This allows one to study the transition
from quantum to semiclassical behavior.

(2) The contacts are treated in exactly the same manner

as in classical device analysis. Instead of solving the
drift-diffusion equation, we solve a quantum kinetic equa-
tion subject to the same boundary conditions at the con-
tacts. A short phase-breaking time can be used in the
contact regions so that oscillations in the electron density
due to interference effects die out quickly; this is particu-
larly useful when obtaining self-consistent solutions with
the Poisson equation.

Most of the recent work on quantum kinetic equations
has focused on high-field transport in homogeneous ma-
terials, although there have been efforts to extend this
work to heterostructures, ' and numerical results for
resonant-tunneling diodes have been reported. To
our knowledge, however, quantum kinetic equations have
not been applied to mesoscopic structures where the
two-dimensional current Row leads to interesting phe-
nomena that are absent when the Row is essentially one-
dimensional.

A numerical solution of the quantum kinetic equation
in two dimensions is made diScult by the large number
of independent variables: r, k, E, and t. Assuming two
components each for r and k, the number of independent
variables is six. In this paper, we use a simplification
scheme proposed earlier to reduce this number to two,
thus making the problem manageable. These
simplifications are briefly summarized in Sec. II. By re-
stricting our analysis to steady state, we eliminate t. By
assuming a special model for phase-breaking scattering
processes, as discussed in Sec. II C, we eliminate k. If we
further restrict ourselves to low-bias voltages at low tem-
peratures, the energy distribution of the Wigner function
can be characterized by a Fermi-Dirac form with a local
electrochemical potential p(r), as discussed in Sec. III A.
This eliminates E as an independent variable, leaving
only the two spatial dimensions r.

With these assumptions, the quantum kinetic equation
reduces to an integral equation for p(r):

Jd r'To(r, r') (1.6)

Equation (1.6) is really the same as (1.5) with the external
current I(r) set to zero, which is true everywhere except
in the contacts; to get from (1.6) to (1.5), a careful discus-
sion of the contacts is required, as explained in Sec. III C.
Equation (1.6) has a simple physical interpretation. It
states that the electrochemical potential at any point is a
weighted average of the potentials at surrounding points.
The weighting function To(r, r') is related to the proba-
bility that an electron that suffers a phase-breaking
scattering at r ' will suffer its next phase-breaking event at
r. This function is computed from the Green function of
the Schrodinger equation modified to include an optical
potential derived from the self-energy. Contacts are
simulated using open boundary conditions.

Once the weighting function To(r, r ') is obtained, we
can solve the integral equation [Eq. (1.6)] subject to the
boundary condition that the electrochemical potential
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FIG. 2. Potential drop and current Aow pattern in a wire
with three modes having two localized impurities (~&=0.2 ps).
(a) Assumed impurity potential; {b) potential variation; (c)
current Aow pattern.

take on specified constant values in the contact regions.
This is the same boundary condition that one uses in clas-
sical device analysis. The only difference is that in classi-
cal device analysis one solves the drift-diffusion equation
V (o Vp)=0, while in the quantum regime we solve the
integral equation, Eq. (1.6). In fact, it has been shown
that (1.6) reduces to the diffusion equation in homogene-
ous samples.

In a typical simulation, a device is discretized into ap-
proximately 1000 nodes. To compute p(r) throughout,
the device takes approximately 1 h on a Sun 4 worksta-
tion [once p(r) is obtained all other quantities of interest
such as electron density and current density are readily
obtained]. Clearly, this is far from the limitations of
modern computing, and as such, this nlethod could prove
to be a powerful and practical tool for device analysis in
the quantum regime. The details of the numerical
method are described in the Appendix.

It is interesting to note that the solutions to Eq. (1.6)
look fairly classical for short scattering times. For exam-
ple, Fig. 2 shows the potential profile and current flow
pattern in a three-moded wire with two impurities. One
of the impurities is exactly centered in the wire, while the
other is off to one side. Overall, the potential p drops al-
most linearly due to the uniform background of phase-
breaking scatterers, which, in our model, not only ran-
domize the phase but also the momentum. Around the
impurities the potential drops in a localized manner.
Indeed, for the off-center impurity, the potential drops
sharply on the side of the wire near the impurity, but falls

smoothly along the other. The current redistribution
around the impurities is also quite in keeping with our in-
tuition. Note, however, that we have used a fairly short
phase-breaking time (r&=0.2 ps) in this particular exam-
ple. With longer times, the potential shows oscillatory
behavior, while the current Aow develops circulating pat-
terns due to interference effects.

It is easy to see from Eq. (1.6) why the electrochemical
potential drops sharply around an obstacle. An obstacle
effectively isolates the left from the right so that the
weighting function To(r, r') is large when the points r
and r ' are both to the left or both to the right of the obs-
tacle. Consequently, the potential to the left of an obsta-
cle is determined largely by the left contact and to the
right of an obstacle by the right contact. This leads to an
abrupt potential drop as we cross the obstacle. It is im-
portant to note that the potential drop need not be ac-
companied by an Ohmic power loss. This is apparent
since a static obstacle may not have the internal degrees
of freedom necessary to dissipate energy. Thus, the ques-
tion of where the voltage drop is may have a different
answer from the question of where the power is lost. In
this paper we do not address the latter question.

Actually, the question of where is the voltage drop re-
quires two answers: one in terms of the electrostatic po-
tential P(r), and the other in terms of the electrochemical
potential p(r). The electrostatic potential P is a well-
defined concept that has a clear meaning, even at the mi-
croscopic level. The electrochemical potential, on the
other hand, is usually viewed as a macroscopic concept,
and it is not obvious that this potential can be meaning-
fully defined in a microscopic sense.

In this paper, we define a local electrochemical poten-
tial by considering the energy distribution of the electron
density n (r;E ), which is related to the diagonal element
of the correlation function 6 (r, r;E). The electron den-
sity n(r;E) can be expressed as the product of the local
density of states No(r;E) and an occupation factor
f(r;E). At equilibrium, this occupation factor is simply
the Fermi-Dirac factor with a constant electrochemical
potential po. We will show in Sec. III that, at low tem-
peratures and low bias, f(r;E) is well described by a
Fermi-Dirac function with a local electrochemical poten-
tial p(r). Under a large bias, f(r;E) is significantly dis-
torted and cannot be characterized by a single parameter
p(r). It seems, however, that such hot-carrier effects
would also lead to nonlinear response, since the degree of
heating (and hence the conductance) becomes bias depen-
dent. We therefore believe that the local electrochemical
potential is a valid and useful concept in the linear-
response regime at low temperatures, where carrier heat-
ing should be negligible.

Intuitively, we can view the local electrochemical po-
tential as a measure of the electron energy at a point. We
can also view it as a measure of the excess electron densi-
ty; however, part of this excess charge is neutralized by
screening charges, as described in Sec. VI. The resulting
electrostatic potential is given by the electrochemical po-
tential convolved with a screening function. In a highly
conductive medium the screening length is very short so
that the two potentials are nearly identical. But in less
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conductive structures, the electrostatic potential varies
slowly compared to the electrochemical potential, and
the local space charge is proportional to the difference be-
tween the two potentials.

It is often appealing to define separate electrochemical
potentials pz and pz for left-moving and right-moving
carriers. Using the present approach, we can compute
the left-moving and right-moving electron densities
nL (r;E) and n~(r;E) individually from the Wigner func-
tion. However, these quantities are not positive definite,
unlike the total electron density n =nL +nz, so that the
local electrochemical potentials pL and pz may show un-
physical behavior, as we will demonstrate with a numeri-
cal example of Sec. III. We believe this problem arises
because the concept of left-moving and right-moving
electrons at a particular point is in violation of the uncer-
tainty principle. We will also show that this unphysical
behavior can be avoided by defining these potentials in an
average sense over regions the size of a de Broglie wave-
length. The results obtained after averaging behave as we
might intuitively expect.

We would like to stress that the local electrochemical
potential p(r) defined by us characterizes the energy dis
tribution of the electrons and has nothing to do with the
momentum distribution. A common source of misunder-
standing is to assume that if a local electrochemical po-
tential exists, then there must be equal numbers of elec-
trons moving to the left and to the right. This is not true
in general even in equilibrium. For example, in the quan-
tum Hall regime, even at equilibrium, all electrons move
to the left near one edge and to the right near the other
edge. However, we believe that the energy distribution of
electrons is still characterized by an electrochemical po-
tential throughout the structure. It will also be noted
that while k is conjugate to r, E is the conjugate to t. We
can thus talk about the energy distribution (but not the
momentum distribution) at a point without violating the
uncertainty principle.

The local electrochemical potential p is dificult to
measure for two reasons, which we examine in Sec. IV.
First, measurement probes are usually invasive, that is,
they disturb the electrochemical potential within the de-
vice. It should, however, be possible to design weakly
coupled noninvasive probes that do not cause any
significant perturbation. But even with such a nonin-
vasive probe, the potential that is finally measured may
depend on the details of the probe-to-sample coupling.
We present two numerical examples —one where this is
not the case and one where it is. We first consider a nar-
row wire with a tunneling barrier where the intrinsic elec-
trochemical potential oscillates rapidly. We find that
noninvasive probes render a surprisingly accurate mea-
surement of the oscillations regardless of their geometry.
We then consider the "quenching" of the Hall resistance
observed in narrow wires at low magnetic fields. By
directly computing the electrochemical potential in a nar-
row wire with attached probes, we show that the usual
Hall voltage is present near the voltage probes, and yet
the probes fail to measure it properly. Noninvasive
probes thus do not guarantee a faithful measurement as
stressed by Buttiker.

Although the electrochemical potential may be dificult
to measure precisely, it is still a useful concept that can
lend insight into the transport physics. For example, in
Sec. V we compute the electrochemical potential for a
ballistic device (Fig. 1). We find that the potential drop
across the "interesting" region (between points A and B)
is nearly zero, as we might expect, since there is no
scattering within the device. There are sharp drops at 3
and B where the current funnels into and out of the nar-
row region; this is due to the spreading resistance de-
scribed by Imry. In addition, we find drops at A ' and B'
where the boundary conditions are applied. This may
seem surprising since there are no apparent obstacles to
current flow at A' and B'. To explain the drops at 3'
and B', we note that the assumption of a constant elec-
trochemical potential is accurate only for an infinitely
wide lead with zero series resistance, as emphasized by
Landauer. As a corollary to this argument, we can state
that imposing the constant potential boundary conditions
at 3 ' and B' is physically equivalent to widening the leads
to infinity at these points. Consequently, there are
spreading resistances at A ' and B' similar to those at A
and B. We also examine the contact resistance at A and
B and show that it is reduced when the width of the leads
is reduced, as argued by Landauer. However, we find
that the full contact resistance is recovered if the width of
the leads is much larger than the phase-breaking length
L&. We believe that this is because a lead that is much
wider than L& is effectively infinite in width.

The equivalence between a constant potential bound-
ary condition and an infinitely wide lead is very impor-
tant from the standpoint of numerical simulation. Actual
experimental structures typically have leads that are
infinitely wide for all practical purposes. Such wide leads
are very dim. cult to simulate directly. However, if we are
not interested in a detailed description of current flow in
the lead, then we can neglect any widening altogether and
simply impose a constant p boundary condition when
solving the kinetic equation, Eq. (1.5).

Localized drops in the electrochemical potential occur
around obstacles because electrons pileup on one side and
drain off on the other. The resulting dipole, together
with the induced screening charge, acts as a source term
in the Poisson equation giving rise to an electrostatic po-
tential P. In Sec. VI we show that the electrostatic poten-
tial P can be viewed as a convolution of the electrochemi-
cal potential p with a screening function and compute P
for a few examples.

II. GENERAL APPROACH

Any device analysis —semiclassical or quantum—
involves the simultaneous solution of a transport equa-
tion and the Poisson equation. In Sec. IIA, we outline
the steps involved in obtaining such a solution. These
steps are identical for both the semiclassical and the
quantum regime; the only difference lies in the particular
transport equation that is solved. In the semiclassical re-
gime, we solve either the Boltzmann equation or the
drift-diffusion equation. In the quantum regime, we solve
a quantum kinetic equation, such as the one developed by
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Kadano6' and Baym and Keldysh. ' A very brief over-
view of this quantum kinetic equation is presented in Sec.
II B. In Sec. II C we review the simple model that we as-
sume for phase-breaking scatterers in order to simplify
the kinetic equation. A further simplification is achieved
by restricting to near-equilibrium solutions at low bias as
described in Sec. II D. Finally, in Sec. II E we summarize
the simplified equations and describe the solution tech-
nique.

A. Overview of device analysis

Step 1 in any device analysis is to obtain the equilibri-
um band diagram (Fig. 3). Throughout this paper, we re-
strict our attention to only one type of carrier, namely
electrons in the conduction band. To obtain the equilib-
rium conduction-band profile, we solve the Poisson equa-
tion for the electrostatic potential P,

V P(r)= —[ND (r) —n, (r)], (2.1)

self-consistently with the equilibrium electron density
n,q(r),

n, (r)= fdENo(r;E)fo(E), (2.2)

where ND (r) is the density of ionized donors, and
No(r;E) is the local electronic density of states, which
depends implicitly on P. One way of solving these two
equations is to assume some initial form for P, and then
iterate between them until the solution converges. Al-
though this procedure is conceptually simple, it is com-
putationally intensive, since Eq. (2.2) requires us to com-
pute the density of states at all energies. To simplify our
calculations, we neglect this first step, and simply assume
some form for P(r) in equilibrium. However, this step
could be important in describing certain phenomenon
such as the inhuence of electron-electron interactions on

weak localization.
Step 2 is to solve the transport equation subject to the

boundary conditions imposed at the contacts. We as-
sume that these contacts remain in local equilibrium and
that some external source shifts the electrochemical po-
tential p of one contact relative to another. By solving
the transport equation in the region between contacts, we
determine both the electron density and the current den-
sity within the device. Note that we are treating an open
system where particles move in and out of the device
freely. This is appropriate for transport problems. For
problems involving optical or magnetic properties a
canonical ensemble with a fixed number of particles may
be more appropriate.

If electrons were neutral particles, this would complete
our analysis. However, since electrons are charged parti-
cles, the charge imbalances arising under bias, together
with the associated screening charges, lead to a correc-
tion 5P to the electrostatic potential. Step 3 is to solve
the Poisson equation for this correction 5$ to the electro-
static potential. In general, this correction could
influence the solution of the transport problem (step 2).
So we should iterate between steps 2 and 3 until conver-
gence is achieved. Self-consistent calculations of this sort
have been performed in the analysis of resonant-tunneling
diodes in the high-bias regime.

This paper is primarily concerned with the linear-
response regime. It is believed that in this regime it is not
necessary to iterate between steps 2 and 3. This is be-
cause the correction 5$ to the electrostatic potential does
not lead to any first-order change in the terminal
currents. It could, however, lead to a first-order change
in the detailed current How pattern within the device, as
discussed in Sec. IIIB. In much of this paper (Secs.
III—V), we concentrate on step 2 and discuss solutions to
the transport equation. It is only in Sec. VI that we carry
out step 3, to illustrate the nature of the correction 5P;
however, we neglect any influence that 5P might have on
step 2, leaving it for future investigations.

Start

Obtain
Equilibrium

Solution
Compute g(r)

Solve
Transport
Equation

Compute n(r)

ePp

Equilibrium
Band Bending

—————————:A---ego

———.eii2
— e(I)

B. Quantum kinetic equation

Less than 30 years ago, Kadanoff and Baym and Kel-
dysh' developed a general framework for quantum trans-
port which we use as our starting point. The central
quantity in their formulation is the correlation function
6 (

iRG (r„r~—;t„t2)= (P (r2, t2)i)'j(r, , t, ) ), (2.3)

where g and i(t are electron field operators. It is often
convenient to transform to center of mass and relative
coordinates, and then Fourier transform with respect to
the relative coordinates,

Solve
Poisson
Equation

Compute 5(I) (r}

ep, ----
——-ep2.(C+H)

(2.4a)

(2.4b)

FIG. 3. Overview of the procedure for device analysis.

and express the resulting function as G (r;k;E;t). We
can make an immediate simplification if we restrict our-
selves to steady state, so that we are left with only three
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coordinates (r; k; E ).
The Wigner function —i G (r; k; E ) is the quantum-

mechanical analog of the semiclassical distribution func-
tion. Any observable can be computed by taking mo-
ments of this function. ' ' For instance, the electron
density and the current density can be expressed as

In-Scattering

Z (r', r")

—i d kn(r;E)= G (r;k;E),
(2n )

(2.5)
Final Correlation

G {rg,r2, E)

d kJ(rE)= f 3
e

2n (2ir) 3

iIik —e A(r) G(( k E)

(2.6)

FIG. 4. A physical interpretation of the quantum kinetic
equation (2.11).

These quantities must then be integrated over energy to
obtain the total electron density n(r) and total current
density J(r) at each position,

n(r)= fdE n(r;E), (2.7)

J(r)= fdE J(r;E) . (2.8)

The (r;k) representation is useful in bringing out the
analogy between the Wigner function —iG and the
semiclassical distribution function. However, we could
just as well express the electron density (2.5) and the
current density (2.6) in the (r, r') representation. By
making use of the Fourier-transform relationship (2.4a),
we obtain

G (rz, r ";E) due to propagation from r" to r2.
In principle, we could use the kinetic equation (2.11) as

the transport equation in step 2 of the device analysis
(Fig. 3). For two-dimensional structures, however, this is
extremely difficult due to the large number (five) of in-
dependent variables. Following Ref. 25, we use a simple
model for phase-breaking scatters, which reduces the
self-energy to a local potential; this is brieAy outlined in
the following section. With this simplification, the num-
ber of independent variables in the kinetic equation is re-
duced to three.

n(r;E)= G (r, r;E),
277

J(r;E)= (V —V')G (r, r ', E)~,=,4am

(2.9) C. Simple model for phase-breaking scattering

%'e assume that the propagation of electrons is de-
scribed by a one-electron effective-mass Hamiltonian of
the form

+ A(r)G (r, r;E) .
277m

(2.10) AHo= +eP(r)+ V(r), (2.13)

To compute the correlation function G, we solve the
quantum kinetic equation,

G (r„r2,E)=f d r' f d r "G (r„r';E)

XG (r2, r";E)X (r', r";E),
(2.1 1)

where G is the Green function of the Schrodinger equa-
tion modified to include a nonlocal optical potential X,
[E—Ho(r, )]G (r„rz,'E) —f d r'X (r„r',E)

where the scalar potential P(r) is obtained from the Pois-
son equation, as discussed in Sec. IIA; it includes band
bending due to space charge and external bias. Electron-
electron interactions beyond this Hartree term are
neglected. Any band discontinuities due to heterojunc-
tions, as well as all sources of elastic scattering such as
impurities, defects, and boundaries, are included in the
potential V(r). This part Ho of the total Hamiltonian is
treated exactly.

Phase-breaking scattering occurs when electrons in-
teract with a bath of independent oscillators labeled by an
index m,

XG (r', r2;E)=6(r, —r2) . (2.12) H~= gA'co (a a + —,'), (2.14)

Physically, these equations can be understood as follows
(Fig. 4). X represents the inscattering rate from other
energies, while G (r„r2,'E) represents the wave function
at r, if an electron is injected at r2 with energy E by
scattering from another energy. The kinetic equation
(2.11) states that the overall correlation G (ri, r2, E) be-
tween points r, and r2 is given by the product of three
factors: the initial correlation X (r, r",E) of the in-
scattered electrons, the correlation G (ri, r ';E) due
to propagation from r ' to r„and the correlation

where a and a are the creation and annihilation opera-
tors for oscillator m. %'e assume that each oscillator in-
teracts with electrons through a 5 potential,

H'= g U5(r —r )(a —a ), (2.15)

where the interaction strength U is assumed to be con-
stant, although the spatial density of oscillators may
vary. This simple model would well represent point-size
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phase-breaking scatterers, such as magnetic impurities.
It does not represent true phonons, which have nonzero
spatial extent, but it might still describe much of the
physics of dissipative transport. In any case, it provides a
tractable microscopic model whose predictions can be
compared with experiment.

The interaction part H' of the Hamiltonian is treated
approximately (taking only one-phonon processes into ac-
count) through the self-energy functions X and X,
which are local functions in this model, and can be writ-
ten in the form

X (r r';E)= 5(r —r'),iA

r;E

X (r, r', E)= 5(r —r') .
—iA

2~~(r;E)

(2.16a)

(2.16b)

Actually, X also has a real part, which we are neglect-
ing in this paper. Using expressions (2.16a) and (2.16b),
one of the integrals in the quantum kinetic equation
(2.11) and the Schrodinger equation (2.12) can be per-
formed trivially:

G (ri, rz, E)= Jd r'G (ri, r', E)G (r ir', E)

solution satisfies the kinetic equation (2.19) for the diago-
nal elements n(r;E):

n(r;E) =f0(E)NO(r;E), (2.20)

where No(r;E) is the local density of states, and fo(E) is
the Fermi-Dirac factor with an equilibrium electrochemi-
cal potential po,

1
(.E—e )/k T

8 +1
(2.21)

This result is reassuring, since this form of the equilibri-
um solution is known from more general considerations.
Furthermore, it suggests that the solution for n(r; E) can
in general be expressed as the product of some occupa-
tion function f(r;E) and the local density of states
No(r;E),

n(r;E) =f(r;E)N—O(r;E) . (2.22)

In equilibrium, f(r; E ) reduces to the Fermi-Dirac factor
fo(E); away from equilibrium, f(r;E) may be
significantly distorted. We define p (r; E ) as the density of
holes in the conduction band,

iA
i.~(r ',E )

E —Ho(r, )+ G (r„r2;E)=5(r,—r2) .
iiii

2~&(r, ;E

(2.17)
p(r; E)= [1 f(r;E)]No—(r;E) . (2.23)

This density of holes, together with the density of elec-
trons, accounts for the density of states in the conduction
band,

(2.18)
n(r;E)+p(r;E)=NO(r;E) . (2.24)

If we now specialize (2.17) to just the diagonal elements
G (r, r;E), we obtain

Next, consider the expressions for the hole lifetime Tp

and the electron lifetime ~„,

n(r;E)= d r'lG (r, r';E)l2' '
w (r', E) (2.19) Jd (fico)F(r;fin) )n (r;E—iiico),

1 =2&
r;E (2.25a)

noting from Eq. (2.9) that the diagonal elements
G (r, r;E) are simply related to the electron density per
unit energy n(r;E). The function ~~(r;E) depends only
on the diagonal elements n(r;E) and not on the off-
diagonal elements G (r, r ', E), so that Eq. (2.19) only in-
volves the diagonal elements. Once we have solved it to
compute n (r;E ) [and hence ~ (r; E ), which is a function-
al of n(r;E)], we can substitute ~ into Eq. (2.17), per-
form an integral, and obtain the full correlation function
G (ri, r2, E). Any quantity of interest can then be ob-
tained from this function.

D. Energy decoupling

In the preceding section, we adopted a simple model
for phase-breaking scatterers, which reduced the self-
energies X and X to local functions, and reduced the
independent variables in the resulting kinetic equation to
r and E. We can make a further simplification if we
confine our attention to low-bias voltages, and low tem-
peratures. In this regime, we can neglect the vertical flow
of carriers from one energy to another and thereby
decouple different energies.

At equilibrium, it can be shown that the following

1

~„(r;E) Jd(%co)F(r;fico)p(r;E+Rco), (2.2Sb)

where F(r;fico) describes the spectrum of the oscillators
causing phase-breaking scattering,

U Jo(r;fzco)N(fico), %co & 0,
F(r;Ace)= '

U Jo(r;IRml)[N(IX~I)+1], a~&0 (2.26)

1 1 1

i&(r;E) ~„(r;E) i. (r;E) (2.27)

The divergence of the current density per unit energy
J(r;E) is proportional to the diff'erence between the
outscattering rate for holes and that for electrons,

V.J(r;E)=e p(r;E)
~„(r;E)

n(r;E)
i.„(r;E) (2.28)

and Jo(r; iiico) is the density of oscillators per unit volume,
per unit energy; N(iiico) is the Bose-Einstein factor
describing the average number of "phonons" with fre-
quency e in each oscillator. The phase-breaking time ~&
is the parallel combination of the electron lifetime ~„and
the hole lifetime ~,
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The left-hand side represents the vertical Aow of carriers
from one energy to another. This quantity can be set
equal to zero if (1) the phase-breaking processes are pure-
ly elastic, or if (2) the entire energy range over which
transport occurs can be considered a single channel (be-
cause of the uniformity of propagation characteristics).
In either case, we obtain

n(r;E) p(r;E)
~„(r;E) ~~(r;E)

(2.29)

We will have changed nothing if we simply add n/r to
both sides,

n(r;E) No(r;E)
~&(r; E ) ~„(r;E )

(2.30)

This expression gives a particularly simple relation be-
tween ~ and ~&,

1 f(r E)
(2.31)

~~(r;E) r~(r;E)

If we use this relationship to replace I/i. in the kinetic
equation (2.19), we obtain an integral equation for
f(r;E),

f(r;E)= f d r', ' ' f(r', E) .
A' G (r, r', E)~

2'~~ r ';E No r;E (2.32)

It may not be apparent what we have gained by replacing
1/~ in the kinetic equation (2.19). In Eq. (2.19), the
solutions for difFerent energies are coupled together, since

at an energy E depends on n(r;E') at all other energies
E' [see Eq. (2.24a)]. On the other hand, r& is nearly in-
dependent of n(r;E), which we can see by expanding its
definition (2.28),

J d(fico)F(r;fico)[n(r;E fico)—1 =2~
~~ r;E fi

+p(r;E+A'co)] .

(2.33)

If the spectral function F(r;fico) is relatively peaked near
Ace=0, then the factor within the parentheses is approxi-
mately n +p =%0, independent of the occupation of
states. The same is true for nondegenerate systems with
n ((p =No. In these cases, r&(r;E) is independent of
the solution f(r;E) of the kinetic equation (2.32). In gen-
eral, however, we should iterate between Eqs. (2.32) and
(2.33) to obtain self-consistent solutions for f(r;E) and
w&(r;E). Since r& is insensitive to changes in f, this pro-
cess should require only a few iterations to achieve con-
vergence.

If we neglect this dependence of w&(r;E) on f(r;E),
then the energies are completely decoupled in the kinetic
equation (2.32). Thus, each energy can be treated in-
dependently, and the solution f(r;E) at different energies
E can be computed one at a time, for all points r. Note
that the essential condition for achieving this energy
decoupling is the neglect of vertical fiows [V J(r;E)=0]

in going from Eqs. (2.28) to (2.29). In our previous
work, this decoupling was achieved by assuming that
the occupation factor f(r;E) is given by a Fermi-Dirac
function with a local electrochemical potential p(r). This
is a sufficient condition for V J(r;E) to be zero but not a
necessary condition. For example, if the phase-breaking
processes are purely elastic, then V J(r;E)=0 regardless
of the shape of the occupation factor f(r, E).

E. Solving the simplified kinetic equation

Guess missal f(r;E):
f(r,E) = fo(E- ega)

where fo'. Fermi-Dirac function

Compute x~(r;E):
1 2x=—Id(hm) F(r;hler)fn(r;E —hoI)+ p(r; E+fic)]

xp(r E) h

n(r;E) = f(r,E)NO(r;E)

p(r, E)= [I—f(r,E)]NO(r, E)

l(

Solve for G"(r,r', E):

E —Ho(r)+ G (r,r', E) =5(r —r')ih R

2tp(r, E)

)(

No(r;E) =—ImfG (r, r, E))/K

Contact Nodes: f(r,E) = fo(E —ep„)

Device Nodes:
sty(r';E)NO(r;E)

I(

yes SolulConve
?

no

(END)

FICs. 5. Overview of the procedure for solving the simplified
kinetic equation.

In the preceding sections, we have discussed the vari-
ous simplifying assumptions that reduce the quantum ki-
netic equation (2.11) to a more manageable form (2.32)
that can be used in step 2 of the device analysis (Fig. 3).
We will now describe how we can numerically solve the
simplified kinetic equation (2.32) for a particular device.
A block diagram of the solution procedure is shown in
Fig. 5. We begin by assuming the equilibrium form for
the solution f(r;E ), so that we can obtain an initial guess
for the phase-breaking time r&(r;E). We then compute
the Green function G (r, r ', E) and the density of states
No(r;E). These quantities determine the kernel of the ki-
netic equation (2.32). Within each contact region, the oc-
cupation factor f(r;E) is assumed to have a Fermi-Dirac
form with a fixed electrochemical potential. In the inter-
mediate device regions, f(r;E) is computed by solving
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the kinetic equation (2.32). As we have already noted,
~&(r;E) depends weakly on the solution for f(r;E).
Strictly speaking, the solution process should be repeated
until both f(r;E ) and ~&(r;E ) form a self-consistent solu-
tion. In practice, the change in ~&(r;E) may be small
enough that an iterative solution may not be necessary.

It will be noted that in our model the local phase-
breaking time ~&(r;E) depends on the local density of
states No(r;E ). Since the local density of states often os-
cillates by orders of magnitude in mesoscopic structures,
the phase-breaking time too should show large oscilla-
tions. However, realistic scattering processes are usually
not local, and it is likely that the phase-breaking time at a
point is determined by the density of states averaged over
the surrounding volume rather than by the density of
states at the point. Large spatial Auctuations in ~& are
thus not expected in realistic structures unless the phase-
breaking scatterers are truly local (such as magnetic
boundaries). In this paper we will neglect these issues al-
together and treat r&(r) as a specified input parameter in-
dependent of No(r;E) or f(r;E). The iteration indicated
in Fig. 5 is thus unnecessary. We leave a more detailed
treatment of the phase-breaking time to future work.

Once we have computed the occupation factor f(r;E),
we can reconstruct the correlation function within the
device. Using the simple approximation for 1/r~ (2.31)
in the kinetic equation (2.17), we obtain

G (r„r2', E ) =f d r 'f (r ', E)Gs(r„r2, r ',E ),
where

(2.34)

G (r„r',E)G (r2, r', E)
Gs(r„rz, r ', E ) =—iA'

r~ r';E

(2.35)

n(r;E)= f d r'f(r', E)n&(r, r';E),
and the current density J(r; E),

(2.36)

J(r;E)= f d r'f(r', E)Js(r, r';E),
where

(2.37)

With this correlation function, we can compute any
quantity of interest. In particular, we can compute the
electron density n(r;E),

l
ns(r, r ', E)—= Gs(r„rz, r ', E)~.2'

i ~G (r—, r', E)~
2m. w~(r ', E)

r—ie
Js(r, r';E)—= —.(V, V~) —eA(r—, ) Gs(r„rz, r', E)~.2am 2i 1 2

(2.38a)

(2.38b)

(2.39a)

eA
Im[G (r, r ';E)V,G (r, r ';E)]——A(r) ~G (r, r ', E)

~27rpi ry r;E (2.39b)

It is interesting to note that, by using the kinetic Eq.
(2.32), we can simplify the expression for the electron
density (2.36) to n(r;E)=NO(r;E)f(r;E), as we would
expect. Furthermore, if we evaluate the divergence of the
current V J from Eq. (2.37) and set it equal to zero, we
obtain the kinetic Eq. (2.32). To show this, it is necessary
to make use of an expression for the divergence of Js Isee
Eq. (C5) of Ref. 25(b), noting that J& as defined here has
an extra factor of ~&(r ';E )],

2~ No(r E)—V.Js(r, r ', E ) = 5(r —r ')
e

' '
iii ~~(r E)

~G (r, r';E)~
(2.40)

~~(r; E )~~(r '; E )

In Secs. III 8 and III C we will simplify these equations
to linear response. As we will see, the equations describ-
ing linear response look just like the above equations but
with local occupation factor f(r;E) replaced by the local
electrochemical potential p( r ).

III. DEFINING THE ELECTROCHEMICAL POTENTIAL

In Sec. III A we show that under low-bias conditions at
low temperatures the energy distribution of carriers can
be characterized everywhere by a local electrochemical
potential p(r). In Sec. III B we use this property to ob-
tain a linear-response kinetic equation in terms of p(r).
We then derive an alternative expression for the terminal
current and show that this kinetic equation can be viewed
as a continuous probe version of the Biittiker formula
(Sec. III C). Finally in Sec. III D we present a numerical
example to illustrate the conceptual difficulties associated
with defining separate local potentials pl and p~ for left-
and right-moving electrons. We show that these
difficulties can be overcome by defining these potentials
in an average sense over regions the size of a de Broglie
wavelength.

We would like to stress here that the local electro-
chemical potential p(r) defined by us characterizes the
energy distribution of the electrons at a point r. It has
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nothing to do with the momentum distvibution. . Thus the
existence of a local potential does not imply that the
number of electrons moving to the left equals, that mov-
ing to the right. Such an assumption could be wrong
even at equilibrium. For example, in the quantum Hall
regime, at equilibrium, all electrons move to the left near
one edge and to the right near the other edge.

A. When can carrier heating be neglected?

It is usually assumed that a certain degree of inelastic
scattering is necessary to maintain a local electrochemi-
cal potential. We will show in this section that even in
the absence of inelastic scattering, the occupation factor
f(r;E) has a Fermi-Dirac form (2.23) with a local elec-
trochemical potential p(r), if eV„&kz T & I „where Vz
is the applied bias and I, is the correlation energy over
which the propagation characteristics of the electrons
can be assumed constant.

We start from the simplified kinetic equation (2.32)
which is derived neglecting all vertical Aow due to inelas-
tic processes. We have numerically solved (2.32) for a
single-moded wire with a tunneling barrier in the middle
(Fig. 6). Under a small bias, we find that the solution
f(r;E) in the middle of the barrier closely approximates
a Fermi-Dirac factor. For a larger bias, however, the
solution deviates significantly from the Fermi-Dirac
form. This distortion of the occupation factor f(r;E)
can be viewed as "carrier heating. " To lowest order, it
could be described by introducing a local electron tem-
perature, indicating the degree to which the occupation
factor is smeared out in energy.

We can understood this behavior in a qualitative sense
as follows. The occupation factor at any point is comput-
ed as a weighted average of the occupation factors at sur-
rounding points [see Eq. (2.32)],

f(r;E)= f d r'K(r, r';E)f(r';E) . (3.1a)

Single-Moded Wire
I

I

I

Temperature; 100 K

3.5kBT = 30meV

Examine Solution At "A"
(a)

property (3.1b). Even in the presence of phase-breaking
processes it is possible to express f(r;E) in the form indi-
cated in (3.3) using the iterative solution procedure de-
scribed on p. 8040 in Ref. 25(b).

This equation states that the solution f(r;E ) at the in-
terior node is an average of the distributions f, (E ) and
f2(E) imposed at the contacts. We can conceive of two
situations where this average will not have a Fermi-Dirac
form. First, the weighting coefficients K

&
(r; E ) and

K2(r;E) may vary rapidly in energy, contributing extra
structure to the energy dependence of f(r;E), as shown
in Fig. 7(a). Second, the applied bias may be too large
relative to the thermal energy spread of electrons, caus-
ing the distribution f(r;E) to fiatten out for energies be-
tween p& and p2, as shown in Fig. 7(b).

From these general considerations, it appears that car-
rier heating can be avoided if two conditions are met: (1)
The kernel of the kinetic equation (2.32), ~G

~
l2rrr&No,

must vary slowly within the energy range of interest
(eV„, k~ T & I,), and (2) the applied bias must be much
smaller than the thermal energy spread of the electrons
(eV& &kzT). Note that, as the temperature tends to
zero, the applied bias must also tend to zero, to avoid car-
rier heating. In the zero-temperature limit, any bias (no
matter how small) is enough to distort the occupation
factor f(r; E ).

Of course, the presence of inelastic scattering will tend
to restore the occupation factor f(r;E ) to an equilibrium

It can be shown that the kernel K(r, r ',E) has the fol-
lowing normalization property:

f d r'K(r, r';E)=1 . (3.1b)

Let us assume that there is hardly any phase-breaking
scattering within the device so that the integral in (3.1)
only needs to include the two contacts. Within each con-
tact the distribution function has a Fermi-Dirac form
with a constant electrochemical potential, so that

f(r;E)=f, (E)f d r'K(r, r', E)r'E contact 1

+fz(E)f d r'K(r, r';E) . (3.2)
r'C contact 2

The distribution function f(r;E) at a particular point r
within the device is then a weighted average of the distri-
bution functions f&(E) and fz(E) at the two contacts,

f(r;E)=K, (r;E)f, (E)+K2(r;E)f2(E)

0.20

0.15

0.10 .

0.05
0.0

0.20

0.05
0.0

0.15

C3)

0.10

Solution at A

f(E)

&(E)

1.0

1.0

Small Bias: 10 meV

e(pI - p2) & 3.5kBT

(b)

Large Bias: 50 meV

e(p. I - p2) & 3.5kI3T

Carrier Heating at A

k, (r;E) K2(r;E)
(E—ep1 /k& T (E—ep2)/k& T+ (3.3)

where K&(r;E)+K2(r;E)=1, due to the normalization

FIG. 6. (a) A single-moded wire with a tunneling barrier.
The solution f(r;E) is computed in the middle of the barrier.
(b) Results for a small (10 mV} bias. (c) Results for a large (50
mV) bias.
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f; = KIfy + K2f2 each point r by a single number, the local electrochemical
potential p(r),

(a)

1

(/ —,( )]//, 7
e +1

(3.4)

0.0 1.0
f(E)

0.0 0.5 1.0

of(r; E ) =f0(E )+ — e [p(r) —po]+ (3.5)

We can reformulate our analysis in terms of this new po-
tential. For a small applied bias, we can expand the dis-
tribution function in a Taylor series about p =p0,

Kgb + K2f2

0.0 1.0

bQ

0.0 0.5 1.0

(b)

For linear response, we keep only terms to first order in

5p:—p(r) —po. After substituting this expansion (3.5)
into the kinetic equation (2.32), we obtain a linear-
response kinetic equation,

f d r 'To(r, r ')p(r ')
p(r) = (3.6)f d r 'To(r, r ')

where

FIG. 7. A simple example to illustrate the conditions leading
to carrier heating. The solution f;(E) will not have a Fermi-
Dirac form if (a) the coefficients K&(E) and K2(E) vary rapidly
with energy, or if (b) the applied bias is large.

To(r, r ') = f dE
~fo iil2~GR(r, r', E) ~

"dE r&(r;E)i.&(r ', E)
iri ~G (r, r', po)~

ry(r'po)~~(r', p,, )
' (3.7a)

form. Because of this, the relevant bias in condition (2)
above is really that which is dropped over an inelastic-
scattering length. We emphasize, however, that it is not
necessary to have inelastic scattering within the device to
obtain a Fermi-Dirac form for the occupation factor. It
is sufhcient to have inelastic scattering in the contact re-
gions, so that the boundary distributions have a Fermi-
Dirac form; the internal solution will then follow suit if
both of the above conditions are met.

An interesting situation arises if the bias is low but the
temperature is relatively high so that e V„&I, & k~ T and
condition 1 is not met. In this case the coefficients K&

and K2 vary across the energy range k& T over
which transport occurs. One could then define a local
energy-dependent electrochemical potential, p(r; E )

=K, (r, E )p, +K2(r; E )p2. However, there may be
significant vertical fiow (linked to the thermoelectric
effects) that invalidate the approximation discussed in
Sec. II D. In this paper, we will assume that
e V& & k~ T & I, so that K, and K2 are constants over the
energy range kz T, leading to a unique energy-
independent local electrochemical potential p( r )
=K i (r )pi+ K2(r )p2.

B. Simplification to linear response

E —Ho+ G (r, r', E)=5(r—r') .
iA

2r~(r;E )
(3.7b)

In writing (3.6) we have made use of the identity [see Eq.
(3.4) of Ref. 25(b)]

, iG (r, r', E)i 2m.
d r Xo r;E

~~(r ', E) A'
(3.g)

r)fo
G (ri, r2, E)=f d r' fo(E)+ — e[p(r') —po]

In this linear-response form, the kinetic equation (3.6)
is easily solved. We begin by dividing our structure, as
before, into contact regions (where we will apply a
boundary condition) and device regions (where we will
compute the solution). In the contact regions, the elec-
trochemical potential p(r) is fixed to a constant value.
By shifting the potential of one contact relative to anoth-
er, we can apply a bias to the structure. In the remaining
"device" regions, we compute the potential p(r) by solv-
ing the linear-response kinetic equation (3.6).

Once the solution for the electrochemical potential
p(r) has been obtained, we can use it to reconstruct the
occupation factor (3.5). The correlation function
G (r„r2,E) can then be computed,

If the applied bias is kept sufficiently small, we have
shown that the occupation factor f(r; E ) will indeed have
a Fermi-Dirac form. Knowing this, it seems unnecessary
to compute the actual solution for f(r;E) at each energy.
Instead, we simply characterize the occupation factor at

X Gs(r„r2, r ', E ), (3.9)

where Gs was defined in Sec. II E [Eq. (2.35)]. Any quan-
tity of interest can be obtained from this function.
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Note that the occupation factor f(r;E) can be separat-
ed into two parts: an equilibrium contribution fo(E),
and a Fermi-surface term ( Bf—0 lf3E )5p. Since the
correlation function G has this structure, any quantity
computed from it can also be separated in this manner.
Consider, for instance, the current density J(r;E),

T, p(r)=0, (3.15)

We summarize the linear-response solution procedure
in Fig. 8, and compare it to the procedure we would
adopt in solving the drift-diffusion equation for a classical
device. Indeed, we can write the linear-response trans-
port equation (3.6) in the form

5J(r;E)= d r'e[p(r') —po]J&(r, r'; E)
fo

J(r;E)=J, (r;E)+5J(r;E),
where

J, (r;E)=f d r'fo(E)Js(r, r', E),

(3.10)

(3.1 1)

where T,„ is the appropriate integral operator obtained
from the linear-response kinetic equation (3.6). This
could be viewed as a quantum analog of the drift-
diffusion equation V (fr Vp, ) =0. The solution procedure
is identical, as shown in Fig. 8.

C. Connection to the Biittiker formula

=e f d r '[p(r ') —po]JS(r, r ';po) . (3.12)

J& was defined in Sec. II E [Eq. (2.39)]. The equilibrium
component J,q(r;E) is nonzero over a wide range of ener-
gies. It is much simpler to compute only the change 5J
arising under bias, since this change is limited to the Fer-
mi energy at low temperatures.

The equilibrium current density J, is zero if there are
no magnetic Gelds. However, even at equilibrium, circu-
lating currents could exist in the presence of a magnetic
Geld. But these currents will not contribute to the termi-
nal currents, since we can have no net current How in
equilibrium. Thus, our expression for the current density
(3.12) is adequate for computing the terminal currents;
we simply integrate this current density over the surface
at each contact,

At this point, we are ready to compute and study solu-
tions in specific devices. Before we do so, however, we
will establish a connection between our kinetic equation
(3.6) and the Biittiker formula (1.4). We accomplish this
by obtaining an alternative expression for the terminal
currents. When we solve the diffusion equation (or its
quantum-mechanical counterpart) using the procedure
shown in Fig. 8, the divergence of the current density is
nonzero near the device-contact boundary. To see this,
consider a simple one-dimensional resistor [Fig. 9(a)].
The potential p obtained from the diffusion equation is
constant in the contacts and varies linearly within the de-
vice. The current density J= —o.Vp is zero in the con-
tacts, and constant within the device. This implies that
the divergence V.J is nonzero at the device-contact inter-
faces. By integrating the diverging current

I„=f 5J(r) dS„.
contact n

(3.13)

One subtle point remains in our discussion of the linear
response. In computing the current density 5J(r) we
have kept the term

e f d r ' 5p(r')J (sr, r', E), (3.14a)

which is first order in 5p. An electrostatic potential 5$ of
the same order as 5p will arise due to screening charges,
as discussed in Sec. II A; this is treated in greater detail in
Sec. VI. The correction 5tIft will influence the Green func-
tion 6"(r,r';E), and will therefore influence Js. The
term

Linearized Quantum
Kinetic Equation

O Solve for Electrochemical
Potential

Solve for p

Drift-Diffusion Equation

Ql Solve for Electrochemical
Potential

e f d r '5p(r ')5JS(r, r ', E) (3.14b)
Interior. Top p(r) 0

Boundaries: Fix P Boundaries: Fix p,

Interior. V. (@VS) = P

is clearly second order ( —5p 5$) and therefore negligible.
However, the equilibrium component contributes a term
of the form

5J, (r;E)—:f d r'fo(E)5J&(r, r', E), (3.14c)

which is erst order in 5$. Strictly speaking, our expres-
sion (3.12) for the current density is not the entire linear
response; we should add 5J, to it. As we have men-
tioned, in the presence of a magnetic field, there can be
circulating currents in equilibrium. The change in the
pattern of circulating currents due to 5t)It is given by 5J,q;
however, this additional term does not contribute to the
terminal currents I„,and we will neglect it in this paper.

Solve for Current Density

J(r) = d r' J&(r,r') p(r')

Q2 Solve for Current Density

J = —aVp.

Q3 Compute Terminal Currents Q3 Compute Terminal Currents

I = J(r) ds J(r) ~ dS

FIG. 8. The linear-response solution procedure is compared
with a conventional drift-diffusion analysis.
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(3.16)

over the contact region, we can obtain the terminal
current I„,

I„=f d rI(r) .
contact n

(3.17)

This should yield precisely the same result that we would
obtain by integrating the current density over the surface
S„ofthe contact [Eq. (3.13)].

We make use of this idea to derive an alternative ex-
pression for the terminal current in the quantum case.
To obtain an expression for I(r), we take the divergence
of the current density (3.12), and simplify it using our
earlier expression (2.40) for V Js. We then obtain, using
(3.7c),

(3.18)

i
Con~ac~

i I Contact ) (a)

X

Electrochemical
Potential

J = -~~u
Current Density

(goes to zero abruptly
at the contacts)

I = —V ~ J
X

Divergence
of Current

&(r) = —V ~J(r)
antum Kinetic

In the device regions, the current I(r)=0, so that Eq.
(3.18) reduces to our kinetic equation (3.6). We solve this
equation for the potential p, (r) within the device using the
procedure described earlier (step 1 of Fig. 8). We then
compute the diverging current I(r) in the contact region,
and integrate it over the volume of each contact region to
obtain the corresponding terminal current [Eq. (3.17)].
In our numerical calculations, we find that both methods
of computing the terminal currents [Eqs. (3.13) and
(3.17)] yield the same result to within five or six decimal

places. Figure 9(b) shows an actual numerical example.
Unlike the diffusion equation, the diverging current J(r)
for the quantum equation extends a length L& in the con-
tact region, as the current density J(r) decays to zero.
This is because the operator T, in the quantum equation
couples together all nodes within a phase-breaking length
L~, while the V operator in the classical equation cou-
ples together only nearest-neighbor nodes.

Note the striking similarity between Eq. (3.18) for I(r)
and the Biittiker formula, repeated here for convenience,

eI;= gT;(p; —p ).
J

(3.19)

It appears that we have generalized the Biittiker formula
to a continuous distribution of probes. Indeed, Buttiker
has shown' that additional probes can be added to a de-
vice to simulate the effect of phase-breaking scatterers. It
appears that we have simply taken his suggestion to the
continuum limit. A phenomenological extension of this
kind has actually been used to study the effects of distri-
buted phase-breaking scattering. However, our kinetic
equation (3.18) has been rigorously derived from a model
Hamiltonian, and thus places Biittiker's "probe" model
for phase-breaking scatterers on a firm quantitative foot-
ing.

In this continuous-probe interpretation, the kernel
To(r, r ') of our kinetic equation (3.18) plays the role of a
transmission probability density. It answers the question:
"How likely is it that an electron injected into the sample
at position r ' will reach a position r without scattering
into another probe along the way?" Of course, the ma-
jority of electrons will have scattered out within a phase-
breaking length L& of the injection point, so that in gen-
eral this function decays as exp( p IL

& ), wh—ere
p= r —r '~. As Eq. (3.6) shows, the electrochemical po-
tential at any point is a weighted average of the values of
surrounding points. Because the weighting coefficients
—To decay as exp( plL&), nonlocal —quantum effects
only arise on the length scale defined by L&. If we
neglect phase-breaking processes within the device, then
To(r, r ') is nonzero only if points r and r ' both lie inside
some contact. The overall transmission T, from contact
j to contact i [see Eq. (3.19)] is obtained by summing
To(r, r '

) over all r ' Econtact i and all r Econtact j.

D. Can we de6ne pL, and p&.

ero e
&sy

FIG. 9. (a) In a drift-diffusion analysis, the continuity equa-
tion is violated at the boundaries. (b) In our quantum analysis,
this effect extends over a phase-breaking length L&.

We have defined the electrochemical potential p(r) in
terms of the total electron density per unit energy n(r;E )

[see Eqs. (2.22) and (2.23)]. It is often intuitively appeal-
ing to define separate electrochemical potentials pL (r)
and pz(r) for the left-moving and right-moving elec-
trons. ' However, the left-moving and right-moving
electron densities nl(r;E) and n~(r;E) are not positive-
definite unlike the total electron density n =nL +n„.
Consequently the local potentials pL(r) and pz(r) may
show unphysical behavior. We believe this problem
arises because the concept of left-moving and right-
moving electrons at a particular point is in violation of
the uncertainty principle. The problem can be avoided
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by defining these potentials in an average sense over re-
gions the size of a de Broglie wavelength. The resulting
potentials pL and pz behave as we might intuitively ex-
pect. ' Our objective in this section is to illustrate the
above statements with a numerical example.

We consider a single-moded wire with a tunneling bar-
rier in the middle [Fig. 10(a)]. The potential iLt(r) ob-
tained by solving Eq. (3.6) [or Eq. (3.18)] oscillates on ei-
ther side of the barrier [Fig. 10(b)]. These oscillations de-
cay away from the barrier, an indication of the phase-
breaking scattering present in our model. Note that the
oscillations in p are not simply a consequence of the
standing waves in the electron density that one expects
near a barrier; these would arise even if the potential p
were constant, due to oscillations in the local density of
states Xo(r;E ). As we have stated, the potential p at any
point is a weighted average (3.6) of the values at sur-
rounding points. We can understand the oscillations,
therefore, by investigating the weighting coefficients
To(r, r '), as shown in Fig. 10(c). At a point L, where the
electrochemical potential reaches a peak, the weighting
coefficients favor the reservoir on the left-hand side of the
wire. This is understandable, since the reservoir on the

right-hand side is shielded by the tunneling barrier. If we
move a half-wavelength nearer to the left-hand reservoir,
however, the coupling to that reservoir actually de-
creases. At this point, left-moving and right-moving
waves interfere destructively, so that the magnitude of
the Green function 6 (r, r') is small; this magnitude
continues to decay as electrons travel toward the left-
hand reservoir. Thus, at the point R, the weighting
coefficients favor the right-hand reservoir, and the elec-
trochemical potential dips to a minimum. These results
are in good qualitative agreement with earlier work,
as we might expect, since our kinetic equation (3.18) can
be viewed as a continuous-probe version of the Buttiker
formula.

It will be noted that the oscillations in p(r) are always
limited between pl and pz, that is, pl )p) p2. However,
when we compute pI and pz find that the oscillations ex-
tend beyond pt and pz, which is unphysical (Fig. 11).
The potentials pL and pz are calculated as follows. We
compute the electron densities nL and nz, for left-moving
and right-moving electrons, from the Wigner function
—iG

(a) Tunneling
Barrier
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FIG. 10. (a) Single-moded wire with a tunneling barrier. (b)
Solution for the electrochemical potential p along the center of
the wire. (c) The kernel Tp(r, r') as a function of r' along the
wire, for r located at the points L and R indicated in (b).

FIG. 11. Electrochemical potentials in a single-moded wire
with a tunneling barrier (see Fig. 10). Solutions for (a) pR and
(b) pL show unphysical behavior. However, (c) solutions for the
potentials pl, p, R, and p, (averaged over a wavelength) show sen-
sible behavior.
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nL(r;E)= f z f„G (;k;E),dk~

2~ (2~)' i„&o 2~

n~(r;E)= f f G (r;k;E) .i d k dkx

(3.20a)

(3.20b)

the Fermi-surface term, so that our results reAect the
changes 5nL and 5nz arising under bias. Using the
definition for G& (2.35) and the Fourier-transform rela-
tionship (2.4a), it can be shown that

We can reconstruct the Wigner function —iG using Eq.
(3.9), once we have obtained our solution for the local
electrochemical potential p(r). As we discussed earlier,
the Wigner function consists of two terms: an equilibri-
um quantity and a Fermi-surface term. We evaluate only

5ni (r) = ,'5n(—r)—b, (r),

5n~ (r ) = —,'5n (r)+ b (r),
where

(3.21a)

(3.21b)

b,(r) = equi
—. ~ Px 3, p(r ')
lim dp d r', Im G r — x, r';p G r+ x, r', p

pX ~ r g pX

2~ 0 0 0 p„+g ~&(r', po) 2 2
(3.22)

Using these electron densities, we can define electrochem-
ical potentials separately for left-moving and right-
moving electrons (assuming that there are no magnetic
fields, so that half the total density of states No is associ-
ated with each direction),

A(r)pL(r)—:p(r)— (3.23a)

p~ (r) =p(r)+ b(r)
eNO r /2

(3.23b)

(5nL(r) )

&N, ( ))/2 '

(5n~(r) )

(3.24a)

(3.24b)

are well-behaved quantities, as shown in Fig. 11(c). The
idea of averaging over a wavelength is not novel. Other
authors have recognized that the off-diagonal elements of
the Wigner function have undesirable properties and
have developed Cxaussian smoothing techniques (such as
the use of Husimi functions) to obtain sensible results.

The potentials pL and pz for the narrow wire with a
tunneling barrier are displayed in Figs. 11(a) and 11(b).
In keeping with our earlier result (Fig. 10), the presence
of a tunneling barrier causes both potentials to oscillate.
Excursions into the shaded areas, however, indicate that
these potentials have unphysical properties: For left-
moving electrons, the excursions represent a negative
electron density 5nL, while for right-moving electrons,
they represent an electron density 5nz in excess of the
density of states. This behavior is difficult to reconcile
with our semiclassical intuition.

Such strange, quantum-mechanical behavior might be
expected. In a sense, we have attempted to localize elec-
trons in both position and momentum, thereby violating
the Heisenberg uncertainty principle. If we were to aver-
age the electron densities 5nL and 5nz over a wave-
length, however, we should obtain sensible results.
Indeed, the electrochemical potentials defined in terms of
the average electron densities,

No(r;E)= —Im[G (r, r;E)]/m. . (3.25)

Using the Fourier-transform relationship (2.4a), we can
rewrite No(r;E) as

d kNo(r;E)= f (2~)
——Im[G (r;k;E)] . (3.26)

It seems that we can obtain the left-moving density of
states NL (r;E) by restricting the integral in (3.26) to
k„(0 and the right-moving density of states Nz (r;E) by
restricting to k )0. These quantities, however, may not
be positive-definite.

IV. MEASURING THE ELECTROCHEMICAL
POTENTIAL

In Sec. III we have seen how under low-bias conditions
the electron energy distribution at each point can be
characterized by a local electrochemical potential p(r).
Our objective in this section is to explore the difficulties
associated with measuring the local potential in meso-
scopic samples by connecting a voltage probe. The
difhculty is twofold. First, voltage probes are usually in-
vasive; that is, they significantly alter the very potential
distribution they are supposed to measure. This is dis-
cussed in Sec. IV A. However, this is a problem that can
possibly be avoided by designing weakly coupled nonin-
vasive probes. A more serious conceptual issue em-
phasized by Buttiker is that even with noninvasive
probes, the measured potential could be affected by the

In the above discussion we assumed that the density of
states for left- and right-moving electrons are equal, so
that each equals No(r;E)/2. This is not true in a mag-
netic field. For example, in the quantum Hall regime the
entire density of states on one side of the sample is associ-
ated with left-moving electrons and that on the other side
with right-moving electrons; thus, p is identical with pL
on one side and with pz on the other. In general, we

could define the left- and right-moving density of states as
follows. The density of states No(r;E) is related to the
diagonal elements of the retarded Green function, '
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probe geometry. We present a numerical example in Sec.
IV 8 showing how the oscillating potential near a barrier
(see Fig. 10) can be measured fairly accurately using
noninvasive probes with different geometries. Finally, in
Sec. IVC we present a counterexample. We show that
the intrinsic Hall potential in a narrow quantum wire is
present around the voltage probes and yet the probes fail
to measure it.

A. Invasive voltage probes

We can get some insight into the problems of measur-
ing the electrochemical potential by considering the ki-
netic equation [Eq. (3.6)j, which is rewritten here for con-
venience,

f d r'To(r, r')p(r')
p(r) =

f d r 'To(r, r ')
(4.1)

In this form this equation has a simple physical interpre-
tation. It simply states that the electrochemical potential
at any point is a weighted average of those at surround-
ing points. The weighting coefficient To(r, r ) is related
to the probability that an electron suffering a phase-
breaking scattering at r ' will suffer its next phase-
breaking event at r.

Measuring the local potential in large macroscopic
samples is straightforward. This is because the potential
varies slowly compared to the phase-breaking length,
which is equal to the spatial range ~r —r '~ over which the
weighting function To(r, r ) is significant. Consequently,
an external probe only samples a small portion of the de-
vice over which the potential is nearly constant. But in
mesoscopic samples the potential varies rapidly over the
range of the weighting function To(r, r ') leading to
significant nonlocal effects.

Recent experiments have made it apparent that one
cannot simply attach a probe to a small sample and mea-
sure the voltage at a given point. An example of this can
be found in the literature on conductance Auctuations, a
topic that has received widespread attention in recent
years. ' In the presence of a magnetic field, the con-
ductance of disordered wires exhibits noiselike, but re-
peatable, Auctuations. " Many of the early experiments
were performed with a large spacing (L )L

&
) between

the voltage probes. From a semiclassical viewpoint, we
might expect the fluctuations to decrease as the voltage
probes are brought together, so that at some point, when
the probes are sufficiently close, the measured voltage
would be zero. Experimentally, however, the voltage
fluctuations are found to level off at a constant value as
the separation between the probes is decreased.

Of course, in these experiments, there is no clear
division between the probes and the sample. The probe is
simply a lead made of the same material, attached to the
side of the sample under test. For this reason, it is
difficult to localize precisely where the voltage is being
measured. Indeed, Biittiker has shown that even a per-
fectly ordered wire will exhibit voltage Auctuations if im-
purities are introduced into the voltage probes. In
effect, an electron "sees" every part of the device within a

B. Noninvasive voltage probes

Strongly coupled probes, such as those discussed
above, are easily fabricated; but they are by no means the

e it(r)

&oo g
(a)

1 mode

L& = 5300 A

goo g

""gelroh, (b)

FIG. 12. (a) In a homogeneous wire, the electrochemical po-
tential p drops linearly. (b) The presence of a voltage probe dis-
turbs the solution for p.

phase-breaking length I.&. This includes regions within
the voltage probes, even though these regions are outside
of the classical current path.

From these experiments, it is clear that voltage probes
must be treated as an integral part of a device; their pres-
ence or absence, even their form, can affect the outcome
of an experiment. Using the theory described in Sec. III,
we are in a rather unique position to view the measure-
ment process in microscopic detail. Consider, for exam-
ple, the electrochemical potential p(r) in a homogeneous
wire both with and without a voltage probe, as shown in
Fig. 12. Our voltage probe is modeled as a lead made of
the same material, extending out to infinity. At some
point within the lead, the electrochemical potential set-
tles out to a constant value —the value that would be
"measured" at the contact in a real experiment. Without
the probe, the potential drops linearly due to the uniform
background of phase-breaking scatterers. When we at-
tach the voltage probe, however, the potential oscillates
within a phase-breaking length of the junction, almost as
if we had inserted a tunneling barrier into the wire (cf.
Fig. 10). By attaching a probe, we have actually intro-
duced a large scattering center into the wire, thereby dis-
turbing the potential we were trying to measure.
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only way of performing a measurement. A scanning tun-
neling microscope, for instance, can be modified so that it
measures both the surface topography and the electro-
chemical potential. ' Since the tip is separated from
the sample by a tunneling barrier, a measurement of this
type should be minimally invasive. Results obtained in
polycrystalline Au6OPd4O films are striking: In the pres-
ence of bias, the electrochemical potential remains ap-
proximately constant across each grain, and drops sharp-
ly at the grain boundaries. This is precisely the behavior
we might expect, since the grain boundaries offer the
greatest resistance to current Aow. In the absence of bias,
of course, the potential shows no variation. Because
these experiments provide an internal view of the sample,
they represent a powerful tool for the exploration of
transport physics.

In our simulations, we can make a voltage probe less
invasive by inc1uding a tunneling barrier at the mouth of
the probe. We will use fairly long and shallow barriers,
having an extent of —150 A and an apparent height of-3 meV. A similar probe could be realized experimen-
tally by a point contact operating near pinchoff. To il-
lustrate the effect that the probe-to-sample coupling has
on the measurement, we investigate two probes with
slightly different tunneling barriers, shown in Fig. 13(a).
One of these barriers has a uniform thickness, while the
other does not. For a suitable test structure, we return to
the single-moded wire with a tunneling barrier studied in
the preceding section. Interference effects cause the elec-
trochemical potential to oscillate on either side of the
barrier (Fig. 10). We position each of these probes at
various points along the wire, and compare the measured
potentials to the actual solution in an unprobed sample,
as shown in Fig. 13.

Both probes measure the electrochemical potential far
better than we might have expected. It is evident from
Eq. (4.1) that the potential pp at a point P in the probe is
a weighted average of the potentials p(r ') at surrounding
points,

pp = f dr 'Kz(r ')p(r ') . (4.2)

The results in Fig. 13(b) suggest that this is indeed the
case. We have studied a large variety of noninvasive
probes and have found that they all seem to provide good
qualitative measurements.

The weighting function Kp(r ') extends over a range L&,0
which in this example is 5300 A. Since I.

&
is much larger

than the period of the oscillations, we would not expect
the measured potential to oscillate. We would expect the
probe to Goat to some average potential, rather than to
the potential p& at the point C in front of the probe.
Note, however, that pc itself is an average of the sur-
rounding potentials,

p, c=f rd' K(cr')p(r') .

If the weighting functions K~(r ') and Kc(r ') are similar,
then we would expect

(4 4)

C. Quenching of the Hall resistance

Finally we consider the well-known problem of the
quenching of the Hall resistance in mesoscopic wires. We
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FIG. 13. (a) Two slightly different but weakly coupled probes
are investigated; the position of each probe is scanned along the
edge of the wire. (b) The two probes give slightly different mea-
surements, but both measurements are in good agreement with
the intrinsic potential represented by the solid line.

However, the measured potentials are quantitatively
different for the two probes. It appears that the probe
with a uniform barrier measures the potential more faith-
fully. At first glance, it seems that the probe with the
nonuniform barrier may have its focal point on the left
side of the probe, so that the values measured by this
probe might simply be off center. But a simple shift of
the data points is not enough to account for the measure-
ment error at all points. Presumably, the two probes cou-
ple to the sample in a slightly different manner, due to the
different shapes of the tunneling barriers. As a result, the
different weighting coefficients Kz(r ') for the two
different probes yield slightly different measurements pz
for the potential. Similar effects have been reported in an
analysis of scanned probe measurements, ' indicating
that in general, potential measurements should be inter-
preted with care.
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will show that the intrinsic Hall potential is present near
the voltage probe, and yet the probes do not measure it.
It thus seems that noninvasive probes may not guarantee
a faithful measurement, despite the surprisingly good re-
sults shown in Sec. IV B (Fig. 13).

Semiclassically, the Hall resistance is expected to be
linear in the magnetic field, p =8/en F. rom this rela-
tionship, the slope of the Hall resistance (plotted against
magnetic field) can be used to determine the electron den-
sity in a particular sample. Experiments performed on
narrow wires, however, show that p„ is nearly zero or
"quenched" at low magnetic fields. ' Theoretical cal-
culations ' also show this effect. Using the present ap-
proach, we computed the Hall resistance as a function of
magnetic field for the geometry shown in Fig. 14(a), with
two different phase-breaking times r& Que.nching is ap-
parent in the sample with the longer ~&, while the usual
linear dependence is recovered with a shorter r& [Fig.
14(b)]. Note, however, that the phase-breaking scatterers

in our model randomize momentum as well as phase. Be-
cause of this, it is not clear whether the quenching is des-
troyed by the additional phase breaking, or the additional
momentum randomization. As we change ~&, we go from
a quantum ballistic to a semiclassical diffusive regime.
Unfortunately, we cannot investigate the semiclassical
ballistic regime, which corresponds to the billiard-ball
model of Beenakker and van Houten. One way to do
this is to evaluate the weighting function To(r, r ) from
semiclassical dynamics; however, this is outside the scope
of this paper.

It should be mentioned that in obtaining the quenched
characteristic shown in Fig. 14(b), the equilibrium Fermi
energy po had to be selected carefully. We present the
Hall resistance versus po at a Axed magnetic field
(8 =0.2T) in Fig. 14(c), for two different phase-breaking
times ~&=1.0 and 0.1 ps; the difference between these
curves indicates the degree of quenching, which evidently
oscillates as a function of po. Such selective quenching
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FIG. 14. (a) The measurement junction for Hall resistance calculations; all leads are single moded. (b) The Hall resistance shows
quenching when the phase-breaking time r& is long. (c) Quenching of the Hall resistance changes as a function of the equilibrium
Fermi energy po. (d) At a particular energy po= 8.0 meV, the Hall resistance shows the onset of quenching at higher magnetic fields.
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behavior has been observed both experimentally ' and
theoretically. ' It is also possible for quenching to48, 50

manifest itself at higher magnetic fields, although it may
be absent at low fields [Fig. 14(d)]. This delicate depen-
dence on both energy and magnetic field reflects the com-
plex behavior of scattering within the junction, which has
been discussed by a number of authors.

An important question regarding the quenching is
whether it is an intrinsic property of narrow wires or an
artifact of the measurement probes. By computing the
transverse electrostatic potential in narrow wires without
probes, it has been shown that the Hall resistance is
not intrinsically quenched. Using the present approach,
we can include the presence of voltage probes and exam-
ine the electrochemical potential p(r) throughout the
structure. As we will shown in Sec. VI, this potential
p(r) can be used to compute the electrostatic potential
P(r). The two potentials share the same qualitative be-
havior, although it is the electrochemical potential p(r)
that is actually measured by the probes.

In Fig. 15(a), we present the solution for the electro-
chemical potential p(r) throughout the structure. The
usual Hall buildup is evident in regions of the wire away

from the junction. We can see this buildup more clearly
by examining a cross section of the wire marked 8'
shown in Fig. 15(b) for two different phase-breaking times
~&, these curves have been scaled so that the current is
the same in both cases. Within the junction, however,
the Hall buildup is disturbed. Since this disturbance is
antisymmetric with respect to the center of each probe,
we can consider the cross section along this line [marked
P in Fig. 15(a)] to be representative of the average poten-
tial within the junction. We compare this potential
(along P) to that which arises outside of the junction
(along W). We focus our attention first on the central re-
gion of the wire —the region that would still exist if the
probes were removed. In this region, the Hall buildup
within the junction corresponds quite well to that away
from the junction, even for the sample with the longer
phase-breaking time. Thus, in an average sense, the usual
Hall buildup exists within the junction, although the
probes fail to measure it properly when the phase-
breaking time w& is long.

As we have mentioned earlier, the electrochemical po-
tential p(r) at any point r is a weighted average of the
values at surrounding points [Eq. (4.1)]. We can gain a
little insight by examining the weighting coefficients
To(r, r '). These coefficients are presented in Fig. 16 for a
point r in probe 3, for two different phase-breaking times
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FIG. 15. (a) The electrochemical potential p within the junc-
tion. (b) Cross sections of p taken at the points indicated in (a)
for two different phase-breaking times r&= 1.0 and 0.1 ps; these
cross sections have been normalized to reQect equal currents for
the two values of r&.

FIG. 16. The weighting coefficients To(r, r ') as a function of
r ' for a point r within probe 3, for two different phase-breaking
times: (a) r& =0. 1 ps and (b) r& = 1.0 ps.
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We would expect that electrons traveling from con-
tact 1 to contact 2 would be deflected by the Lorentz
force into probe 3. As a result, the weighting coefficients
for probe 3 should favor contact 1. When the phase-
breaking time ~& is short, this is indeed the case. When
~& is long, however, the two contacts are weighted almost
equally, and the probe floats to a lower potential [see
cross sections in Fig. 15(b)]. Because probes 3 and 4
"see" each other so strongly, it is difficult for them to re-
gister a potential difference.

The quenching of the Hall effect is also rejected in the
pattern of current density within the junction. Usually,
the Hall buildup gives rise to an electric field which coun-
teracts the Lorentz force, so that the current Aow pattern
is virtually undisturbed in a magnetic field. In Sec. VI,
we will actually compute such corrections to the electro-
static potential. For the present, however, we are
effectively treating electrons as neutral particles. Even
so, we expect the current density to remain undisturbed.
This is because a Hall buildup of neutral particles will es-
tablish a diffusion current that counteracts the Lorentz
force. When the junction exhibits quenching, however,
one (or both) of the probes will Goat to an improper po-
tential, and the current that would normally counteract
the Lorentz force may change. As a result, we expect to
see the current fIow pattern change from its 8 =0
configuration. This is precisely what we observe in the
calculations of the current density. In Fig. 17, we plot
the current density both with and without a magnetic
field, for the longer phase-breaking time ~&=1 ps. In the
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FIG. 17. Current density 5J within the junction both with
and without a magnetic field, for a long phase-breaking time
~&=1.0 ps. The diversion of current toward probe 3 is a symp-
tom of the quenched Hall resistance.

presence of a magnetic field the current is diverted to-
ward probe 3, indicating that the potential difference be-
tween probes 3 and 4 is too small to counteract the
Lorentz force. We have checked that for a shorter
~&=0. 1 ps, the current Aow pattern hardly changes when
a magnetic field is applied as we might expect since there
is no quenching.

V. POTENTIAL DROP AT A CONSTRICTION

Recent experiments with point contacts ' have
shown that the two-probe conductance measured be-
tween two reservoirs is approximately equal to
(2e /h )M, if the device in Fig. 1 is a ballistic channel
with M modes. Theoretical calculations based on the
two-probe Landauer formula (1.3) also lead to this re-
sult. ' ' An obvious question to ask is where the volt-
age drop associated with this two-probe resistance
(h/2e M) occurs. We do not expect any drop in the
electrochemical potential across the narrow device re-
gion, since it is ballistic. Neither do we expect any
significant drop in the wide regions, since they are highly
conductive. Imry has argued that the potential drop is
due to the spreading resistance associated with the transi-
tion region where the current funnels into or out of the
narrow channel. This resistance is known as the Sharvin
resistance in inelastic point-contact spectroscopy.

In Secs. III and IV we discussed how the local electro-
chemical potential can be defined and measured. Our ob-
jective in this chapter is to examine the spatial variation
of the electrochemical potential in several structures in
order to clarify the nature of the spreading resistance.
We will first discuss the contact resistance that occurs
when we connect any conductor to an ideal reservoir
(Sec. V A). We will then examine the geometry shown in
Fig. 1 where a narrow device Aares out into wider leads at
the ends (Sec. VB). The purpose is to shed light on the
question of how wide a lead needs to be in order to func-
tion as an ideal reservoir.

At the outset we would once again like to remind the
reader that the kinetic equation we use for our calcula-
tions simply states that the electrochemical potential at
any point r is a weighted average of the potentials at sur-
rounding points r ', the weighting function To(r, r ') is re-
lated to the probability that an electron suffering a
phase-breaking scattering at r ' suffers the next one at r
[see Eq. (4.1)]. As we have mentioned earlier, this simple
physical picture is very useful in understanding the nu-
merical results.

A. Contact resistance
0

Consider first a single-moded wire, 800 A long, with
p =p, at one end and p =p2 at the other. Subject to these
boundary conditions we solve the kinetic equation, Eq.
(4.1), to obtain the potential distribution p(r) in the wire.
The external current is then obtained from Eq. (3.6) by
integrating I(r) over one of the contacts. The total resis-
tance is computed from the ratio of the applied potential
(p, —pz) to the total current.

Figure 18 shows the potential profile for a wire with a
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p(r) =K/(r)p]+K2(r)fc~, (5.1a)

where

I, d r'To(r, r')
1K , (r)=

r'EC)+C~ d r'To(r, r') (5.1b)

d r'To r, r'
K2(r) =

J, d r 'To(r, r ')
1 2

(5.1c)

long r&( =20 ps) and a short r&( =0.5 ps). For the ballis-
tic wire there is no potential drop across the wire as we
might expect. However, there are sharp drops at the
ends which may come as a surprise since there is no ap-
parent discontinuity or obstacle to Aow at these points.
It is easy to see why Eq. (4.1) leads to this form for the
potential distribution. The integrals in (4.1) include the
left contact (C, ), the device (D), and the right contact
(C2). Since there is hardly any scattering within the de-

vice, we can neglect the integral over the device and
rewrite (4.1) as [cf. Eq. (3.3)]

Clearly K&+%2=1. Thus the potential inside the device
is a weighted average of p, and p2. K, (r) is the fraction
of electrons at r that suffered their last scattering in the
left contact, while Kz(r) is the fraction that suffered their
last scattering in the right contact. In a ballistic device
the Green function G (r, r ') [and hence To(r, r ')] hardly
changes as we move r from left to right. Consequently
K, (r) and K2(r) are independent of r and equal to 0.5
throughout the device. Hence [from (5.1a)] p, =0.5 every-
where inside the device.

It thus appears that for a ballistic device the entire
resistance is lumped at the two ends, right where the
boundary conditions are applied [Fig. 18(c)]. This can be
understood if we remember that the constant potential
boundary condition that we have applied is accurate only
if these regions are infinitely wide so that the series resis-
tance is zero. As a natural corollary to this argument,
we can state that imposing a constant potential boundary
condition is physically equivalent to assuming that the
wire suddenly becomes infinitely wide in the contact re-
gions. Consequently, we expect contact resistances at
these points, just as we get a spreading resistance when
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the width of a conductor changes.
The resistive wire in Fig. 18 having ~&=0.5 ps shows

nearly the same contact resistance localized at the ends
with an additional series resistance distributed
throughout the wire as shown in the equivalent circuit
[Fig. 18(c)]. Figure 19 shows similar results for a wire
with four modes. From these examples we can write the
contact resistance R& for a wire with M modes approxi-
mately as

Rc-— (h/2e ) .
1

(5.2)

This is the resistance that appears at the ends when the
wire is suddenly widened to infinity or, equivalently,
when a constant potential boundary condition is applied
at the ends. For a ballistic wire Rc represents the total
resistance. But if there is scattering inside the device,
then an additional resistance appears in series with R&.

It will be noted that the total resistance is related to
the transmission T through the device [Eq. (1.3)],

R„„&=Rc+Rs =—(h /2e ) .=1 (5.3)

From (5.2) and (5.3) we can solve for Rs, the resistance of
the channel alone,

R = (h/2e ).
T

(5.4)

For a single-moded device, (5.4) yields the familiar Lan-
dauer formula

Rs= (h /2e ) .
T

(5.5)

B. How ideal is a reservoir?

Landauer has shown that if the contact has a finite
number of modes 8' then the contact resistance is re-
duced from the value we expect from (5.2). This can be
understood as follows. Consider the structure shown in
Fig. 20(a) with &&=20 ps. Since there is hardly any
scattering within the device, the potential at any point
can be obtained from Eq. (5.1). In the central narrow re-
gion K, =%2 =0.5 (from symmetry) so that the potential
is 0.5. Now, if we consider a point located in the wide re-
gion to the left we can estimate E

&
and Ez from a simple

semiclassical argument as follows. Consider electrons
entering the device from the left contact. These electrons
first traverse the wide region to the left. A fraction X/ W
is then transmitted onto the right through the narrow re-
gion, and the rest (1 —X/W) traverse the left-hand wide
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Adding (5.7a) and (5.7b),

(5.7b)

(5.7c)

Note that if the wide regions are made infinitely wide, the
boundary resistance R~/2 tends to zero, and the contact
resistance R~ii tends to the ideal value of ( I/N)(h /2e ).
If a lead acting as a reservoir is not sufficiently wide, the
contact resistance R&~ between the lead and the narrow
device is less than the ideal value as evident from (5.7a).
This agrees with the result derived by Landauer (apart
from a factor of 2/~r) from a very different approach.

To check the above results we first consider the struc-
ture shown in Fig. 20(a). Figure 20(b) shows the comput-
ed potential profile. There are Friedel-like oscillations
in the potential due to interference effects, just as we saw
earlier for a tunneling barrier (Fig. 10). Ignoring the os-
cillations we can estimate the fraction of the potential
p&~ that drops across the narrow region and compute
the contact resistance R&~ between the narrow region
with one mode (N =1) and the wide region with four
modes ( W =4). We obtain, as shown in Fig 20(b),

FIG. 20. Potential drop in a wide-narrow-wide (O'XR')
structure with abrupt transitions. (a) Schematic diagram; (b)
potential variation along the center; (c) equivalent circuit.

R~ii, -—0.80(h /2e ),
Rii, -—0.29(h /2e ) .

(5.8a)

(5.8b)

Both Rz~ and R ~ are somewhat larger than what we ex-
pect from (5.7a) and (5.7b) with N =1, W =4. It should
be noted that the individual values of Rz~ and R~ are

PWL (5.6a)

Similarly the potential p~R in the right-hand wide region
is given by

P 8'R (5.6b)

Also, the current I is given by

region back into the left contact. A similar argument ap-
plies to electrons coming in from the right contact. Thus,
if we look at any point in the wide region to the left, we
find (1+1 —N/W) electrons that came from the left con-
tact and N/W electrons that came from the right con-
tact. Hence, K& =1—(N/2W) and K2 =N/2W. We
thus obtain the potential p~L in the left-hand wide region
from (5.1):
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From Eqs. (5.6) we compute the contact resistance be-
tween the wide and narrow regions,

r 0-
P 8'L P 8"R

XR' I (h/2e ) . (5.7a)

We also have a contact resistance R~/2 between the
wide regions and the contacts (where the boundary condi-
tions on p are applied) as shown in Fig. 20,

FIG. 21. Same as Fig. 20 for a wide-narrow-wide (O'NR')
structure with graded transitions.
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Rzz, ——0.74(h/2e ), r&(wide)=1 ps,

R&ii -—1.05(h/2e ), r&(wide)=0. 1 ps .

(5.9a)

(5.9b)

With ~&(wide) = 1 ps there are oscillations in the potential
[Fig. 22(b)] making it difficult to estimate R~ii and R~

(a)
1.00-

Q1 Ripig~ - 1.35 (h/2e )

only approximate because of the oscillatory nature of the
potential. Only the sum Rto„& =Rz~+R~ is known ac-
curately. The total resistance R„„i= 1.09(h /2e ) is
reasonably close to the estimate in (5.7c). It is reduced
slightly to 1.06(h/2e ) when we grade the junction be-
tween the wide and narrow regions (Fig. 21).

The examples in Figs. 20 and 21 both involve nearly
ballistic structures (ran=20 ps). We will now look at two
examples where the narrow regions are ballistic (ran=20
ps), but the wide regions have significant amounts of
scattering (r&=1 and 0.1 ps). This helps damp out the
oscillations, making the potential drops across the
different regions less ambiguous. Unfortunately, it also
introduces a distributed series resistance across the wide
regions. However, this series resistance can be estimated
from the potential drop computed earlier for a straight
wire [Figs. 19(a) and 19(b)] and subtracted out. We can
then estimate the contact resistance R&~ between the
narrow and wide regions as shown in Figs. 22(b) and
23(b),

individually. We had this same difficulty earlier with

ran=20 ps (Fig. 20). But with r&(wide) =0.1 ps the oscilla-
tions are completely damped, making the estimates for
R&~ and R~ quite unambiguous tFig. 23(b)]. It is in-
teresting to note how Hat the potential is in the wide re-
gions after subtracting the series resistance, considering
that this series resistance was obtained from a diferent
structure [Fig. 19(b)].

The contact resistance R&~ for ~&= 1 ps is in agree-
ment with our estimate in (5.8). However, for v&=0. 1 ps,
Rz~ is significantly larger. We can understand this by
noting that the phase-breaking length I.

&
in this case is

=250 A, which is more than a factor of 3 smaller than
the width of the wide regions. Since the wide region is
much wider than L&, it is effectively infinite in ividth
Consequently we expect R&~ to increase from
0.75(h/2e ) to its full value of 1.00(h/2e ). This quali-
tative change in the nature of the wide region is also
reAected in the current liow pattern as we reduce r&(wide)
from 1 to 0.1 ps (Fig. 24). With r&(wide)=1 ps there are
obvious interference effects in the current Aow pattern in
the wide region, which should be sensitive to the width of
the structure. But with r&(wide) =0.1 ps the current Aow

pattern is just what one expects intuitively in the classical
diffusive regime and should remain unaffected by the
width.

Although the numerical results are only approximate,
they serve to illustrate the localized nature of the contact
resistance. We conclude that a fairly localized drop
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FIG. 22. (a) Potential drop in the same structure as in Fig. 20
but with ~&=1 ps in the wide region. The dashed curve shows
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occurs when the number of current-carrying channels is
abruptly constricted from 8' to N ( W') N). This drop
can be described by a contact resistance equal to
(1/N )(Ii /4e ) if the wide region is wider than L&. How-
ever, if the wide region is narrower than L&, then the
contact resistance is reduced by the factor (1 N—/W).

There is one caveat we would like to sound before con-
cluding this section. In many of the figures we have
shown equivalent circuits with resistances in series. The
resistances are drawn to reAect the spatial drops in the
electrochemical potential. However, these resistances o
not necessarily give us the spatial distribution of the dissi-
pated power. From our examples it is apparent that a
drop in the electrochemical potential occurs whenever
there is an obstacle to current Bow such as an impurity
(Fi . 2) or a constriction [Fig. 24(a)]. However, such anig.
obstacle may not have the internal degrees of freedo
necessary for power dissipation. Thus the IR drop is not
necessarily associated with an I R loss, though we believe
that the I R loss should occur within an inelastic-

scattering length of the obstacle. The spatial distribution
of the dissipated power will depend on the spectrum of
the phase-breaking scatterers. In all our calculations in
this paper we have not specified the nature of the phase-
breaking scatterers that give rise to ~&,

' indeed, these
scatterers could be magnetic impurities giving rise to
purely elastic scattering. In that case all the power dissi-
pa ion wtion would occur in the contacts where one must have
inelastic scattering in order to enforce the assumed
Fermi-Dirac boundary conditions. We believe that the
question of where the power is lost can be answered by
solving the full kinetic equation [Eq. (2.19)] and comput-
ing the divergence of the heat current. We leave this for
future investigations.

VI. THE ELECTROSTATIC POTENTIAL

To this point, we have neglected the charge of an elec-
t treating it as a neutral particle. We now recognizeron,
that any charge imbalances within the sample wi give
rise to an electrostatic potential P(r) which accounts for
electron-electron interactions in the Hartree approxima-
tion. This potential is computed from the Poisson equa-
tion,

(a)
V P(r)= —[ND (r) —n(r)], (6.1)

e) = 1ps where ND (r) is the density of ionized donors, and n(r) is
the electron density. Assuming that we have already
computed an equilibrium solution for P(r), we may con-
sider only the changes 5$(r) arising under bias,

eV' 5$(r)= — 5n(r)—. (6.2)

{b)

0

~y(wide) = 0.1ps

(6.3)

where fo(E) is the Fermi-Dirac factor with a constant
electrochemical potential po. Under a small bias, fo(E
changes to f(r;E) with a local potential p(r), suggesting
that

In general, these changes could be significant enough to
inAuence the solution of the transport problem. In the
linear-response regime, however, we can n gn ne lect these
effects to first order, as explained in Sec. II A.

To evaluate 5n(r), we note that the equilibrium elec-
tron density is given by

n,„(r)=fdENo(r;E)fo(E),

n(r)= fdENO(r;E)f(r;E) . (6.4)

0

FIG. 24. Potential profile and current Bow pattern for the
wide-narrow-wide structure in Fig. 20 with ~&=20 ps in the nar-
row region and (a) w&(wide) = 1 ps and (b) 0.1 ps.

n(r) = fdE No(r;E e5$)f(r;E)—
= fdENO(r;E)f(r;E+e5$) . (6.5)

Subtracting this from the equilibrium electron density
(6.3), we find

However we should note that the electrostatic potential
change 5$(r) also causes a first-order change in the loca
density of states Xo, and we should take this into ac-
count. In the Thomas-Fermi picture, we can simply as-
sume that No(r;E)~NO(r;E —e5$). Consequently, the
electron density under bias (6.4) can be determined from
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5n(r)=n(r) —n, (r)
= fdE No(r;E)[f(r;E+e5$) f—o(E)] . (6.6)

To accomplish this, it is useful to separate 5P into two
components: one 5P, satisfying both the homogeneous
equation,

Using a Taylor series expansion for f(r;E+e5$) up to
the first derivative, we obtain

V 5$, (r)=0 (6.14)

p5n(r)= fdE — Nc(r;E)e[5p(r) 5$(—r)], (6.7)

5n (r ) = eNO(r; po) [5p(r) 5$(—r) ] . (6.8)

Thus, the excess electron density can be viewed as the
charge pileup due to the transport process [ cc5p(r)]
minus the screening charge [ cc 5$(r)].

Having derived an expression for the electron density
5n (r), we can now express the Poisson equation (6.2) as

e No(r;po)
V 5$(r ) = — [5p(r ) 5$(r )

—] . (6.9)

One way of solving this equation is to compute the im-
pulse response G&(r, r '),

where 5p(r)=p(r) —po. At low temperatures, we can
neglect the thermal spread of electron energies
( BfoIB—E ), and write

and the boundary conditions supplied by an external
source, and another 5$,. arising from the charges induced
by screening within the sample. The electrostatic poten-
tial 5$ is the sum of the two,

5/=5/, +5/; . (6.15)

The component 5P, depends only on the boundary
conditions for a particular device. If we assume that a
device has two contacts represented by semi-infinite con-
ductive sheets (Fig. 25), then a solution for 5P, which
satisfies the homogeneous Poisson equation (6.14) is

VI. —V~, x
5$, (x,y)= cos ' —+ Vz, (6.16)

where VL and V~ are the voltages applied to the contact
plates located at x =+d.

An equation for the component 5$, is obtained by sub-
stituting the definition (6.15) for 5P into the Poisson
equation (6.9), and using the property (6.14) of 5$„

e No(r;po)
G&(r, r ') =5(r r')—

6
(6.10) V'5P;(r) =—e No(r;po)

and then integrate over the source function,

5&(r)= f d r'G&(r, r')

e No(r ', po)
5p(r ') (6.11)

(6.12a)

Note that if the density of states Xo is a constant, then
the impulse response is well known:

—k, fr —r
/

e
G&(r, r')=

X [5p(r) —5$, (r) —5P;(r)] . (6.17)

Once we have solved the transport problem for the elec-
trochemical potential 5p, we can compute the induced
potential 5P; by solving this equation, and compute the
electrostatic potential 5P by summing the components
5$, and 5P, .

(6.12b)

This is the usual result for the screening of a point charge
in an electron gas. Since the medium is homogeneous,
the impulse response 6& depends only on the difference
coordinate ~r —r'~. In this approximation, the electro-
static potential 5P can be expressed as a convolution of
the electrochemical potential 5p with a screening func-
tion,

,C':

V

e 5(I)e (r )

Semi-Infinite
conducting sheets g
r

Narrow
Device

2DEG

(a)

e'Xo
5&(r) = f d r '5p(r ')G&(r r') . —(6.13)

From this relationship, we gain some insight into the na-
ture of these two potentials: Under no circumstances mill

5P Uary more rapidly than 5p. At best, 5P will track 5p
in a highly conductive medium; usually, it will be more
smeared out.

Of course, in our numerical calculations we can actual-
ly compute the density of states No(r;po), and thus ac-
count for the screening in a more quantitative manner.

(b)

FIG. 25. (a) Contact regions at the ends of the wire are simu-
lated as semi-infinite conductive sheets. (b) The electrostatic po-
tential 5&(, in the absence of any charges within the device.



13 872 MICHAEL J. McLENNAN, YONG LEE, AND SUPRIYO DATTA 43

Suppose, for a moment, that our sample is a homo-
geneous resistor. Then the electrochemical potential
5p(r) will satisfy the continuity equation, 5

V.J=o.V 5p=O (6.18)

This is precisely the same equation (6.14) satisfied by 5P, .
Since these two potentials have the same boundary condi-
tions, the solutions will be identical: 5p=5$, . Thus,
there will be no charge imbalance within the sample, and
the solution for the induced potential (6.17) will be
5p; =0.

In a quantum device, however, 5p(r) must be comput-
ed from the transport equation (3.6), and it will differ
slightly from 5$, . This difference will provide source
charges in the Poisson equation (6.17) and induce a
screening potential 5P;. To illustrate this behavior, we
return to the single-moded wire with a tunneling barrier,
studied in Sec. III. Interference effects caused by
reflections from the tunneling barrier cause the solution
for 5p to oscillate. However, the potential 5P, varies
smoothly between contacts (6.16), since its solution is in-
dependent of the details of the transport within the wire.
The difference between these two potentials creates
charge imbalances within the wire, which induce the
screening potential 5P, shown in Fig. 26(b). This poten-
tial tends to compensate for the variations in 5p. On one
side of the barrier, electrons pile up, so that the screening
potential 5P; floats up to compensate; on the other, elec-

trons drain off, so 5$; floats downward. This is precisely
4, 7the residual resistivity dipole described by Landauer. '

When this induced potential 5$, is added to the homo-
geneous solution 5$„ the result is a potential 5P which is
similar to the electrochemical potential 5p. The response
of the induced potential, however, is limited by the
screening length within the material, so that the varia-
tions in 5$ are more smeared out than the variations in
5p, as shown in Fig. 26(c).

It is interesting to compare the electrostatic potential
5P to the electrochemical potential 5p for two of the
structures encountered in the preceding sections. First,
we examine these potentials for the ballistic constriction
studied in Sec. V. Again, the rapid variations in 5p ap-
pear to some extent in 5P, as shown in Fig. 27. This is
particularly true in the wide regions, where the density of
states Xo is larger, and hence the screening length is
shorter. In the narrow channel, however, 5$ is distinctly
sloped, while 6p is nearly flat. It is conceivable that lo-
calized probes could be constructed to measure these two
potentials within the narrow channel. If measurements57

of this sort were actually performed, these two different
potentials should indicate different resistances for the
ballistic region.

As a final example, we compare the potentials 6p and
5$ in the four-probe Hall junction studied in Sec. IV. To
obtain a clearer view of the junction, we exclude the con-
tact regions from these plots, which are presented in Fig.
28. The usual Hall buildup evident in the electrochemi-
cal potential 5p is tracked to some extent by 5(t. But
again these two potentials clearly differ. Of course, the

(a)

e,(r

(a)

eQ(r) = e(g, +g;)
e (r)

e 5p,(r
e 5p, (

1.0 mev

c)

FIG. 26. (a) Geometry of a wire with a tunneling barrier, in-
cluding the contact regions. (b) Differences between 5p and 5$,
induce a screening potential 5P;. (c) A comparison of the poten-
tials 5$ and 5p within the structure.

FIG. 27. (a) Geometry of a ballistic constriction, including
the contact regions. There are five modes in the wide regions
and one mode in the narrow region; w& is assumed to be 0.1 ps
everywhere. {b) A comparison of the potentials 5p, and 5P
within the structure.
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5J(r) includes a component 5J, (r) that involves all ener-
gies. However, this component does not contribute to
the terminal current, and we neglect it in this paper (Sec.
III B).

(a) B. Solution procedure

e 5p.(r
Ji

e 5$(r)
ii ~w

(b)

esf

e5@,

P

1000 2000
Position (A)

(1) Solve Eq. (3.7b) for G (r, r', po). The phase-
breaking time r&(r;E) is treated as an input parameter
(Appendix, Sec. 1).

(2) Solve Eq. (3.6) for p(r) with the appropriate bound-
ary conditions. The current density 5J(r) is then com-
puted from Eq. (3.12). The terminal currents are ob-
tained either from Eq. (3.13) or from Eqs. (3.17) and
(3.18) (Appendix, Sec. 2).

(3) Solve Eq. (6.9) for the electrostatic potential 5$(r)
(Appendix, Sec. 3).

C Conclusions

FIG. 28. (a) Geometry of the four-probe Hall junction; plots
exclude the contact regions for a better view of the junction. (b)
The potentials 5p and 5P within the structure; cross sections
along 8'and P are presented for better comparison.

wires in this structure are single moded and extremely
narrow. As a result, the relatively long screening length
keeps the electrostatic Hall potential from building up to
its proper value. Presumably, the two potentials would
show better agreement in wider structures.

From this formulation, it appears that p(r), rather
than P(r), may be a better choice as the basis for a trans-
port theory in the linear-response regime. Once a so1u-
tion for p(r) has been obtained, it is a simple matter to
perform the integral (6.11) required to compute P(r).
However, performing the reverse —computing a solution
for P(r) and extracting a solution for p(r) —could be
quite dificult. Essentially, this would require deconvolv-
ing a smeared-out function to obtain a rapidly varying
quantity. From a numerical standpoint, such a pro-
cedure would be extremely prone to error.

VII. SUMMARY AND CONCLUSIONS

A. Assumptions

(1) We assume a simple model for phase-breaking
scattering in which each scatterer acts independently and
interacts with electrons through a 5 potential. Note that
these scatterers not only randomize the phase but also the
momentum (Sec. II C).

(2) We neglect any vertical flow of carriers (from one
energy to another) so that different energies can be decou-
pled (Sec. II D).

(3) We compute only the linear response, that is, the
change in different quantities arising under bias. This
change involves only a Fermi-surface term, so that at low
temperatures we only need to consider electrons with a
single energy, namely, the equilibrium Fermi energy Aow.
Strictly speaking, the linear-response current density

(1) A local electrochemical potential p(r ) can be
defined if e V~ (k~ T & I „where Vz is the applied bias
and I is the correlation energy over which the propaga-C

tion characteristics of electrons can be assumed constant
(Sec. III A). The electrochemical potential at any point r
is a weighted average of the potentials at surrounding
points r '; the weighting function is equa1 to the probabili-
ty that an electron suffering a phase-breaking scattering
at r ' suffers the next one at r (Sec. III B).

(2) Separate potentials pl and pz for left- and right-
moving electrons are best defined in an average sense
over a de Broglie wavelength, rather than in a local sense
(Sec. III D).

(3) Noninvasive probes can render a faithful measure-
ment of the local electrochemical potential (Sec. IV B) but
do not guarantee it (Sec. IV C).

(4) A fairly localized potential drop occurs when the
number of current-carrying channels is abruptly con-
stricted from W to N (W)N). This drop can be de-
scribed by a contact resistance equal to (1/N)(h l4e ) if
the wide region is wider than L&. However, if the wide
region is narrower than L&, then the contact resistance is
reduced by the factor (1 N!W) (Sec. V—).

(5) The electrostatic potential 5$(r) can be viewed as a
convolution of the electrochemical potential 5p(r) with a
screening function. In very conductive samples the
screening function -5(r), so that 5p and 5P are identi-
cal, and no space charge appears. But in less conductive
samples, 5$(r) varies slowly compared to 5p(r) (Sec. VI).

(6) Broadly speaking, there is a drop in the electro-
chemical potential wherever there is an obstacle to
current Aow, while the electrostatic potential drop is
spread out over a screening length.

Some of the conclusions in this paper have been drawn
by other researchers (notably Landauer, Biittiker, and
Imry) using heuristic arguments. The main contribution
of this work lies in putting these ideas on a rigorous
quantitative footing using a quantum kinetic approach.

The calculations implemented in this paper represent a
step toward the simulation of quantum devices at the mi-
croscopic leve1. Since the method has proven to be quite
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tractable, it may be possible to extend the model by re-
moving some of the simplifying assumptions. The
thermal energy spread of electrons, for instance, could be
taken into account by solving Eq. (2.32) instead of Eq.
(3.6). The finite thickness of the two-dimensional elec-
tron gas (2DEG) could be taken into account by sum-
ming the contributions to the kernel To(r, r') from a
number of modes. Finally, it may be possible to go
beyond the linear-response regime and also take into ac-
count spatially extended phase-breaking processes with
nonlocal self-energy functions. We leave such considera-
tions to future work.
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APPENDIX: DETAILS OF THE NUMERICAL METHOD

Ho= —V —e A(r) + V(r),1

2m
(A 1)

where m is the electron effective mass, A(r) and V(r) are
the vector and scalar potentials, and e = —

~
e

~
is the elec-

tronic charge. Because of our simplification to a two-
dimensional geometry, we now regard the vector r as
spanning a two-dimensional space.

Strictly speaking, the solution procedure should begin
with an analysis of the equilibrium state. In this analysis,
the equilibrium Fermi energy po is chosen to be constant,
and an initial guess of the conduction-band profile V(r) is
made. Based upon this guess, we compute a local density
of states No(r;E) and use this to compute the electron
density n(r),

n(r)= fdE, , k No(r;E) .
1." '""" '+1 ' ' (A2a)

We then solve the Poisson equation for the electrostatic
potential P(r),

The purpose of this appendix is to describe a numerical
method for computing the linear-response behavior of
any arbitrary device. For simplicity, we restrict our at-
tention to electrons in the conduction band of an n-type
device. We assume that the temperature is extremely low
(so that we can neglect the thermal spread of electron en-
ergies) and that the bias is extremely small (so that we
can neglect carrier heating). Finally, we recognize that
experiments are commonly performed on modulation-
doped samples, in which electrons form a two-
dimensional electron gas (2DEG). Hence, we confine our
analysis to a two-dimensional plane of infinitesimal thick-
ness. Qf course, this plane can be patterned to form the
specific geometry of any given device. Within the device,
electrons obey an effective-mass Hamiltonian,

V P(r)= [—ND (r) n—(r)], (A2b)

and use this to improve our guess of the conduction-band
profile,

V(r) =DEC(r)+eP(r), (A2c)

where EEL accounts for any offsets in the conduction
band due to changing material composition, impurities,
etc. With a new guess of the conduction-band profile, we
compute a new density of states No(r;E ), a new electron
density n(r), and a new electrostatic potential P(r). This
iterative process is repeated until the equilibrium solution
converges.

Obviously, the equilibrium solution entails a consider-
able amount of work. To keep our method tractable, we
neglect this first step and simply assume some form of the
equilibrium solution for P(r). In all of our present calcu-
lations, we assume P(r) =0; it is possible, however, to ob-
tain a better guess of P(r) through a semiclassical
analysis.

Having defined the equilibrium state, we can compute
the electrochemical potential p(r) arising under bias from
the transport equation derived in Sec. III,

f d r 'To(r, r ')p(r ')
p(r) =

f d r'To(r, r') (A3)

where

iii ~6 (r, r';go)~
To(r, r ') —=

&y(r po)&y('r "po) '

E —Ho+ 6 (r, r', E)=5(r—r') .
iA

2r&(r; po)

(A4a)

(A4b)

A(r) fd'r', '
iG (r r', po)i'

2vrm w&(r '; po)

(A5)

We can also compute the terminal currents I„ for each
contact n,

I„=f d rI(r),
contact n

2 2

I(r)= f d r'To(r, r')[p(r) —p(r')], (A6b)

where a factor of 2 has been inserted [cf. Eq. (3.18)] to ac-

Note that the kernel To(r, r ') is obtained from the Ham-
iltonian Ho with the equilibrium solution for P(r). As
such, it is independent of bias and ensures a linear rela-
tionship between current and voltage.

Given a solution for the electrochemical potential p(r),
we can reconstruct the Wigner function and compute any
quantity of interest. In particular, we can compute the
change in the current density arising under bias,

p(r ') po—
5J(r)= f d r'

2vrm ~~(r ';po)

Xlm[6 (r, r', po)V, G (r, r', po)]
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count for two spins. Of course, we could also compute
the terminal currents by integrating the current density
over the surface of a contact. As we have stated in Sec.
III, both methods produce the same result. We prefer
the formulation (A6), however, since numerically it is
more robust.

If electrons were neutral particles, our picture of trans-
port would be complete. Because they are not, however,
the electrostatic potential will react to screen out any
charge imbalances arising under bias. We can compute
the change in the electrostatic potential 5$(r) in the pres-
ence of an applied bias by solving the Poisson equation,
as shown in Sec. VI:

A —20+ WL, 4a 2—0+0,
Ho r +-+ t

2pt a2 a2

—fiHO/(r)~ 2 (/~+GAL, +QT+gii 4g)+ Vg .
2ma

(A9)

(A8)

where it/ represents the value of the wave function at a
single node, and we have used the subscripts R, L, T, and
B to denote the wave function at surrounding nodes
(right, left, top, and bottom). We can rewrite this expres-
sion in a more familiar form,

e No(r;po)
V'5$(r) = [5p(r) —5$(r) ] . (Aj)

This is identical to the tight-binding Hamiltonian for a
square lattice with nearest-neighbor interactions

Although this gives us some insight into the nature of
charge screening, it does not affect the rest of the
analysis. In the linear-response regime, the kernel
To(r, r ') is computed based upon the equilibrium poten-
tial P(r); changes in 5$(r) are assumed to be small
enough that they have no effect (to first order) on the ter-
minal currents.

If our computing resources were unlimited, we could
simply discretize any device (no matter how large) into a
finite number of position-space nodes, and then solve the
equations shown above. In any practical analysis, howev-
er, we must focus only on the interesting part of the de-
vice and draw boundaries between what is simulated and
what is not. Some of these boundaries are hard potential
walls which confine the electrons. Others are open boun-
daries which lead to a large contact reservoir at infinity.
To avoid spurious edge effects, we must include the open
character of the contact leads, a detail which can compli-
cate the analysis considerably.

In the remainder of this appendix, we describe how a
solution of the above equations is actually performed. In
Sec. 1, we use a tight-binding Hamiltonian to express the
Dyson equation in a matrix form. We solve this equation
for the Green function G (r, r ', E ), which is then used to
compute the kernel To(r, r'). In Sec. 2, we describe an
iterative scheme for computing the electrochemical po-
tential p(r) from the transport equation (A3). We then
describe how the current density 5J(r) and the terminal
currents I„are computed. Finally, in Sec. 3 we describe
a three-dimensional solution of the Poisson equation
which is used to compute the electrostatic potential
5$(r).

1. Computing the Green function G (r, r ', E )

H»M= &(Uklj &&kl+E, jl&&jl), (A10)

where

U for j,k nearest neighbors,
0 otherwise,jk = (A 1 la)

(Al lb)

E(k)=2U[cos(ka) —1] . (A12)

Although the physics may be somewhat different, it will
not be completely wrong. We could not have drawn this
conclusion from the finite-difFerence viewpoint alone.

In the presence of a magnetic field, the hopping ele-
ments derived above simply acquire phase factors,

ie f A dl/A—

jk (A13)

As Feynman has shown, this corresponds to the so-
called minimal substitution,

c. = —4U+ V

and U—= —A /2ma is the amplitude of the elements in
the hopping matrix U.

We emphasize the relationship between these different
viewpoints for two reasons. First, the finite-difference
viewpoint provides us with a simple derivation for the
site energies c and the hopping elements Uk. Second,
the tight-binding viewpoint suggests that as our mesh
spacing becomes coarse, electrons will feel the effects of
the underlying tight-binding lattice. Instead of the simu-
lating free electrons with a parabolic dispersion relation-
ship, we will simulate tightly bound electrons with the
energy dispersion

a. Tight-binding Hamiltonian
—.V~ —.V —e A(r)
l 1

(A14)

Our entire solution method hinges upon a knowledge
of the equilibrium Green function G (r, r ', E). To evalu-
ate this function numerically, we must first discretize our
device into a series of nodes. For simplicity, we choose
our nodes to be uniformly spaced by a distance a in both
directions, so that we can evaluate the derivatives in the
Hamiltonian (Al) using finite differences. In the absence
of a magnetic field,

in the limit as the lattice spacing a tends to zero. We
choose to work in the following gauge:

A(r)=(O, A (r),0) . (A15)

Thus, the hopping elements in the y direction are
modified by a phase exp(+ie A a /fi), where A~
represents the average vector potential between the two
nodes connected by the hopping element. A summary of
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FIG. 29. Hopping elements in the right-binding model.
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FIG. 30. (a) In an unconnected lattice, injection at a particu-
lar site causes a response only at that site. (b) Connections be-

the hopping elements in our model is illustrated in Fig. tween the sites are incorporated by solving the Dyson Equation.
29.

b. Soluing the Dyson equation

H, —:ps, lj)(j (A16)

then the solution for the Green function (A4b) would
simply be

6 I, /a
(A17)

Thus, injection at a particular site k causes a response
only at that site, as shown in Fig. 30. We can introduce
the coupling between sites by solving the Dyson equation,
written here in matrix form,

6'=Go+Go UG R . (A18)

where U is the matrix of hopping elements. If we solve
for the Green-function matrix 6, the resulting equation
is of the form A x=b,

(I—GOU)G =Go . (A19)

Each column in Go supplies the excitation for injecting at
a particular site; each corresponding column in 6
represents the response at all nodes in the device. Thus,
the solution for 6 can be computed one column at a
time by supplying a single column of Go.

Suppose a given device is defined on a mesh of 50X 50

In the preceding section, we reduced the Hamiltonian
of the Schrodinger equation to a discrete form. We can
now determine the Green function G (r, r ';E) by solving
a matrix equation. First, we notice that if all the sites in
our lattice were unconnected, computing the Green func-
tion would be trivial. In other words, if we could ignore
the hopping elements U k in the tight-binding Hamiltoni-
an (A10),

nodes; the Green function 6 describes the response at
2500 nodes due to injection at each of the 2500 nodes. In
other words, each of the matrices in Eq. (A19) would
have 2500X2500 elements. Actually, the matrices Go
and U are sparse and therefore require far less storage
space. Nevertheless, handling this matrix equation in an
efficient manner is challenging, to say the least.

Another popular technique for the calculation of
Green functions is the so-called recursive technique. ' A
generalization of this technique can be found in Ref. 62.
In this method, the Green function is computed by add-
ing the connections between sites one slice at a time, as
shown in Fig. 31. Although the matrix equation must be
solved repeatedly to establish all of the connections, the
matrices involved at each step are smaller (each matrix is
N XN, where N is the number of sites in the slice). The
final result is a Green function connecting one side of the
device to the other, which can be related to the transmis-
sion matrix for the device. When coupled with the
Buttiker formula (1.4), this has proven to be an extremely
powerful method for obtaining the terminal characteris-
tics of a given device.

In our analysis, however, we require the Green func-
tion for injection at aO nodes in the sample —not just for
injection at the ends. For our purposes, therefore, it is
considerably more efficient if we introduce the connec-
tions between all sites in one step. This eliminates the
need to update all Green-function elements at each inter-
mediate step of connecting a slice. Thus, although we
must solve a larger matrix equation, we need only solve it
once to establish the connections between all nodes.

Before we can solve the Dyson equation (A19), we need
to fill in the nonzero elements of matrices U and Go. If
all of the sites in the lattice are unconnected, the matrix
Go is diagonal and the elements are computed using Eq.
(A17), as discussed above. Things become slightly more
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FIG. 31. In the recursive Green-function technique, the sites
are connected one slice at a time across the device.

complicated, however, if we attach open boundaries to
the device. Sites sharing an open boundary are connected
according to the Green function for that boundary,
which is derived below in Sec. 1 c. Thus, if we inject at
an open-boundary site, we obtain a response at all other
sites sharing the open boundary; because of this, Go gains
some off-diagonal elements, as shown in Fig. 32.

Determining the elements of U is also relatively
straightforward. Each row in this matrix contains the

Ax=(LU)x=b~Ly=b,
—+ Ux=y .

(A20a)

(A20b)

hopping elements which connect a given site to its
nearest neighbors (Fig. 29). Thus, we scan through all
sites in the lattice, filling in the rows of U one at a time.
At each site, we check to see if another site exists above,
below, to the right, and to the left. If any of these sites
exist, we fill in the corresponding element in U with the
value shown in Fig. 29. There is one exception to this
rule: If the current site and the adjacent site are both
part of the same open boundary (discussed further
below), then the hopping element is omitted. This is be-
cause the connections for sites along an open boundary
are already included in the calculation of Go.

Using these simple rules, we can compute the elements
in the overall matrix (I—GOU), and then solve the
Dyson equation (A19) for each column of G . For a
large device, however, it may be impractical to actually
store the entire matrix 6 in memory. Indeed, in the
previous example with 2500 sites, this would require the
storage of more than six million elements. Instead, we
could simply compute each column of G as it is re-
quired, thereby storing only a single column (for example,
2500 elements) at a time. Although this costs us a little
extra computer time, it liberates us from the realm of
supercomputers with supermemory capacities.

One of the more common techniques for solving a ma-
trix equation of the form 3x=b is L-U decomposition.
In this method, the matrix A is decomposed into lower-
triangular and upper-triangular matrices L and U (not to
be confused with our hopping matrix U). For a particu-
lar vector b, the solution of 2 x=b is then performed us-
ing two back-substitution steps,

Gp =

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

(a)

XXX
XXX
XXX

X
X

X
X X X

X
X

X
X

X X X
X

X
X

X
X X X

X
X

X
X

J rrrrrr
J r r r r +r
r r r r r~rJr Jr/mr

% Arr Jtr'Arr Jr~// r r J

(b)

/Jr/Jr/Jrrrr/rrrr
J / / / J

~ ~ ~
~ ~ ~ ~
~ ~ ~ ~
~ ~ 0 0

x„7 12 17

8 1Q1Q
1 4 9 1/19
2 5 1Q1Q2Q
3 6 11 1/21

I&
—1

U„, =A„,—g L„~U, j=k, k+1, . . . , n,
p=1

(A21a)

1

U«

I&
—1

A)k
—g L~p U~k, j =k+1, . . . , n,

p =1

(A2lb)

Since the matrices L and U are triangular, each back-
substitution step is trivial. The advantage of this method
is that the I.-U decomposition need only be computed
once, and yet the matrix equation Ax=b can be solved
quite rapidly again and again for a number of different
vectors b. For the current problem, therefore, we com-
pute and store the L-U decomposition of the matrix
LI —GOU]. Whenever a particular column of G is re-
quired, we simply perform two back-substitution steps us-
ing the appropriate column from Go.

Since the L-U decomposition is performed only once,
the process need not be optimized. A simple and
memory-e%cient means of accomplishing this task is
Doolittle's method,

FIG. 32. (a) In a lattice of unconnected sites, Go is diagonal.
(b) After attaching open boundaries, Go gains some off-diagonal
elements.

where the diagonal elements of L are assumed to be
Lkk =1. The elements of L and U must be determined in
order as follows. The first row of U is evaluated from left
to right, followed by the first column of L, from top to
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bottom. The next row of U is evaluated from left to
right, followed by the next column of L, from top to bot-
tom, and so on. This method is particularly efficient be-
cause it requires no more memory than that allocated for
the original matrix A. Elements of A can actually be re-
placed by elements of L and U as the method is carried
out.

After working out a few examples, we find that the ele-
ments in L, and U fill in toward the diagonal. In other
words, if a particular element in U is nonzero, all ele-
ments below it (down to the diagonal) will also be
nonzero; if an element in L is nonzero, all elements to the
right of it (up to the diagonal) will also be nonzero. Even
if these elements were zero in the original matrix A, they
will "fill in" as the L-U decomposition is performed.
Such considerations are important from the standpoint of
memory conservation. Since the matrices I and U are
sparse, we need only allocate memory for the nonzero ele-
ments. To provide a sense of what these matrices look
like, the matrix (I—GoU) is shown for two example
structures in Fig. 33. This matrix is gradually replaced in
memory by the elements of L and U during the L-U
decomposition.

When allocating the memory elements for L and U, the
emphasis should be placed on optimizing the two back-
substitution steps (A20). After all, these steps will be per-
formed again and again as each column of 6 is needed.
For this reason, the elements of L should be allocated
first, across each row from left to right. This is the way
these elements will be recalled during the first back-
substitution step. The elements of U should be allocated

next, across each row from left to right, starting at the
last row of U and working up. Again, this is the way
these elements will be recalled during the second back-
substitution step. The memory requirements for these
matrices may be large, and this allocation scheme will
avoid excessive page faults (thrashing) on machines with
virtual memory.

At this point, our solution method for Green function
6 is complete. After allocating storage space, the ele-
ments of the matrix (I GoU—) for the Dyson equation
(A19) are initialized. An L Udec-omposition (A21) is per-
formed, replacing the elements of (I—GoU) in storage.
Any column of G can then be computed, given the ap-
propriate column in 6& for injection at a particular site.

c. Green function in a semi infinit-e wire

Our solution method for the Green function 6 is
complete except for one detail: %'e need an expression
for the Green function 60 at an open boundary. This ex-
pression can be derived as follows. It is well known that
any Green function can be expanded in terms of a com-
plete set of eigenfunctions P (r),

P (r)P*(r')
G(r, r', E)= g E—E +i%/2&~

where

Hog (r)=E P (r) .

(A22)

(A23)

To obtain the Green function for a semi-infinite wire,
therefore, we simply perform this expansion. First, as-
sume that the wire is purely one-dimensional; we will
later add the eftects of a finite width. The eigenfunctions
for a wire with N sites, and thus a length L =Na, are
known to be

(X ) ( e ikx —ikx
)

1

v'2L

Ek =2U[cos(ka )
—1],

(A24a)

(A24b)

G(r, r;E)=
2L ~ o

ikpa —
ikpa)(

—ikqa ikqa
)X E+i 6 2U[cos(ka ) ——1]

(A25)

where we have defined 5=%/2~& to simplify the notation.
Since we are only interested in the G-reen function along
the edge of the wire, we restrict our attention to p =q = 1,

where U= —A /2ma is the amplitude of the hopping
elements. Note that at x =0, the wave function vanishes.
We now extend the number of sites X to infinity, so that
the wave vectors k form a continuum. Hence, the sum-
mation in the expansion (A22) can be replaced by an in-
tegral,

FIG. 33. Form of the matrix (I—GOU) for two simple struc-
tures. An x represents nonzero elements in the original matrix,
while a dot represents elements that will fi11 in during the L-U
decomposition.

2i ka —2i ka

G(1, 1;E)= dk2' o E+i5+2U 2U cos(ka—)

Again, to simplify the notation, we define

(A26)
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y—= (E+i5+2U)/2U,

0=—ka,
(A27a)

(A27b)

formed. The other (involving iI5$) we leave intact. Thus,
the expression for the Green function Go for sites along
the edge of a semi-infinite wire of width M sites is

so that the Green function (A26) can be written as

2i0
6(1,1;E)= d8

4m Ua —~ g —cosa
(A28)

This integral is easily performed using contour integra-
tion, with a substitution of the form 8"=e' . The result
is (where the sign is chosen such that ~y

—(y —1)'
~

( 1)

6(1 1'E)= [y+(y —1)' ]
1

Ua
(A29)

P p(x~, y, )=P'(p)$$(q),
1 ik pa

P (p)= (e —e
—ik paa

(A30)

(A318)

P(q ) =C e""q' "sin
M+1 (A3lb)

where M is the width of the wire in sites, and p and q are
integer site indices. To be completely general, we have
allowed for a constant vector potential A=(0, A, O)
within the wire. When we substitute these eigenfunctions
in the expansion (A22), we are faced with two summa-
tions. One of these (involving P') we have already per-

ra
/4 S e

~4$r r r r r r r r r rlr
LL iirrrrrrrr///IJt

'I~ % L4 44 44 'I4 1$rrrrrr/r
41 LL ILLrrrrrrrrrr /sir

LLWr r r r ri~Or
Il, 44 44 N 44 LI I LL L4 ~I I I44rrrrrrrrrrs~lr1$r r r r r r / r r r rsOr

ILL/ / r / r r / r r / ra) f
Ll, 44 44 IL 4 44 44 I 4r r r r r r r r r r /~Or8 i'4rrrrrrrrrrr rig

~4 44 44 'Ll, 'LL 44 ii 'IL 44 L4r r r r r r r r r r r wfL
I I

Gs(q, q'i = QCS e ~ s sin sin
)

ieA(q-q&arh . Pmq . Pmq'1

~(x +4x's-i )Ua

E + i'/2xq)- Ep+ 2U
I3 2U

E =- 2U cos ~ —1
M+1

i 2tt P M/(M+1) i -I/2
C —+ —Re -i 2tt P /(M~1)

Ti

2IIla

Of course, this is only the result for a one-dimensional
wire. We must now incorporate the effects of a finite
width. Fortunately, the result is not much more compli-
cated, since the eigenfunctions for a wire of uniform
width are separable,

I

6(qqL) —yC+2ieA(q —
q /%sin~sin

M+1 M+1

X [Xp+(yp —1)' ],1
(A32)

E+ifi/27', Ep+—2U
Xp= 2U

(A338)

E&
——2U cos M+1

i27TpM/(M+1)

—i2m.P/(M+ 1)

—1/2

(A33b)

(A33c)

This result is summarized in Fig. 34.

d. Extending the Green function into open boundaries
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= Site actually simulated

To this point, we have described how the Green func-
tion 6 (r, r ', E) is computed between any two sites r and
r ' within the sample. We emphasize that we can only in-
ject and detect at sites actually simulated on the lattice.
This is because each injection site corresponds to a par-
ticular column, and each detection site to a particular
rom, in the matrix 6 . Thus, the sites within a semi-
infinite lead attached to an open boundary are not actual-
ly simulated, although their presence is felt through the
Green function Go (Fig. 35). When solving the transport
equation, it will be necessary to evaluate the Green func-
tion 6 (r, r ', E) at sites within a semi-infinite lead. We
will now describe how the solution for the Green function
obtained along an open boundary can be extended into
the attached lead.

Recall that the Green function can be expanded in
terms of a complete set of eigenfunctions,

FIG. 34. The Green function Go for a semi-infinite wire of
width M sites, in a constant vector potential A=I,'0, A, O). In-
jection and detection points are along the edge of the wire.

FIG. 35. Sites within the device are actually simulated, while
sites within attached leads are felt through the Green function
Go.
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&rip. )&y.lr )
G (r, r', E)=&rlG lr') = g E—E +i5 (A34)

open boundaries for the injecting and detecting leads; the
distance x within any lead is zero at the open boundary
and positive within the lead.

We have chosen the ket notation because of its simplicity;
note that this is identical to the expression (A22) present-
ed earlier. Suppose that we inject at some point r ', and
detect along an open boundary. We would like to know
the amplitudes for each of the modes excited in the at-
tached lead. If these modes are represented by a basis
lg&), then we can express this Green function as

G ( pr', E)= &g& lG lr')

&q, ly. &&y. ')
E E+—i5 (A35)

Of course, we can only compute the Green function if we
detect at sites (not modes) along the open boundary. But
converting between the two representations is a simple
matter. If we insert a complete set of states lr), we can
rewrite the Green function (A35) as

(A36)

G (x,P;r';E)= g &g& r)e e G (r, r', E), (A37)

where

& q lr) =c e ""&'"sin
M+1 (A38a)

Cp= +-ReM
2 2

ei27TPM/(M+ 1)
—1/2

—i 27Tp/(M+ 1)
1 —e

(A38b)

for a lead of width M sites, with q+ r representing the
position along the open boundary. The wave vector k&
satisfies

E=2U(cosk a —1)+2U cosP M+1 (A38c)

Note that the detection points r include only the sites
along the open boundary. Thus, we need only evaluate
G (r, r ', E) at sites actually simulated on the lattice, and
then use a simple expansion (A37) to extend this Green
function into a semi-infinite lead.

Following similar arguments, we can extend the injec-
tion point into a diA'erent lead, so that the Green function
for injection in one lead and detection in another be-
comes

G'(x, P;x', P', E)= yy &qplr&e' '"&r'ling&e ~

This relationship is important, since the modes in a
straight wire evolve in a particularly simple way. If we
move a distance x into the lead, each mode merely ac-
quires a phase factor, so that the Green function can be
written as

2. Solving the transport problem

a. Computing the electrochemical potential

In the preceding section, we described how the Green
function G (r, r', E) can be computed within any arbi-
trary structure. We can use this Green function to com-
pute the kernel To(r, r ') of the transport equation,

A lG"(r, r', po)l
To(r, r ') =

~&(r;po)r&(r', po)
' (A40)

f d r'To(r', r)l ep(r ')
p(r) =

d r'To r', r a
(A42)

In obtaining this equation, we have used a special proper-
ty of the Green function in a magnetic field,

and then solve the transport equation for the electro-
chemical potential p(r ),

f d r 'To(r, r ')p(r ')
p(r) = (A41)f d r'To(r, r')

These integrals are easy to compute numerically; we sim-
ply multiply the integrand at each site by the area a sur-
rounding that site.

In principle, we could express the transport equation
(A41) as a matrix equation of the form Ax=b. Such an
equation, however, would be extremely difficult to solve.
In a structure with 2500 sites, the matrix A would con-
tain more than six million elements. Solving a matrix of
this size with conventional Gaussian elimination would
be unwieldy, to say the least. Instead, we use an iterative
solution technique known as Gauss-Seidel iteration.
First, we generate an initial guess of the solution for p(r).
The values for p(r) are fixed to a constant value within
"contact" regions, and determined from some smooth in-
terpolation everywhere in between. We then solve the
transport equation (A41) repeatedly, to improve the solu-
tion. Only a single row of the kernel To(r, r') is needed
at each step, so there is no need to store the entire kernel
in memory.

Using the method outlined in Sec. 1, we can obtain any
column of the Green function 6 simply by supplying a
single column of the matrix Go, and then performing two
back-substitution steps. This column describes the
response at all sites due to injection at a single site; to
solve the transport equation (A41), however, we need the
opposite —the response at a single site due to injection at
all sites. Fortunately, the transport equation can be ex-
pressed in another form which is more compatible with
the Green-function solution,

XG (r, r';E) . (A39)

Again, the coordinates r ' and r run over the sites of the

G (r, r';E)l&=G (r', r;E)l

To(r, r ') l~ = To(r ', r)
l

(A43a)

(A43b)
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r~(r; po)r~(lead; po) p

X
21mIkp}

(A44)

where 6 (13;r; E ) is the response at the open boundary in
mode P due to injection at position r; this coefficient was
derived in Sec. 1. We have assumed that the chemical
potential within the lead is a constant pl„d. This is cer-
tainly true if the lead is part of a contact region, where
)((,(r) is fixed as a boundary condition. This is also true if
the lead is attached as a voltage probe, as long as the p(r)
has settled out to a constant value near the open bound-
ary.

b. Computing the current density

Once we have obtained the solution for the electro-
chemical potential p(r), we can compute any quantity of
interest. For instance, we can compute the current densi-
ty arising under bias as

p( ') —
i(i

5J(r) = ' f d'r '

2am ~~(r ', )uo)

X 1m[6" (r, r ';)Mo)V„G (r, r ';)((,0)]

e A p(r ) —pA(r) f d r', lG (r, r';po) 2 .2&Pl ~~(r ';go)

(A45)

Note that the second term above depends directly on the
vector potential A(r) and is therefore sensitive to our
particular choice of gauge. Of course, observables such
as the current density must be independent of the gauge.
To account for this, there is a delicate cancellation be-
tween these two terms that maintains the property of
gauge invariance. Although this may be interesting from
a physics standpoint, it is a problem to be avoided in nu-
merical solutions.

The notation B~—8 reminds us that this transport
equation (A42) must be solved using the opposite sense of
the magnetic field. Thus, to compute )M(r) at any point,
we simply inject at that point, compute a single column
of the Careen function G, compute a single column of
the kernel To, and then integrate over all sites.

Of course, the presence of open boundaries causes a
slight complication. The integrals required for the trans-
port equation (A42) are evaluated in a slightly different
manner within each attached lead. Recall that to evalu-
ate the Green function 6 ( r, r '; E ) within the lead we
must perform an expansion in terms of the eigenstates of
the lead, as shown in Sec. 1 d. We can integrate the ker-
nel within a lead by integrating this expansion,

d r 'To(r ', r)(M)«d
lead

Suppose we define an ansatz

GR(r r ', E)=eieA(r). (r —r')/rg(r r i.E)
that has the following properties:

lg (r, r', E)l =lG(r, r';E)l

(A46)

(A47a)

V,G (r, r';E)= —A(r)G (r, r', E)

+e" "" ' ' V 6(r r'E) . (A47b)

XV,G(r, r';po)] . (A48)

We can then eliminate G using our original definition
(A46),

eA 2, p(r ) po5J(r)= f d r'
2am r&(r ',po)

X ImI g *(r r .+ )eieA(r) (r—r')/A'

—2'e A(r) ~ (r —r ')/g
rt&

XG (r, r', po)]} . (A49)

Thus, we have reduced the current density to a single,
slightly more complicated integral which is more stable
numerically. It is easy to see why this substitution
worked. In the presence of a constant vector potential,
the Green function 6 (r, r', E) simply acquires a phase
factor,

g (r, r';E)~e" A" ' '/"g (r, r', E), (A50)

and the exponential in our ansatz (A46) explicitly ac-
counts for this change. If the vector potential is shown
varying, however, the exponential factor accounts for
most of the change, but some of the efFects will appear in
G as well.

When actually evaluating the current density, it is
more convenient to inject at a single point and integrate
over all detection points. In the preceding section, we
modified the transport equation (A42) to be solved in this
manner. Following similar arguments, we interchange
the coordinates r and r ' in our expression for the current
density as well,

Note that the second property (A47b) is an approxima-
tion, valid if A(r) is slowly uarying. If we substitute this
ansatz into our expression for the current density 5J, we
are left with only a single term,

I
fi fd, IJ Po

2mm r&(r ', (Mo)

l
GR*( r . )eieA(r). (r —r')/A'

eA —ieQ (r)(y' —y) jfi I'eA (r)(y' —y)/'&
5J(r)= f d r' ImIG (r', r;(Mo)l Re ' V,[e ' 6 (r', r;( 0)l —R)}

2m'm r&(r;po)
(A51)
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c. Computing the terminal currents

Having computed the current density 5J, we could in-
tegrate the normal component over the surface of each
contact to obtain the terminal currents. We could also
integrate the divergence of current I(r)= —V 5J in the
contact regions. In most cases, these two methods yield
the same result. The current density 5J, however, de-
pends upon a finite-difFerence approximation for the gra-
dient (A51). If the lattice spacing a is large, this approxi-
mation is prone to error. For this reason, we adopt the
latter approach to compute the terminal currents.

We can compute the divergence of current I(r) in the
contact regions from the transport equation,

28I(r) = f d r 'TD(r, r ')[p(r) —p(r ')], (A52)

and then integrate this quantity over the contact regions
to compute the terminal currents,

I„=f d rI(r) .
contact n

(A53)

Again, the presence of open boundaries complicates
the analysis. Suppose a particular contact region in-

cludes an open boundary with an attached lead. We can
break the integral of I(r) into two parts: one for all con-
tact sites on the lattice, and one for all contact sites in the
attached lead,

I„=f d rI(r)+ f d rI(r) .
lattice lead

(A54)

We deal with the former contribution first. At each con-
tact site, we must evaluate the current I(r) using the
transport equation (A52). In keeping with the preceding

In this final expression, we have specialized to our usual
gauge, A=(0, A~, O).

In evaluating the current density (A51), we inject at ad-
jacent sites and compute each component of the gradient
using a finite difference. This leaves us with a function of
r', which is integrated in the usual manner —the in-
tegrand at each site is multiplied by the site area a, and
these contributions are summed. Within a lead attached
at an open boundary, however, the integrals are handled
in a slightly different manner. Each of the functions
G and e '~Pe '~G is expanded in terms of the normal
modes for the lead. The product of the modal com-
ponents is then integrated, in the manner described in the
preceding section.

sections, we note that the integral over r ' can be comput-
ed more easily if we interchange the coordinates r and r '.
This way, we inject at a single point r and integrate over
all detection points r . Again, the interchange of coordi-
nates is allowed as long as we reverse the magnetic field
when evaluating the kernel,

28I(r)= f d r'T0(r', r)[p(r) p(r—')],
B~—B . (A55)

x
2 &m[&p]

(A56)

Here, G (P; r;p0) is the response at the open boundary in
mode p due to injection at position r; this coefficient was
derived in Sec. 1d.

We now handle the other contribution to the
current —the integral over contact sites in an attached
lead. For this contribution, we cannot afford to compute
I(r) out to infinity and integrate numerically. Instead,
we use the transport equation in its original form (A52):
We inject at each lattice site r' and integrate over r
within the lead. As before, the kernel is resolved into the
normal modes and integrated analytically out to infinity,

d r To(r r ')I pl d p(r ')]
lead

ci...—s( ')

r&(lead; p0)r&(r ';p0)

x
2 Im[kp)

(A57)

We then sum the contributions due to all injection points
r '. Only one eventually remains: For injection points r '

within a different attached lead, we need to extend the
kernel into both the injecting and detecting leads, and in-
tegrate analytically out to infinity in both directions,

At each site r ', the value of the integrand is simply multi-
plied by the site area a and the contributions are
summed. Of course, if the device has other open boun-
daries, the integrals over r' within the attached leads
must be handled separately. Within each lead, the kernel
is resolved into the normal modes and integrated analyti-
cally out to infinity,

f d r'T0(r', r)[p(r) —p„,~]
lead

I (r) —
W,.~=i' g i

G (P r;p0) i

~&(r;p0)r&(lead; p0)

f d rf d r'TD(r, r')(p, —pz)=iri g g ~G (p;p', p0)~
lead 1 lead 2 'ry 1~90 'ry 2~po p p

(A58)

To say that open boundaries complicate the analysis is
an understatement. Although the rules above may seem
a bit involved, we have simply described all special cases
which arise whenever the integration sites r and r ' fall in
an attached lead. Furthermore, we have tried to optimize
the integrations by interchanging injection and detection

I

coordinates whenever appropriate. Note that the termi-
nal current, unlike the electrochemical potential p(r) and
the current density 5J, requires both polarities of magnet-
ic field for the evaluation of the kernel. This is unfor-
tunate, since it involves setting up and I.-U decomposing
the Dyson equation twice, but it is necessary.
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3. Solving the Poisson equation

By solving the transport equation, we can study how
electrons will diffuse from one contact to another. Near
resistive obstacles, electrons will pile up on one side and
drain off on the other, causing rapid variations in the lo-
cal electron density. If electrons were neutral particles,
this diffusion analysis would be sufficient. Since they are
not, however, any charge imbalances will tend to be
screened out. Such electrostatic effects can be computed
by solving the Poisson equation,

V P(r)= [ND—(r) n(r—)] . (A59)

In general, however, this is a difficult problem.
We can simplify it somewhat if we assume that the

equilibrium solution is known, and if we consider only
the changes arising under bias,

e No(r;po)
V 5$(r)= — [5p(r) —5$(r)], (A60)

where 5p(r)=p(r) —
po is the change in electrochemical

potential. The change in the electrostatic potential 5$(r)
can be separated into two components:

sample, and then integrating over the entire collection of
charges. It is well known that a single charge gives rise
to a potential q/4~sr at a distance r from its location.
Thus, a collection of charges p, gives rise to the usual
electrostatic potential,

p, (r')
5P;(r)= f1 r'

4m& lr —r 'I

where

p, (r) —= e'No(r;po)[5p(r) —5(t, (r) —5$, (r)] . (A66)

Because p; depends on P;, we must perform this solution
in an iterative manner. We start with an initial guess
5$;=0 and compute the induced charge p, We then
substitute this charge into the integral (A65) to obtain a
better guess for the potential 5t)It, . Iteration continues un-
til 5P; converges to a stable solution.

Achieving convergence in this iterative approach may
be somewhat difficult. Actual solutions tend to oscillate
if 5$; reacts too violently to the charge p; at a single
iteration step. A relaxation factor is helpful in slowing
the response of 5P;,

5t)t:—5p, +5/; . (A61)
5ynew 5yold+( I N+1)(5ynew 5yold) (A67)

The first component 5t)It, satisfies the homogeneous equa-
tion

V 5$,(r)=0 (A62)

and arises from the charges supplied at the contacts by an
external source. If we assume that our device sits be-
tween two semi-infinite conducting sheets, one at a poten-
tial Vl and the other at V„, then the solution for 5P, is
well known. The electrostatic potential evolves between
the two contacts according to an inverse cosine relation-
ship,

x
5$, (x,y ) = cos ' —+ Vii,

7T
(A63)

(A64)

Although electrons are restricted to a two-dimensional
plane within the sample, we need to solve the electrostat-
ics problem in three dimensions. We do this by comput-
ing the response due to a single point charge within the

for contacts located at x =+d.
The second component 5P; arises from charges in-

duced by screening within the device. Because it depends
on the distribution of p(r) as well as the available density
of states X0, this component must be computed numeri-
cally by solving the Poisson equation,

e No(r;po)
V'5P, (r) = — [5p(r) —5$, (r) —5$, (r) ] .

PI (r')
site n 47re i'„ I

(A68)

Of course, we must handle the small area around r„sepa-
rately, since the distance to this point would be zero. We
can perform this integral analytically, as follows:

a/2 a/2 1I —= — dx dy
0 —a/2 —a/2 (X +y )

4 ~/a a /2 cosO
87" P'

0 —m/a 0 r
=(—,'1nIsec8+tanOI ) /,

/'

=3.525 4943 48 . (A69)

In terms of this constant, our final expression for 5$; be-
comes

(A70)

where co is some fraction close to unity, and X is the
iteration number. Using this technique, 5P; is forced to
change slowly at first, so that any initial charge imbal-
ances are gradually screened out.

To evaluate the integral (A65) numerically, we simply
sum the contributions from the charge within an area a
around each site,

p(r )
5$, (r„)=

4~&
I
r
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