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Chirality selection by magnetoelectric coupling in frustrated hexagonal antiferromagnets
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Symmetry arguments are used to demonstrate that an electric field applied in the basal plane of
a stacked triangular antiferromagnet breaks chiral degeneracy associated with the frustration-
induced 120 spin structure. This is achieved through magnetoelectric coupling which introduces
a Dzyaloshinsky-Moryia type of interaction. The electric-field-temperature phase diagram is in-
vestigated through the analysis of a Landau-type free energy and the connection with recent
renormalization-group calculations is made. Possible applications to CsMnBr3 and related materi-
als are discussed.

It is known that the chirality of helically polarized mag-
netic structures in crystals that do not contain a center of
inversion symmetry is determined by the sign of the an-
tisymmetric Dzyaloshinsky-Moriya (DM) exchange in-
teraction. ' In materials which do have a center of in-
version, however, right- and left-handed helical states are
energetically equivalent. Such chiral degeneracy occurs
in the stacked triangular (hexagonal) lattice with near-
neighbor antiferromagnetic bonds where tripartite frus-
tration stabilizes the so-called 120 spin structure. In the
case of planar anisotropy, this helicity degree of freedom
gives rise to an Ising-like (Z2) discrete degeneracy addi-
tion to the usual XY (S~) continuous degeneracy so that
the order parameter is characterized by V=Z2xS~. One
of us ' has recently demonstrated that this symmetry is
responsible for a new (n=2) chiral universality class.
The critical properties of such systems have been further
illuminated by considering the effects of an applied in-
plane magnetic field. Tetracritical behavior, as observed
in the quasi-one-dimensional hexagonal insulator CsMn-
Br3, is now well understood. '

The general phenomenon known as the magnetoelectric
egect'' usually refers to the appearance of a magnetic
(electric) moment in response to an applied electric (mag-
netic) field. Magnetoelectric coupling can, however,
cause a variety of other eA'ects. ' Over ten years ago, the
results of a remarkable experiment on ZnCr2Se4 were re-
ported, ' which established that the sense of chirality in
certain helimagnets can be controlled. A crystal of this
tetragonal (below Ttv) semiconductor was cooled in the
presence of both electric and magnetic fields. Spin-Aip
neutron diN'raction measurements determined that a coni-
cal magnetic structure of definite helicity was produced.

The present study was motivated by the observations in
this earlier work and by the continuing interest in the crit-
ical behavior of frustrated antiferromagnets. Symmetry

arguments are used here to construct the lowest-order
coupling between the spin vector S and electric-field (E)
induced polarization vector P in the case where the mag-
netic ions of an insulator occupy the sites of a simple hex-
agonal lattice with planar anisotropy. The overall crystal
structure is assumed to contain a center of inversion sym-
metry. The result of this analysis is a magnetoelectric
coupling term with a form identical to the usual DM in-
teraction. With E in the basal plane, the eA'ect of this in-
teraction is to stabilize incommensurate magnetic order-
ing. This takes the form of a slightly distorted 120 spin
structure in the case where the nearest-neighbor exchange
interactions are antiferromagnetic. It is further demon-
strated that chiral degeneracy is removed if the field is ap-
plied perpendicular to a crystallographic basal-plane axis.
A model Landau free energy serves as the basis for an in-
vestigation of the electric-field-temperature phase dia-
gram within a mean-field approximation. Numerical re-
sults are presented which indicate the possibility of (at
least) two distinct types of multicritical point behavior,
depending on the relative magnitudes of certain parame-
ter values. These results are relevant to the recent
renormalization-group calculations of Ref. 5 and suggest
that the experimental study of critical Auctuation effects
associated with crossover behavior between n=2 chiral
and XYuniversality classes is feasible.

Construction of terms which contribute to the magnetic
Hamiltonian (or free energy) must satisfy time-reversal
symmetry (only even powers of S can occur) and must be
invariant with respect to the symmetry operations of the
crystal space group. ' ' Of interest here are terms linear
in P and quadratic in S. In the case of hexagonal crystals
with a center of inversion symmetry, the only such term to
occur can be expressed as '

&c=It'(2V)„drdr'C(r)(Pxr), [s(r) xs(r')], (1)
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where s=r —r', C( —r) =C(r), and the subscript z indi-
cates z component. [We adopt here a perpendicular coor-
dinate system (x,y, z), with z along the hexagonal c axis
and x along a basal-plane a axis. ] The polarization vector
P is assumed to be proportional to the applied field E.
This is precisely of the form often written for the DM in-
teraction, D S;XS/.

For the purpose of evaluating ground-state and equilib-
rium magnetic properties, it is convenient to adopt our
previous representation of the spin density: ' '

s(r) =(V/N)g p(r)b(r —R),
R

(2)

Ec=iCQPz (SXS*),
where

CQ =2C~[2bp„cos —,
'

q sinq~

—ap~(sinq +sin —,
' q, cosqi, )],

(4)

(5)

C& =(V/N)C(a), P =P(p„x+p~y), q„=ag„, q~ =bg~,
and b =(&3/2)a. Interactions of this type favor a spin
density with helical polarization, ' e.g. ,

where R denotes hexagonal lattice sites and p character-
izes the long-range magnetic order,

p(r) SeiQ r+See —iQ r

and S =Si+iS2, with Si and S2 being real vectors. With
only nearest-neighbor interactions included, the magne-
toelectric coupling contribution to the ground-state energy
is given by

where i labels sites along a direction a„.
Consider now the effects of magnetoelectric coupling

(4) on the magnetic wave vector Q, determined by minim-
ization of the energy Eg =(JQ+PCQ)S . Since CQ is
zero for the 120 spin structure, this commensurate state
is destabilized in favor of an incommensurate ordering.
The two configurations Pllx and Pily (i.e., parallel and
perpendicular to an a„axis, respectively) are considered
and results are given only for the cases where, in the limit
P 0, Q~ = ~ (4'/3a)x (since the other four wave vec-
tors give equivalent structures). For Pllx, Cq is an even
function of q and no chirality selection occurs. The equi-
librium magnetic wave vector for small magnetoelectric
coupling is given by q„=—~ [4ir/3+ (1

J3)S'il

and q~ =Bi,
where bb =bPC~/J~ Wit.h Pily, however, Cq is an odd
function of q, and ehiral symmetry is broken. It can be
seen from the plot of Eq shown in Fig. 1 that a positive
helicity state (q„=+4ir/3) is stabilized for C& &0 and
that a negative helicity state (q„= —4z/3) occurs for
C& (0 (c.f. Fig. 2 of Ref. 2). For C& & 0, the minimum
in Eq occurs at q„=4m/3 —6„where 8, =aPC~/J~, and

q~ =0, with the magnetoelectric coupling energy given

by Ec= —
2 C~aP(b, +&38,/4)S . The other local

minimum seen in Fig. 1 for this case occurs at
q'„=- —4x/3 —8, with a higher energy by an amount
+ 4 C~aP 438,S .

Formulation of a Landau-type free energy for the pur-
pose of investigating the electric-field-temperature phase
diagram follows from general principles outlined in our
earlier work. ' The result, to low order, can be ex-
pressed as

S, =(S/iX)x, S, =(S/i~)y. (6)

Magnetic exchange interactions are assumed to have
the usual form

F=AQS + 2 AFP +iCQPi (SXS*)+Big
+-,'B,IS S~'+2B,)P S~'+B,P S —P. E, (10)

PJ =(1/2V) dr dr' J(r)s(r) s(r')

and contribute to the ground-state energy' EJ =JQS S*
where, with near-neighbor interactions only, '

JQ=2Jicos(q, )+2J~[cos(q~)+2cos( —,
' q„)cos(q~)],

where AQ=aT+ JQ and the parameters [a, Ji, J~, Ap,
C&, B~, B2, B4, Bsj are specific to the material of interest.
Except for the DM interaction term, this free energy has a

and both Ji=(V/N)J(c) and J~ =(V/N)J(a) are as-
sumed here to be positive (although the sign of Ji is not
relevant to the principal results of interest discussed
below). Modulation of the spin density determined by the
antiferromagnetic interactions (8) yields a period-2 struc-
ture along the c axis and a period-3 ordering in the basal
plane, Q„=(4ir/3a)a„+ (ir/c)c where a„ indicates one of
the six basal-plane crytallographic directions. With heli-
cal polarization of the form (6), the 120' spin structure is
realized where positive chirality states Q& =+(4x/3a)x,—(2'/3a)x~ (m/b)y, and negative chirality states Q~= —(4ir/3a )x, + (2ir/3a )x+ (rr/b )y are energetically
equivalent. Note that S and the relevant modulation Q&
both lie in the same (basal) plane, which differs from the
usual helical ordering where S and Q are perpendicular.
Chirality x is defined here by the expression

x =(I/N)gx;, K; =2/(J3S')(s;s(+i sfs,'+i), —

C&O

FIG. 1. Wave-vector dependence of the ground-state energy.
Broken curve shows chirality-degenerate minima at q„= + 4ir/3
resulting from antiferromagnetic exchange. Solid curves show
minima (arrows) at q„=—+4'/3 (positive chirality) for C~ & 0
and at q„=——4x/3 (negative chirality) for C& (0 as a result of
the inclusion of the magnetoelectric coupling term (4).
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FIG. 2. Schematics of electric-field-temperature phase dia-
grams with E along y and C& )0 for the cases of a (a) small
and (b) large coupling B4 relative to C&. Type (a) is found us-
ing, e.g. , parameter values Jii J~ =C~=B4=1 and Jii=1,
J& =C& =84 =10, whereas type (b) results from using, e.g. ,
84 =Ji( =1, J~ =C =10

structure similar to the one used by us to study the effects
of an applied magnetic field on the frustrated hexagonal
lattice. A positive coefficient B2 serves to stabilize the hel-
ical polarization of the spin density in the absence of any
external fields. The coupling term B4 favors a
configuration SJ P (with 84) 0), i.e., a linearly polarized
state. The result of this competition is an elliptical polar-
ization. In contrast with the magnetic field case, however,
the B4 term must be relatively large to realize a complete
linear polarization since the DM term above (also of order
S ) favors the helical state. Note that in this case, the
DM term would be zero so that commensurate ordering,
as at E=0, occurs.

Schematics of the two types of phase diagrams obtained
from numerical minimization of F with Ell + y are depict-
ed in Fig. 2. The parameters a, A~, B~, and B2 were each
set to unity and various combinations of relative magni-
tudes for Ji, J~, C&, and 84, all taken to be positive, were
considered. Results as shown in Fig. 2(a) were found for
cases where B4 was not large compared with C&. A rela-
tively strong interaction ~P S~ stabilizes the linear (com-
mensurate) phase as shown in Fig. 2(b). The ordered
states can be further characterized by the chirality (9),
where

~
x

~
=1, ~»~ ( 1, and x =0 correspond to helical, el-

liptical, and linear phases, respectively. Note that the
E =0 axis, where the helical-commensurate phase occurs,
is a line where incommensurability vanishes continuously
and chirality jumps from —1 to +1 with increasing
electric-field strength.

Cooling a stacked triangular antiferromagnet in an
electric field combined with polarized neutron scattering '

may enable experimental measurement of the chirality as-
sociated with the "helical" spin ordering. In the absence
of the chiral-symmetry breaking field, the ordered state of
these materials is spatially divided into chiral domains
with right- and left-handed helicities of equal popula-
tion. ' In such cases, neutron-polarization effects arising
from chirality would average to zero. However, the mag-
netoelectric cooling technique may be used to prepare a
single-chir al-domain ordered state. Polarized neutron
analysis then becomes useful. The purely magnetic elastic

d /dt) (S (q) S ( —q))+i+ (S (q) xS ( —q)),

where q is the scattering vector and S& =qx(Sxq). The
total chirality x can be expressed as

» cx& dq[S(q) xS(—q)], , (12)

where integration over q is taken around a Bragg point Q
(see Appendix C of Ref. 5). This expression is just the
second term of (11) integrated over q and, in principle,
may be determined experimentally by either of the follow-
ing two methods: by measuring the difference between
the scattering intensities from the up (+P) and down
( —P) incident neutrons around a fixed point Q, or by
measuring the difference between the scattering intensities
around the two distinct Bragg points +Q and —Q for a
fixed polarization of incident neutrons. Note that the to-
tal chirality is related to the integrated intensity, while
the Bragg intensities are proportional to the square of the
sublattice magnetization (conventional order parameter)
even for polarized neutrons. In principle, the chiral sus-
ceptibility is also measurable by investigating the response
dK/dE. In order to observe the desired effect, an electric
field of su%cient strength to overcome domain-wall ener-
gies would be required; this is difficult to estimate, even if
the value of C& were known. An electric field of 2.5
kV/cm produced a 95% single-domain sample in the ex-
periments of Ref. 13.

The results presented in this work are of particular in-
terest in view of recent renormalization-group theory and
Monte Carlo simulations ' of frustrated antiferromag-
nets. Chiral ordering takes place simultaneously with the
helical spin order and is controlled by a new type of ex-
ponent, the chiral-crossover exponent p». It characterizes
crossover effects between A Y universality (as predicted to
occur with the DM term present) and n =2 chiral univer-
sality (with the DM term absent). Scaling arguments
demonstrate that this exponent determines the behavior of
the paramagnetic phase boundary [Ec(T), as in Fig.
2(a)] close to the Neel temperature, E, —~T~ —T( '.
Other chiral exponents of interest are p», characterizing
the singular temperature dependence of the chirality (12),
and yz associated with the chiral susceptibility. The scal-
ing relations P» =P»+ y» and a+2P»+ y» =2 are ex-
pected to hold; indeed, recent Monte Carlo results' have
given the estimates p» =0.44+'0.04, y» =0.78+ 0.07,
P» =1.22+'0.08 and a =0.35+ 0.05. Note that the pre-
dicted chirality exponent p» is slightly smaller than twice
the order-parameter exponent 2p=0.52 (Ref. 19) associ-
ated with the Bragg intensity. If, on the other hand, the
transition is mean-field tricritical governed by the Gauss-
ian fixed point (as suggested by the work of Ref. 7), the
corresponding exponents should be p» = 2, y» = 2,
p» =1, and a» =

2 .
In conclusion, it has been demonstrated that the helicity

associated with frustrated triangular antiferromagnets

cross section of neutrons with incident polarization P can
be expressed schematically as '
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can be controlled by the application of an electric field.
The present formulation provides a realistic mechanism
for continuously varying the strength of the chiral-
symmetry-breaking term examined recently by
renormalization-group and Monte Carlo methods. Possi-
ble experimental tests (e.g. , on CsMnBr3 and related ma-
terials ) of these theoretical predictions by means of the

electromagnetic cooling technique thus remain most in-
teresting.
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