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Role of non-symmetry-breaking order parameters in determining the
martensitic energy barrier: The bcc-to-9R transformation
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Distortions that do not affect the symmetry of the final product phase obtained in a martensitic
transition, so-called non-symmetry-breaking order parameters, but that do affect the energy barrier
encountered during homogeneous nucleation, are considered. For the bcc-to-9R transition under-
gone by Na, first-principles total-energy calculations verify the importance of these distortions in
that a 40% reduction is obtained when the non-symmetry-breaking order parameters are allowed to
alter the transformation path defined only by the symmetry-breaking order parameters.

As a function of temperature or pressure, numerous
crystals undergo martensitic transformations from one
structure to another. ' These transformations range from
weakly to strongly first order, and involve the coopera-
tive (diffusionless) displacement of atoms, so that the
paths followed by the atoms can usually be described by a
manageable number of generalized coordinates, or order
parameters. One conventional approach to studying the
instability leading to such transformations is through
Ginzburg-Landau-Wilson Hamiltonians. These phe-
nomenological expressions involve expanding the free en-

ergy in a limited set of the parent phase's degrees of free-
dom (the order parameters). The set of order parameters
chosen for a particular study is usually the minimum
necessary to describe the symmetry-breaking displace-
ments taking the parent (high-temperature) phase to the
product (low-temperature) phase. In this Brief Report,
we point out that selecting only the minimal set of order
parameters (based on the change of symmetry between
the two phases) may lead to unrealistically high estimates
for the thermal activation energy. The point is that to
properly describe the physics of these first-order phase
transitions, it is not only necessary to establish the condi-
tions when the two phases have a degenerate Gibbs free
energy, but also the energy barrier along the
configuration path separating the two phases must be
correctly determined. As the system moves along this
path, certain structural relaxations can lower the barrier
height, and it is precisely in describing this phenomenon
that it becomes important to introduce non-symmetry-
breaking order parameters. The bcc-to-9R transforma-
tion in Na offers an-interesting example of such a case.

Many metals undergo a martensitic transformation
from a high-temperature bcc phase to a low-temperature
close-packed structure. For the alkali metals, the trans-
formation occurs at rather low temperatures( —75 K for
Li and —35 K for Na). In these metals, as for many bcc
metals, the transverse-phonon modes belonging to the X4
branch along the [110]direction are low in energy (small
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while the phonon displacements are written as
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A linear combination of these three order parameters
represents precisely the symmetry-breaking displace-
ments that connect the bcc and 9R structures. Starting
from the expression for the free-energy density,
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one then deduces the following expression for the

restoring forces), and it is the displacements associated
with the phonon eigenvectors of this branch, together
with their anharmonic coupling to elastic strain, that ac-
counts for the transformation path. (The phonon ener-
gies do not go to zero as there are no soft-mode transi-
tions in these systems. However, these weak restoring
forces do signal the possibility of an incipient instability. )

To describe the bcc-to-9R transformation, Gooding and
Krumhansl took note of these weak restoring forces and
thus were motivated to consider a Ginzburg-Landau-
Wilson effective free energy which included displace-
ments of the ( —,', —,', 0)X4 phonon and strains associated
with the —,'(c» —c,2) elastic constant, the latter of which

corresponds to the q —+0 sound waves of this same pho-
non branch. These strains can be written as
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In this equation, the development of e2 and e3 is implicit-
ly included when A%0; restrictions on the value of (t in
Eq. (3) are also implied.

We now introduce the notion of a non-symmetry-
breaking order parameter. By this we mean that we in-
clude possible distortions of the product phase, in this
case the 9R structure, as well as intermediate crystalline
structures encountered along the path connecting the
parent and product phases; the new distortions are not
relevant in obtaining a product phase with a given sym-
metry. For the bcc-to-9R transformation, the non-
symmetry-breaking order parameters considered here are

and

1
e&

= (e +e +e„)
3

(6)

effective free-energy density along the proposed transfor-
mation path in terms of the amplitude A appearing in
Eq. (3):
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minimum energy path from the bcc to the 9R structure.
In Fig. 3, the energy variation along this path is shown,
and the energy barrier obtained has a value of 4.3
K/atom. Figure 2 is very revealing, especially with
respect to the role played by the non-symmetry-breaking
c/a order parameter. Since the values of c/a for the bcc
and the 9R structures are quite similar (these are the only
values available from experiment), one might be led to ig-
nore such terms in the free energy; however, the calcula-
tions show that the c/a varies considerably along the
path and is certainly coupled to the other parameters. By
constraining the c/a ratio at the bcc value and finding a
new minimum-energy path, we arrive at a barrier height
of 6.2 K/atom (an increase of —40%). Simply put, by al-
lowing the (110)planes to be pulled apart (increased c/a),
the planes may slide over one another more easily, and
then A%0 may be developed with less energy required.
This is clearly displayed in Figs. 2(a) and 2(b).

We have also investigated the effect of volume change
on the barrier height, and found it to be small (see Fig. 4).
Given that the ratio (c»+2c,2)/c44-4 in Na, ' this very
small dependence of the energy barrier on e1 is not unex-
pected. However, the calculations do show a slight
dependence of the minimum barrier on this distortion

e6 cry

Thus, additional terms appear in the free-energy expan-
sion:
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The e1 corresponds to a homogeneous volume change,
and e6 provides another degree of freedom which allows
the c/a ratio to be varied independently. These new
terms lead to a reduction of the fourth-order term in Eq.
(5), viz. ,
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and thus to a reduction of the energy barrier. To be
specific, the alteration of the fourth-order term is more
important to the energy barrier than is the destabilizing
sixth-order term (see Ref. 5) simply because a lower
power of the amplitude 2 is involved.

These considerations can be concretely illustrated by
first-principles total-energy calculations which were re-
cently completed in the study of the bcc-to-9R martensi-
tic transformation for Na. These calculations considered
the three symmetry-breaking order parameters and one
non-symmetry-breaking order parameter, the c/a ratio.
The order parameters used are illustrated in Fig. I and
include a tilt, 6, away from the [110] bcc direction; a
Bain strain, 0; the c/a ratio; and a phonon displacement,
6. These order parameters can be used to represent the
same displacements as e2, e3, e6, and A and were dis-
cussed by Nagasawa and Kelly in proposing a set of dis-
placements between the two phases. In Fig. 2, we show
the variation of these four order parameters along the
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FIG. 1. Transformation between the bcc and the 9R struc-
ture can be accomplished by (1) transforming the (110) basal
planes to close packed —that is, changing 0 from 109.47' to
120 —and (2) obtaining the . /ABABCBCAC/ . . stacking
sequence of close-packed planes by tilting the bcc [110]axis (b )

and imposing atomic displacements according to the polariza-
tion vectors of a transverse —'[110] phonon (51. (Reproduced
from Ref. 7 with permission of the publisher. )
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for the bcc-to-9R transition of Na. The energy scale is in de-

grees Kelvin (1 meV = 11.6 K). (Reproduced from Ref. 7 with

permission of the publishers. )
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(viz. , Fig. 4 is not symmetric about V= Vo ), in agreement
with the asymmetry implied by Eq. (8). There are some
martensitic transformations which are strongly first order
and the volume changes can be quite large ( —21% in
Sn)." In those cases one would expect, of course, that e&

is an important non-symmetry-breaking order parameter
that would have to be included to properly ascertain bath
the final product phase, as well as the correct value of the
energy barrier to homogeneous nucleation.

In summary, phenomenological energy expansions and
parameter-free total-energy calculations both illustrate
the necessity of considering displacements important in
obtaining the thermal activation energy in a martensitic
transition, even though these sample displacements are
not relevant in determining the symmetry of the final
product phase.
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FIG. 2. Variation of the individual order parameters along

the minimum-energy path in the configuration space for the

bcc-to-9R transformation in Na. 5 denotes the tilt away from

the bcc[110]axis; 5 denotes the displacement of the —'[110]pho-

non. (Reproduced from Ref. 7 with permission of the publish-

ers. )

FIG. 4. Total crystalline energy as a function of volume for
the structure defined by the bcc and 9R phases, as well as by the
atomic positions at the barrier peak. The energies are given rel-
ative to the minimum energies for these three structures, all of
which occur at the same Vo, within the calculational precision.
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