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Anomalously slow domain growth due to a modulus inhomogeneity in phase-separating alloys
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We simulate spinodal decomposition in alloys when the two phases have different shear moduli.
In late stages, softer regions are anisotropically deformed and harder regions tend to be isotropic.
This leads to morphologies with very slow coarsening rates. We find glassy states in which softer re-

gions form a percolated network wrapping isotropic harder regions.

It is widely recognized that the domain morphology in
phase-separating alloys can be radically influenced by
elastic fields originating from the lattice misfit or the
difference in the lattice constants of the two phases. ' In
particular, elastic anisotropy of crystals and/or anisotro-

py brought about by external stresses gives rise to modu-
lated structures with nearly periodic patterns in late-stage
spinodal decomposition. As regards the growth of modu-
lated structures, Carpenter observed that the time ex-
ponent a for the domain size in Au-Pt alloys strongly de-
pends on the composition: 1/a =4.8, 9.3, and 3.2, re-
spectively, for 40:60, 60:40, 80:20 Au-Pt alloys. More
strikingly, in alloys with relatively large lattice misfits,
Miyazaki et al. found that the coarsening rate becomes
extremely slow and the domain growth virtually stops
near the critical composition. Although these observa-
tions have not yet been adequately explained, their origin
should undoubtedly be ascribed to the elastic effects.

A Ginzburg-Landau approach has recently been
presented to analyze the elastic effects in phase-
separating alloys. We assume the coherent condition,
which states that the lattice planes are continuous
through the interfaces. We obtain a closed description
of the composition c only by eliminating the elastic field
from mechanical equilibrium. There arise three elastic
contributions to the effective free energy: (i) a long-range
interaction due to the cubic anisotropy, (ii) a dipolar one
due to external stresses, and (iii) a long-range one due to
elastic modulus difference between the two phases. The
first two interactions are bilinear in c, while the third is
cubic in c. Then we have performed a computer simula-
tion in two dimensions by taking into account the first
two iong-range interactions. It has resulted in a tweed
pattern due to cubic elasticity, a lamellar pattern under a
uniaxial stress along the [10] direction, and a unique ob-

lique pattern under a shear stress. In all these cases,
domains are rectangular stripes with their longer sides
perpendicular to the softest directions. They have con-
tinued to grow up to the system size obeying the growth
low a =B[lnR»(t)]/B[lnt]-0. 2 at the critical composi-
tion, where R&&(t) is the characteristic size in the [11]
direction. This value of 0.2 is considerably smaller than
the usual value —,

' which results from the model without

elasticity. the slower coarsening in our case originates
from the fact that the interface motion in lamellar-like re-
gions is much slower than near the ends of long stripes.

The aim of this paper is to study the effects of the
modulus difference between the two phases or,

equivalently, the role of the third long-range interaction
mentioned above in our scheme. To examine this aspect
most unambiguously, we assume isotropic elasticity
without external stresses. Then, the first two interactions
treated previously are now nonexistent. However, the
shear modulus p depends weakly on the composition c
as

+ —,'Ko(V u) +(po+p, c)Q], (2)

where f0 is a Ginzburg-Landau free-energy density and a
is the coupling constant. The u is the displacement vec-
tor from some homogeneous reference state. The Q
arises from anisotropic deformations,

2

Q= —,'g V';u +V u; —
5;~

—V u
2

where V;—:8/Bx; and d is the spatial dimensionality.
We eliminate u from the mechanical equilibrium con-

dition 5F/6u; =0. When p& =0, this task can be readily

performed to give Cahn's coherent free-energy density,

f (c), which differs from fo(c) in (2) by a term propor-
tional to c . The elastic field induced by inhomogeneities
of c is given by 6u; = —(a/KLo)c)w/tlx;, where

KLo=Ko+2(1 —I/d)po and w is determined by

V m=c —c,
c being the average order parameter. When ~p, c~ is much
smaller than pp for any typical values of c, we may treat

p& as a small expansion parameter to obtain an effective
free energy for c to first order in p„

F = fdr[f (c)+ ,'(Vc) +p, (a/Kto—) cQ]

with

Q=g V;V'Jw ——5;.V w
l,J

'2

The last term in (5) turns out to be a very intriguing

I —pp+ pic

while the bulk modulus is a constant Kp independent of c.
Here c is a conserved order parameter measured from the
critical value for the coherent free energy (see below). It
is coupled with the elastic field u in the free energy as

F = Jdr[ fo(c)+ —,'(Vc) +acV u

43 13 649 1991 The American Physical Society



13 650 BRIEF REPORTS 43

~ ~

I,

L

'I 000 3000
1 ~

8000
FIG. l. Evolution patterns at P =70% and gE =0.07. The numbers below the figures are the times after quenching. The time

step is taken to be unity.

R~-o/(Ap)e (7)

long-range interaction. We already showed that it
causes a shape bifurcation of an isolated softer domain
from spheres into plates as predicted by Johnson and
Cahn and that it gives rise to a pairwise interaction be-
tween separate domains (see the last part of this paper). '

Hereafter, we focus our attention on the role of the last
term in spinodal decomposition by assuming the form

f = —,'rc + ,'c—with—r)0 (in the unstable region).
Then the compositions and the shear moduli in the two
phases are difTerent by Ac =2~' and Ap=p, Ac. Notice
that the last term in (5) is positive in harder regions
(where p, c)0) and negative in softer regions (where

p, c (0). It is minimized in morphologies in which hard-
er domains assume spherical shapes and softer domains
are, instead, anisotropically deformed, if interactions
among domains are neglected. Such asymmetric shape
changes can lower the free energy by (Ap)e R per typi-
cal domain, where E [ —(a/Klo)b, c] is a typical strain
and R is the domain size. On the other hand, the surface
free energy is crR, o. being the surface tension. Equating
these two free-energy contributions, we find a crossover
radius given by

For R &RE, softer domains tend to be deformed into
plates if their volume fraction P, is small. If P, is not
small, they will be percolated to form a network. Here
we assume RE))g(- r ), where g is the interfacial
thickness or the thermal correlation length. This regime
is called the weakly inhomogeneous case. However, no-
tice that Rz does not depend on r ( ~ T, —T) from
o. -~ and Ap-e-~' near criticality in mean-field
theory. Then we may well expect the existence of the
strongly inhomogeneous case Rz ~ g near criticality. The
study of this anomalous regime will be deferred to a
forthcoming paper.

We numerically solve the following diffusion-type
equation in two dimensions:

—c =V (6F/6c)= V [( —1 —V' +c )c+gzg]

+2gz g V'; V', c[V, V', w —,' 6,, ( c ——c) ] .

Here we have set r= 1 in f, and w and Q are defined by
(4) and (6). The parameter gz =p, (a/ELo) r—
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represents the strength of the modulus inhomogeneity be-
ing of order g/Rz and is assumed to be much smaller
than 1.

We use Oono and Puri's method to investigate (8) as
in Ref. 6. The system is a 128X128 square lattice with
the periodic boundary condition and is quenched at t =0
from a disordered configuration. Our strategy to calcu-
late w, (4), is to integrate the diffusion equation t)p/t)t'
=

—,'(V p —c„(r)+c) from t'=0 to 20 at each mapping,
where c„(r) is the concentration field at t = n held fixed in
this t' integration. We write the resultant solution as
p„(r). At long wavelengths, its Fourier transform
satisfies p„(k)=gkp„, (k) —(1—

gl, )k c„(k), where

gk =exp( —10k ). Notice that p„&(r) obtained at the
previous step is used as the initial value of p in the t in-
tegration at t =n. Here we simply set p„(r) equal to

w„(r) = V [c„(r)—c ], neglecting nonvanishing gk, and
perform an Oono-Puri mapping to obtain c„+,(r). Be-
cause c„changes very slowly for large n, p, should relax
to m, for large n even at long wavelengths, for which

gk
= l. In fact, the differences between V p„and c„—c

have been confirmed to be very small ( ~ 10 ) for large n

( ~ 10 ) except for the interfacial regions.
We have found that the domain growth is dramatically

slowed down in the presence of the new terms (-gz) in
(8). In fact, we have obtained a =——,

' by setting gz =0 with
the other conditions kept unchanged. Figures 1 —3 show
the results for gE =0.07. The numbers below the figures
are the times after quenching. The solid regions
represent the softer domains with gEc & 0, while the open
regions represent the harder domains with gEc &0. The
volume fraction P, of the softer component is 70, 50, and
30% in Figs. 1 —3, respectively. Figure 4 displays the
perimeter length of the interface regions for gE=0.07
and 0.05, where the curves are averages of four runs. It is
expected to be inversely proportional to the domain size
and its slope is defined as —a. At $, =70% a is about
0.12 for t ~ 200. For P, =50 and 30%, the coarsening al-
most stops and we find a ~0.04 after a certain crossover
time tE, where the softer component forms a percolated
network structure enclosing the harder domains. Let ao
be the time exponent for t & tE. Then we expect

10
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FICs. 4. Perimeter length vs time. The mesh size and time

step are unity.
The degree of anisotropic deformations Q at

t =45000 for g~ =0.05.
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FIG. 6. Shape changes of two harder domains at t = 1000 for

ge =0.05. We write the domain profiles on the left and Q on the
right.

tz'-Rz —I /gE. This relation roughly holds in Fig. 4.
Figure 5 illustrates Q in a pinned state at t =45 000 for

P, =50%. It is defined by (6) and represents the degree of
anisotropic deformations. We find Q —=0 within the hard-
er domains in late stages (t ~ 10 ), which means that the
harder domains are nearly isotropically deformed. In
particular, at P, =70% in Fig. 1, shapes of harder
domains are considerably deformed from circles. Note
that domain shapes are much closer to circles for gz =0.
The harder domains deform to cancel elastic fields pro-
duced by other harder domains and to become elastically
isotropic. Figure 6 illustrates such shape adjustment in a
simple case of two harder domains. We prepare two cir-
cles at t =0 in a nearly saturated matrix. At t =10, the
interfaces facing to each other have been Aattened to
achieve Q —=0 inside and the softer region between them
has been uniaxially deformed. In Figs. 1 —3, we observe
the same elastic deformations throughout the system.

Thus, interfaces separate uniaxially deformed softer re-
gions and isotropic harder regions in late stages, where
surface protuberances with spatial scales greater than Rz
are suppressed by the elastic-free-energy cost." Our re-
sults of y, =50 and 30% suggest that two-phase struc-
tures in the presence of modulus inhomogeneity can be
driven into metastable glassy states after the asymmetric
elastic deformations. At P, =70%, however, pinning
does not take place in the simulation time ( t ~ 4 X 10 ).

In real alloys with relatively large lattice misfits, close-

where the integral is within A and B, e, ". (or e,~) are
strains —2'(V;ui+Viu;) produced by A (or B) only, and
e = V u=g, e,, The same contribution also follows
from (5). Eshelby calculated b E when A and B are both
spheres. However, Fig. 6 indicates that the shear strains
can vanish after shape changes and then AE =0. Within
3, this means

i Ag (
B i Bg )1J 3 IJ V 3 /J (10)

For large separation of 3 and B, the right-hand side is
nearly a constant, symmetric, traceless tensor within 2
and, hence, (10) is indeed satisfied for an ellipsoidal
shape' of A. Eshelby's interaction thus exists strictly
among spheres and disappears after such shape adjust-
ment. We must take into account shape changes even in
phase separation at very small volume fractions
P& =1—P, of the harder component. The elastic effect at
small P& still remains to be explored. ' It is expected that
shape changes are much more drastic for small P, of the
softer component. "

We acknowledge valuable discussions with Professor
K. Kawasaki, Professor T. Miyazaki, and Professor M.
Doi.

ly aligned cuboids with very slow coarsening rates are
often observed and the sizes of the cuboids become uni-
form after a long aging time. By further adding the cu-
bic interaction to (g), we can reproduce very similar
frozen structures for relatively small P, . Such aspects
will be reported shortly elsewhere. Thus, the three long-
range interactions mentioned at the beginning of this pa-
per can, together, well explain essential morphologies ob-
served in two-phase cubic alloys.

Finally, we should comment on Eshelby's interaction'
due to b,iM (=p, b,c in our notation). He supposed two
precipitates, 3 and B, whose shear modulus is slightly
different from that of the matrix by Ap. Then the elastic
energy is changed by the following amount:

bE=bp I dr+ [e; +e; ——', (e +e )fi,"j
A B i,j
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