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Critical surface of the Blume-Emery-Griffiths model on the honeycomb lattice
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We consider the Blume-Emery-Griffiths (BEG) model on the honeycomb lattice and obtain a
closed-form expression for the critical surface of second-order transitions. The BEG model is first
formulated as a three-state vertex model. Using the fact that the BEG critical surface coincides
with that of a general three-state vertex model, we construct critical surfaces by forming polyno-
mial combinations of vertex weights that are invariant under an O(3) gauge transformation. We
then carry out a finite-size analysis of the BEG model, and use data so obtained to determine
coefficients appearing in the polynomial combination. This procedure leads to a closed-form ex-
pression of the critical surface which reproduces all numerical data accurately.

The Blume-Emery-Griffiths (BEG) model! is a spin-1
system described by the (reduced) Hamiltonian

—ﬂ/kT=J§Sisj+K§si2s,2—AZSi2, (1)
ij ij i
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we write

exp(JS;S;+KS?S?) =1+1zS;S;+1S?S?, 3)

where
z=eXsinhJ, t=eXcoshJ —1, 4)

where S; =0, * 1. The model was first proposed to ex-
plain certain magnetic transitions.>2”* It has also proven
to be useful for modeling of the A transition in *He-*He
mixtures' and the phase changes in a microemulsion.> An
important feature of the critical behavior of the BEG
model is the occurrence of a multicritical phenomenon ac-
companied with the onset of first- and second-order transi-
tions.® However, studies of its phase diagram carried out
in the past have been mostly by approximations, including
renormalization-group’ and mean-field"®° analyses, and
Monte Carlo simulations.'® An exact determination of its
phase diagram has proven to be elusive, and has been lim-
ited to the subspaces J =0,'"'2 and K = —IncoshJ.!3 !¢
In this paper, we present results on a precise determina-
tion of the second-order phase surface for the BEG model
(1) on the honeycomb lattice.

Our approach parallels that of recent progress made in
the determination of the phase diagram for antiferromag-
netic Ising models.'” "?! By using an invariance property
in conjunction with results of a finite-size analysis, it has
been possible to obtain closed-form expressions for the
phase boundaries of the Ising models, which agree with all
numerical data to an extremely high degree of pre-
cision.!” ™! For spin-1 systems such as the BEG model,
the underlying invariance is that of an O(3) gauge trans-
formation, whose properties have recently been studied.??
Here we make use of these invariance properties and re-
sults of a finite-size analysis, which we carry out, to obtain
closed-form expressions of the second-order transition
phase boundary for the honeycomb BEG model.

We first formulate the BEG model as a three-state ver-
tex model. Starting from the partition function of the
BEG model,

Y IexpUs:S;+kSsHIIe 5, @
S; =0, x1 j) i

ZBeG =

43

and expand the product I in Eq. (2). For each term in
the expansion for which the factor 1, zS;S;, or tS2S? is
taken, we draw, respectively, a dotted, heavy, or thin line
over the corresponding lattice edge. Then Zpgg generates
graphs on the underlying lattice. Next we associate
weights to lattice sites (vertices), obtained by carrying out
the summations X5, =0, + 1. Using the identities

2¢e 2+1, n=0
—_— 2
Y sre 25" =12¢ 78 p=even (5)
L= +
Simo= 0, n=odd,

we see that only those vertices having an even number of
incident heavy lines have nonzero weights. For the honey-
comb lattice, this leads to a 14-vertex model shown in Fig.
1 with the weights

a=wp0=1+3e? b=wy=t"% c=wn=t,
)

=32

- — 12
d = weo3 , f=w10=2, g=wo =zt"2.

Here, for convenience, we have multiplied a factor e%/2 to
all vertex weights, and introduced the abbreviated nota-
tion w;;x to represent the weight of a vertex configuration
with respective i, j,k dotted, heavy, and thin lines.

The most general three-state vertex model for the
honeycomb lattice is a 27-vertex model?? which, in addi-
tion to the 14 vertices shown in Fig. 1, includes vertices
with weights w30, @111, ®210, and we12. The partition
function of this general model is invariant under an O(3)
gauge transformation. Furthermore, it has been shown
that for threefold-coordinated lattices the O(3) gauge
transformation possesses six fundamental invariants, and
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FIG. 1. Vertex configurations of the three-state 14-vertex
model for the BEG model.

their explicit expressions have been given.?? In the BEG
subspace wg30 =111 =210 =wo12 =0, one of these funda-
mental invariants vanishes identically and the remaining
five reduce to

Io=(a+c+f)*+(b+d+g)?,
Ji=A+15B,
J,=C—B?—AB,

7
J3=AC+3BC—2B>—6AB?, (
J4=4(54—9B)C*+ (4°+214°B—934B*+135B°3)
+2B2(94°—594°B+994B>—81B3),
where
A=—eoed, B=—esef, C=—elei—eolel)?,
eo=—a+3c+i(3b—d), (8)

er=1[a+c—4f)—ilb+d—4g)].

It should be emphasized that Egs. (7) are intersections of
fundamental invariants of the 27-vertex model in the BEG
subspace, which are not themselves invariants for the
BEG model. We shall, however, simply call 4, B, and C
the invariants for convenience in ensuing discussions.

Generally, we expect critical surfaces of the 27-vertex
model to be invariant under the O(3) gauge transforma-
tion. It follows that they must lie on subspaces whose ex-
plicit expressions are formed from the six fundamental in-
variants. For the BEG model, in particular, the phase
boundaries are then given by expressions formed by the
invariants Ig, 4, B, and C. If we further assume that
phase boundaries are given in terms of these expressions
as homogeneous polynomials of the vertex weights, we are
led to the following possible expressions for the phase
boundaries:

P,=Ilyt+c1A+c,B=0,
()]

Pis=CHc1§+c24%+ 3B +calpA+csloB+csAB =0,

and similar higher-degree polynomials, where the ¢;’s are
constants yet to be determined. Here, P, in Eq. (9) is a
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polynomial homogeneous in the nth degree of the vertex
weights, and we apply the method of finite-size analysis to
compute the coefficients ¢;’s. First, for fixed ratios of A/K
and J/K, we use finite-size scaling to determine the criti-
cal temperature K. =1/kT.. Values of K. so determined
are then used in conjunction with (9) to determine the
coefficients ¢;’s from a least-squares fit.

The finite-size theory?*~2° of second-order transitions
predicts that the correlation length at a critical point
scales linearly with the linear dimension of the system n.
The correlation length can be found by computing the
first- and second-largest eigenvalues of the transfer ma-
trix, A; and A, for a row of n lattice sites. More precisely,
we have

n{ln(kl/k2)=27rxy , (10)
with { a geometric factor and xy the magnetic scaling di-
mension. We compute A; and A; for the transfer matrix of
the BEG model on a honeycomb lattice, taken in a direc-
tion perpendicular to one of the lattice edges.?® The
transfer matrix in this direction is symmetric and the
geometric factor takes the value ¢ =1/+/3.

A conjugate-gradient algorithm is used to search for the
leading eigenvalues and eigenvectors. The leading eigen-
vector is contained in the subspace with all elements posi-
tive, as guaranteed by Perron-Frobenius theorem; the next
largest eigenvalue is computed by confining the algorithm
to the subspace orthogonal to the leading eigenvector.
The latter procedure is carried out by choosing a random
vector, and subtracting from it the component along the
leading eigenvector, to ensure that the search covers the
maximal subspace. This is in contrast to the usual pro-
cedure for the Ising model, where a symmetry known to
hold in the next leading eigenvector is used explicitly in its
construction.

A total of 205 data points for n =2, 4, 6 are collected
from the finite-size calculation, using xy = % for the Ising
universality class. A least-squares fit is then performed on
the n =6 data to obtain the best values for the constants in
the polynomial equations P, =0 and P4=0. The results
are ¢;=—0.5996 and c,=47.08 for the second-degree
equation, and c¢;=0.005260, c¢,=0.09534, c¢3;=5.601,
¢c4=—0.07096, ¢5=0.3708, and c¢=—3.374 for the
fourth-degree equation. The finite-size data and curves
obtained from the polynomial equations (9) with coeffi-
cients determined in the above are plotted in Fig. 2. Con-
sidering the facts that this is a surface fitting and that
there are no more than six adjustable constants, the fit is
remarkably good. As a comparison, we have carried out a
similar least-squares fit using fourth- and sixth-degree
homogeneous polynomials constructed from the invariants
(7). In this case, we find the best fits marked by ruptures
across smooth data points, indicating that the fits are un-
satisfactory. This finding also indicates that we are on the
right track in choosing Io, 4, B, and C as the building
blocks of BEG invariants. We therefore suggest that the
equation P4 =0 can be used as a good closed-form approx-
imation for the second-order critical surface of the BEG
model.

As an independent check of the accuracy of our results,
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FIG. 2. Second-order phase boundary from finite-size

analysis (O: n=2; X: n=4; +: n=6), and from the polynomial
equations P>=0 (dashed line) and P4=0 (solid line). The 12
branches are for J/K =0.6, 0.8, 1, 2, 3,...,10, in the order of
increasing 1/K..

we have used (9) to compute the critical point at A/K =2,
J/K =1 for which the BEG model (1) is known?’ to be
equivalent to the three-state Potts model with near-
est-neighbor interactions 2K/3 and the exact critical
point K. '=0.449175. Using P;=0 we obtain K. !
=0.458756. Considering that this point lies well beyond
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the regime of our data points and close to the first-order
boundary, the agreement is very good.

Guided by the behavior of the phase diagram obtained
under the mean-field approximation,' we expect, as A/K
increases, the second-order lines in Fig. 2 to terminate and
change into first-order lines at multicritical points.
Indeed, results of our numerical fitting show that calculat-
ed values of the coefficients are very sensitive to input
boundary data at the lower-right-hand corner of Fig. 2,
signifying a changeover into a first-order surface (for
which the finite-size scaling needs to be reformulated).
Thus, the second-order surface given by (9) should ter-
minate at a first-order surface rising in the lower-right-
hand regime of Fig. 2.

Finally, we remark on how one might locate this first-
order surface. Generally, again by invariance arguments,
we expect the first-order surface to be also given in the
form of (9). Furthermore, the intersection of the surface
with the J=0 plane is exactly known.'"!? In the plane
J =0, the BEG model (1) is completely equivalent to an
Ising model with interactions K; =K/4 and a magnetic
field (3 K —A+1n2)/2. The first-order boundary is then
precisely the line segment J =0, e2=2¢3k/2 oK1 =k/2
=<2++/3. In addition, from a ground-state energy
analysis, one finds that the first-order surface contains the
zero-temperature phase boundary J/K+1=2A/3K.
These exact intersections together with any precision
determination of a few first-order transition points will
then enable one to complete the picture of the full phase
diagram.
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