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We investigate the efFect of including domain-wall interactions in the two-dimensional axial
next-nearest-neighbor Ising model. At low temperatures this problem is reduced to a one-
dimensional system of interacting fermions which can be treated exactly. It is found that the
critical boundaries of the low-temperature phases are in good agreement with those obtained
using a free-fermion approximation. In contrast with the monotonic behavior derived from the
free-fermion approach, the wall density or wave number displays reentrant phenomena when the
ratio of the next-nearest-neighbor and nearest-neighbor interactions is greater than —.

One of the simplest models where competing inter-
actions lead to modulated structures is the axial next-
nearest-neighbor Ising or ANNNI model. Although this
system seems to be too simple to describe quantitative
results on specific materials, it may reproduce qualita-
tive features observed in many physical systems describ-
able by discrete models with effective short-range com-
peting interactions. Examples of this class are mag-
netic systems of cerium monopnictides, binary metal
alloys, ferroelectrics, chemisorbed submonolayers, and
polytypes.

Motivated by these findings the ANNNI model
has been widely studied by numerous methods in-
cluding Monte Carlo simulations, 7 series analysis, s

mean-field calculations, finite-size scaling transfer ma-
trix studies, interface calculations, and free-fermion

approximations.
In this work we consider the effect of including domain-

wall interactions in the two-dimensional version, which as
it will be shown below, will give rise to important con-
sequences on the wall density or wave number behavior.
Our analysis closely follows a low-temperature calcula-
tion scheme introduced by Villain and Bak for the same
model, in which fluctuations around the ground states are
represented by a set of alternating positive and negative
domains bounded by solid-on-solid wandering threads or
walls restricted to have no reentries. The summation of
these paths is actually the discrete version of a path inte-
gral across the lattice. One of the central points of their
calculation is that these walls are forced to have a hard-
core behavior, namely, configurations containing nearest-
neighbor walls are excluded. This constraint can be taken
into account by making a simple scale transformation
along the axial (competing) direction which straightfor-
wardly transforms the problem onto a free-fermion ap-

proximation (FFA). Although at very low temperatures
this calculation yields reliable results, as temperature in-
creases the domain walls can no longer be represented
only by the hard core, and finite first-neighbor interac-
tions between them must be included. Certainly, other
type of "defects" such as dislocations of the wall network
may occur, but unlike wall-wall interactions they only
play a relevant role in a high-temperature regime, close
to the incommensurate-disordered transition.

Let us consider the ANNNI model on a rectangular lat-
tice of N columns and M rows with full periodic bound-
ary conditions and with Ising spins s = +1 interacting
through the Hamiltonian

Jl (si,j si,j+1 Xsi,j si,j+2) JO si,j si+l, j

As usual, X denotes the competition ratio between the
second- and first-neighbor interactions along the axial di-
rection, i.e. , X = —J2/J1. Results for J1 & 0 can be
obtained from those of J& ) 0 by flipping every alternate
column of spins, therefore we direct our attention to the
latter case.

At T = 0 the regime of competing interactions can
be divided into ferromagnetic (X & -) and a fourfold

12
degenerate phase known as (2) (X ) &) which is a peri-
odic arrangement of two consecutive up spins followed by
two neighboring down spins along the axial direction. At
X =

2 the ground state becomes infinitely degenerate.
The vertical ordering is always ferromagnetic (Jo ) 0).

A simple analysis shows that the statistical weight R'„
of an arbitrary row state with v walls (0 & v & N)
relative to the ferromagnetic phase (v = 0) is given by
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W„= A, exp —4PX ) n" n"+i (2) From Eqs. (4) and (6) it follows that the free energy

Tz can now be expressed as
where A~ = exp[2Pv(2X —1)j and P = Ji/T Th. e index
n" denotes the presence (n"=1) or absence (n"=0) of
a wall across the jth link of the rth row, therefore the
sum contained on the right-hand side of Eq. (2) simply
counts the number of times there are nearest-neighbor
walls along a row, which is set to zero in the FFA.

Next we note that the energy required to create rn

single-step kinks between two succesive row states is

2m Jo (m = 0, 1, . . . , v), hence we may sum up all low

temperature fluctuations by means of the following row-
to-row symmetrical transfer matrix

(r)His) = (W„W,)' y

where y = exp( —2JO/T) and m„, is the number of kinks
between the row states ~r) and ~s).

Since two neighboring walls cannot cross or touch,
we may associate the row configurations with collective
states of v spinless fermions allowing us to express the

transfer matrix in terms of fermion operators c, ct acting
on a ferromagnetic vacuum state.

At low temperatures it is possible to neglect higher-
order commutators and recover the matrix elements of
Eq. (3) introducing a one-dimensional many-body Hamil-

tonian H„closely related with the tr ansfer matrix,
namely

8 = A exp( —H„),

H„= —p ) c c,+i + H.c. + 4pX ) c c~c.+,c~+i

The wall density or wave number q = v/N (0 & q & 1)
is obtained by minimizing the corresponding free energy

Tq which in the limit M —+ oo can be computed from the

largest eigenvalue A of 0, i.e. , T~ = —~T ln A

Therefore we are left with the calculation of the ground-
state energy of the interacting fermion problem defined

byH.
As it is well known this system can be mapped onto an

S=—anisotropic Heisenberg chain in a uniform magnetic
2

field by means of a Jordan- Wigner transformation,
hence H can be rewritten as

H„: ——) (tT 0 +i + tT 0 +i + 4 0 0'~+i)

+PX(2S' + N),
S' = ) o.'. , A = —2PX/p,

where o, o&, and o' are the usual spin-2 Pauli matri-
ces. The relation between the magnetization per site

p = S'/N (preserved by H„) and the "band-filling" q

is simply

where so, sq, and f(E, O) are given by

1 . (—1)" (—1)"+' n2

2 cosh(nA) ' 2 cosh(nA)

(11)

f(A, 0) = —cosh A —sinhA —+ 2 )
coshA = —4, A ) 0.

The stability condition of phase (2) now reads

4XzotanhA & 1, X & —,'. (12.)

Note that in the low-temperature limit (high
anisotropy regime), we can expand this equation up to
first order in 1/A and recover the FFA boundary, i.e. ,

T, exp( —2JO/Tt;) = J2 —
2 Ji, X )

It is interesting to point out that even at higher tern-
peratures the agreement with the FFA result is quite
good as can be seen in Fig. 1 where both approximations

where 2f(A, p, ) is the ground-state energy of the
anisotropic Heisenberg chain with magnetization p,

2q —.1 and anisotropy K = —2PX/p. This identification
enables us to determine the critical boundaries of the (2)
and ferromagnetic states by studying the stability condi-
tions of ~& around p = 0 and p, = —1, respectively.

According to Eq. (8) it is clear that due to the inversion
symmetry of the Heisenberg Hamiltonian, the free energy
is unstable for all band-fillings greater than 2, henceforth
we will restrict our attention to the case 0 & q & 2 .

The analytical properties of f(A, p) at and near ~p,
~

= 1

and p = 0 have already been studied by Yang and Yang
using a generalization of the Bethe-ansatz technique
providing us the necessary information to go further in
our analysis. According to their work the expansion of
T& close to the ferromagnetic state results in

x, /Jt=2q(t —2x —— +0(o) .

from which the standard FFA ferromagnetic boundary is

obtamed, namely T, exp ( 2Ja/T, )—= Ji —'2J2, X & 2 .
This coincidence is not surprising because at low wall-

density regimes the short-ranged wall-wall interactions
become irrelevant.

Following Yang and Yang, the free energy close to the

(2) phase can be expanded as

/1 E'

pt/Xt = 4Xtooht (oo(1 —oO)+ (t —2q) )3EO

+ f(A, 0) + 2q —X + 0 ((1 —2q)'), (10)
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incommensurate phase which is known to be stable with
respect to paramagnetism if X & 2. These results are
shown in Fig. 2.

A word of caution should be added on interpreting
these results. Our calculations are reasonable in the
fIoating incommensurate phase provided that the density
of local defects is negligible, while these figures extend
up to infinite temperatures. Nevertheless, note that the
reentrance behavior could take place at "intermediate"
regimes which according to Monte Carlo simulations can
be almost considered as dislocation free.

At very low temperatures (A -+ —oo) it is possible to
recover the wall densities computed by Villain and Bak
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FIG. 1. Critical boundaries of the (2) phase for Jo = A.
The solid line denotes the free-fermion calculation. The
dashed line indicates the interacting-fermion approximation
result.
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are compared. Since our approach has less entropy re-
strictions it yields a lower transition temperature, as it
should.

Due to the lack of the quadratic term in Eq. (10), it
follows that slightly above the (2) state the wall density
behaves as

0. 1

0.0
0

( d.. + (4 A sinh A, )
0.50

1+2Jo T, ' z T —T,

where T, and A, are determined from Eq. (12). This
is in agreement with the general theory of Pokrovskii
and Talapov on commensurate-incommensurate phase
transitions in two-dimensional systems, according to
which the wave number of the incommensurate phase
should display a square-root singularity on approaching
a commensurate state of type p x 1 provided that p & 8
(the (2) structure has a period p = 4).

Next let us consider the wave-number behavior derived
from the minima of Eq. (8). After solving numerically
the full Yang and Yang integral equations for arbitrary
band-fillings, we found that for X & 2 the wave num-
ber properties are in qualitative agreement with those
obtained using the free-fermion approach. However, for
X & —the wave number exhibits a reentrant feature in2
contrast with the monotonic FFA behavior. This sug-
gests the possibility of reentrant phenomena within the

O.4 2

FIG. 2. Wall densities resulting from the interacting-
fermion approach as a function of the temperature param-
eter P/p = (Jq/T) exp(2 Jo/T). (a) 4 & —;(b) X & —. In
both cases the free-fermion approximation yields a monotonic
behavior with a limiting value of qo 0.301.
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noting that

The minimization of Xz in Eq. (8) is then satisfied by the
following wall densities

vrq 1 . 7rq
cos sin

~

= (1—2X) P/p,
1 —q ir 1 —qp

which is precisely the FFA result.
In conclusion, we have shown that the domain-wall

interactions of the two-dimensional ANNNI model are

describable by an interacting-fermion theory which re-
produces the FFA results at the low-temperature limit.
On such a regime the deviations from the hard-core wall
picture are exponentially small [of the order 0 (E i) ]
and therefore the FFA description is quite appropriate.
However, as temperature increases the wall interactions
become very important in the thermodynamic descrip-
tion giving rise to the possibility of reentrant phenomena
within the incommensurate phase, as is shown by the
wall density behavior obtained in this work.
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"It is an open problem whether the incommensurate phase
extends up to arbitrarily large values of X or only up to
some finite X& implying the existence of a Lifshitz-type
multicritical point. On the ferromagnetic side the incom-
mensurate state is believed to be unstable with respect to
the disordered phase.


