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Hyperuniversality in quantum critical phenomena
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We apply generalizations of two-scale-factor universality, or hyperuniversality, to quantum phase
transitions at zero temperature. We find new universal amplitude combinations involving the
superAuid density in two- and three-dimensional Bose systems, as well as confirm and extend previ-
ous proposals for universa1 transport coefficients in two-dimensional superconducting films and
magnetic-field-induced metal-insulator transitions. We also give a general proof for the existence of
universal jumps in two-dimensional superQuids at finite temperature using finite-size hyperuniversal-
ity.

It has long been recognized' that, along with any
critical-point scaling relation between exponents, there
should be a corresponding universal relation between
critical amplitudes. For example, from the equalities
a =n' and y =y' for the specific-heat and susceptibility
exponents, above and below the critical temperature T„
follows the universality of the corresponding ratio of am-
plitudes 3+ /3 and I +/I . Ttvo scale -facto-r univer
sality, or hyperuniversality, is the name given to the gen-
eralization of these ideas to include the classical hyper-
scaling relation dv=2 —e, where d is the dimensionality
and v the correlation-length exponent: g = go l tl for
t = ( T —T, ) /T, )wO. When hyperscaling is valid the
singular parts of the free-energy density integrated over a
correlation volume (measured in units of P '=k~T),
Pg f„„s,are dimensionless constants when t~O . Hy-—
peruniversality is the statement that these constants are
universal. ' Equivalently, the amplitude combinations
R& = 3+(go )", where C„„ /ks=(A+/a)ltl, are
universal. It follows also that that in systems with a
continuous symmetry (order parameter dimensionality
n )2), for which $0 =—~ =—I o, one can extract an alter-
native diverging length gz = ( Y/kz T) ' ' "'=go l

t l

below T, (d )2), with the corresponding universal ratio
go /$0+. Here Y=Yoltl' is the helicity modulus, related
to the superfluid density via p, =(m/fi) Y, where m is
the particle mass (or Cooper pair mass in superconduc-
tors), while the corresponding exponent relation is the
Josephson hyperscaling relation v =(d —2)v.

Hyperuniversality may also be applied to finite-size sys-
tems. If, for simplicity, one considers a classical cubical-
ly shaped system of volume L", finite-size hyperuniversal-
ity states that at the bulk critical temperature, T=T„
limt P,L f„„ is a universal constant, depending in
general only on the sample shape (here assumed cubic)
and boundary conditions. In particular, for applications
to the superQuid density, if one chooses periodic bound-
ary conditions in the first (d —1) dimensions, and im-
poses an order-parameter phase-angle twist of 0 across
the final dimension one should find

lim P,L "f„„(8)=F(8),I ~oo

where F(8) is a universal function. Since we may assume
that all boundary condition dependence of the free energy

is contained in its singular part, the helicity modulus at
T, is then given by

P, Y(T, )=/3, lim L [f„„s(8)—f„„s(0)]g2 I.~oo

2L2 —d

lim [F(8)—F(0)] .
g2

(2)

Clearly, for d )2, this correctly predicts Y, —:Y(T, ) =0,
while in d =2 one finds F(8)=F(0)+F28 for l8l ~rr,
and P,Y, =2F2 is a universal number. This yields au-
tomatically the Nelson-Kosterlitz universal jump for the
superAuid density in two dimensions: Since one knows
from detailed calculations in this case that 13,Y, =2/m,
we predict F2=1/n. A caution is necessary here: The
number F2 is associated with a given fixed point, while in
two dimensions one tends to have lines, or even higher di-
mensional surfaces of fixed points with (perhaps several)
associated marginal variables. The value of F2, and, in
general of any other universal quantity, will vary along
these fixed surfaces and will be specified uniquely only if
all marginal variables are specified. For the Kosterlitz-
Thouless transition the unique fixed point describing
T=T, is specified by the marginality of the vortex de-
grees of freedom at P, Y, =2/n. , or exponent g = 1/4.

In dimensions d )2 the function F(8) is no longer
quadratic in 0. If one assumes, as is very likely, that 0-
boundary conditions in a finite system of size L are essen-
tially equivalent to a uniform order-parameter twist with
wave vector ko=O/L in an infinite system, appropriate
scaling of ko with g [see, e.g. , Eq. (5) below] predicts that
f„„s(ko)—f„„s(0)CC ko at T, with a universal coefficient.
This yields F(8)=F(o)+Fd 18l", I8I ~ ~.

In the rest of this note we generalize hyperuniversality
to the case of quantum critical phenomena at zero tem-
perature. The generalization itself is very straightfor-
ward, but the applications and consequences are very
deep. We will recover the universal transport coefficients
of Ref. 9 in a concise and unified way. We make new pre-
dictions for universal ratios involving p, in two- and
three-dimensional Bose systems. Applying the same
ideas to metal-insulator transitions yields new predictions
for universal transport coe%cients which are consistent
with previous work.

Consider then a quantum system at temperature T =0.
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We assume the existence of an alternative field control-
ling the phase transition (for example, magnetic field H,
particle mass density p, or chemical potential p, ) which
we denote generically by the dimensionless quantity 6.
We assume that 6=0 defines the critical point, while
6&0 denotes the disordered phase and 6(0 denotes the
ordered phase. At T=0 and small l5l one defines two
correlation lengths, for definiteness, via the rate of the ex-
ponential decay of the Matsubara Green function: (a) the
usual spatial correlation length (=go l5l

' and (b) the

temporal correlation length g, =g,—ol5l '. We take g, to
have the same units as /3, i.e., inverse energy. The com-
bination A'g, then has units of time. When n )2 we have

go—:co =g, o and Y is again required: see below. The
dynamical exponent z is defined as the ratio z =v /v. At
positive temperatures the imaginary temporal extent,
0~ r ~/3, of the system is finite. Thus g, can never

diverge and the quantum dynamics cannot affect the stat-
ic critical behavior: this is the usual statement of ir-
relevancy of quantum mechanics at finite temperatures.
Only at T=0 may g, diverge. When it does, the usual
classical hyperscaling argument must be modified. Since
the free-energy density is f = —(/3V) 'ln(Z), Z being the
partition function and V the volume, where now both P
and V diverge in the thermodynamic limit, the natural
hyperscaling ansatz is that f„„-g g, . ' —l5l . This
yields the generalized hyperscaling relation
2 —a=(d +z)v. The corresponding amplitude relation is
that g"g,f„„should be universal when

l
5

l
~0.

Equivalently

R,—=g,—(g—
) A

are universal amplitude combinations. Equation (3) is the
basic result, which may be derived more formally within
the renormalization-group framework by a straightfor-
ward generalization of the Appendix of Ref. 2(a). The
Josephson hyperscaling relation is generalized similarly:
one finds' U =(d —2+z)v. The related ordered phase
diverging length is now

g (5)=[g,( —5)Y(5)]'"'-"=Ql5l-., 5-o-

(note that g, replaces /3 in the finite temperature result),
and Rz ——go /go+ is universal. In two dimensions Eq. (4)
is problematical, and a better approach is to use Y
to define a divergent temporal scale: g, (5)
=g( —5)' 'Y(5) '=g„ol5I ", 5 o-, and R;
=g, 0/g,+0 is universal. This definition does not run into
any problems in two dimensions. If the ordered phase
has a propagating mode, such as second or high-order
sound in He, spatial and temporal scales may be related
to one another through the speed of sound, and often the
exponent z may be determined explicitly. ' We do not
address this issue here, however.

All of the results to follow can be based on various
universal scaling forms for the superAuid density, and
quantities derived from them. We begin with the scaling
of the singular part of the free-energy density in the pres-
ence of an imposed order-parameter twist with wave vec-
tor k 4 "

y„„,= a l5l'- e+(Bk, l5l
- ),

from which one derives

singY(5)= lim =AB l5l 4"(0)
ko o

Here +" denotes a second derivative with respect to the
argument. A convenient normalization is to choose

(0)=&0" (0)= 1, making 4+(x) universal. Clearly
4'+(0) =0, and, with the standard definition~ 3

3+ = —Aa(1 —a)(2 —o.')4+(0), one has A+ /A
= 4&+(0)/0& (0). Note that at T =0 we define a and 2+
via —8 f„„/B5 =(A+/a)l5l . Universality requires
that Bl5l 'be universally related to g, in the present case
finite only for 5)0. Thus R~ =B/go is universal. Hy-
peruniversality implies that R,= 2 (gz ) g,+o is universal.
One then has R =[R R 4"(0)]' ' ' and R' =R
which are indeed universal.

Equation (6) can be extended in various ways. Of in-
terest here are the extensions to small but finite tempera-
ture and frequency. We define the frequency-dependent
superfluid density in terms of the temporal Fourier trans-
form of the usual momentum-momentum (or current-
current) correlation function. " The general scaling form
we expect is

Y„„(5,T, co)= AB l5l

x Y, (ca~l5l -",D/3-'l5l -"),
where we also allow for a regular contribution to Y,
which, however, must Uanish at co =0 (see below).
Universality requires that Rc—:C/g,+0 and RL, =D/g,+ o-
be universal, and clearly Y+(0,0)=4+(0).

As a first application of Eq. (7) we consider the bosonic
models of amorphous and granular superconductors '
in which Cooper pairs are treated as conserved particles
obeying Bose statistics, and unpaired electrons are either
ignored or included as an effective-harmonic-oscillator
heat bath. ' ' See Ref. 9 for some discussion of the va-
lidity of these simplified models near the critical point.
The frequency-dependent conductivity of these models is
simply given by a (5, T, co) =(4e /A') (Y5, T, ice)/—
(
—i%co), where 2e is the Cooper pair charge. Consider

now approaching the critical point at 6=0, ~=0, T=O
along some path in the (5, co, T) space in such a way that
x =CAcol5l ', and y =D/3 'l5l ' approach some fixed
values xo,yo (x0=0 or no and yo= nn are probably the
most useful experimentally). One finds then

(fi/4e )g(l5l ) o.„„—+R (xo,yo)

=R,RiiRc Y+( ixo, yo)/( —ix—o)

(8)

so that, in particular, in d =2 the limiting value of
(A/4e )cr„„ is itself universal. A tacit assumption here is
that no logarithmic factors appear: these are expected at
the critical dimensions for the transition. For most appli-
cations of (8), the lower critical dimension is d& =1,
while the upper critical dimension is at least d& =4.
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where y, is the universal value of the scaling function ar-
gument at which Y+(O,y) displays the finite temperature
singularity. Thus

Y(T =0,5)/ks T, (5)

=[R,RsR~ Y+(0,0)/y, ]g(T =0, ~5~)2 (10)

so that in d =2, p, (5)Y(0,5) is a universal number in the
limit 5~0 and T, (5 )~0. It follows also that
Y(0,5) ~ T, (5)' +' '~', with a nonuniversal coefficient
of proportionality when d&2. The exponent was predict-
ed in Ref. 10, but the possibility of universal ratios was
not examined.

It has again been assumed that d =2 is not a critical di-
mension for the T =0 transition. For a clean interacting
Bose gas, d =2 is the upper critical dimension, ' and for
the continuum problem the transition takes place at zero
density, p. For this case, in the limit where
lnln(m/pa ) »1 (probably an experimentally inaccessi-
ble limit) one finds'

Y(T =O, p)/kz T, (p) =(I/2')ln ln(m /pa ),

Hence no problems are expected in d =2.
When the 5 & 0 phase is an insulator, as when the mod-

el does not include a heat bath (i.e. , is purely bosonic),
any analytic nonuniversal background conductivity must
vanish when co=0, independent of 6. In this case one
may drop the subscript on o„„ in (8). When the model
includes a heat bath, which probably corresponds more
closely to experimental reality at least in the case of
granular films, the 5&0 phase may be a metal, and may
possess an analytic background conductivity
oo(5 T o~) ooo+o'o, i5+cro2co+ . , in which oo;(T)
are nonuniversal. In d =2 one will find
(iii/4e )o ~R (xo,yo)+(A'/4e )o o o, in place of (8).
Often o.oo is found to be very small, and hence, since
R (xo,yo) is expected to be of order unity, one may sim-

ply ignore its existence. In general one must take the
difference between limits for two different values of
xo=x&, x2 and yo=y&, y2 to obtain the universal result
R (x„y, )

—R (x2,yz).
As a second application of (7) we consider the recent

scaling theory of the superAuid to Bose glass transition in
disordered boson systems. ' The results are equally appl-
icable to the previous nondissipative models of amor-
phous and granular superconductors, though Y is much
harder to measure experimentally in these cases. We
consider (7) with co=—0 but T &0. We now assume, as is
often the case, that there is a line of finite temperature
transitions, T, (5), ending at the special point T =0, 5=0.
The scaling form (7) then requires that

(9)

lim AC, (T =0,5)[Y(T=0,5)] /[k~T, (5)], (12)
6~0—

where C, is the fourth sound speed. ' All of the input
quantities are in principle experimentally measurable.

As our final application we speculate brieAy about ap-
plying hyperscaling theory to the metal-insulator transi-
tion. Since there is no superAuid density in this case, we
study the behavior of the current-current correlation
function directly. We assume, without justification, that
hyperscaling is indeed valid, and hence that the current-
current correlation function scales in the same way the
superfiuid density would. Thus (7,8) are still valid, with
the appropriate generalizations of the notations of corre-
lation length and time. Thus in d =2 one again expects a
universal limiting conductance at the critical point.
Since o. is finite on both sides of the transition, presum-
ably zero on the localized side, this may be rephrased as a
prediction for a universal jump, [o.(5=0 ) cr(—5=0 )],
of the static conductivity. We again emphasize that d =2
should not be critical, so the results do not apply to the
standard Anderson transition. Models with strong spin-
orbit scattering, ' however, may show the predicted be-
havior. Similar arguments apply to the diagonal and Hall
conductivities at the transition between plateaus in the
quantum Hall effects. ' On the insulating side of the
transition one may look at the dielectric constant
e(co)=l+4vrio(co)/co, which, when combined with the
correlation lengths, yields the hyperuniversal combina-
tion lims o+ (1/e )g" g, 'e„„s(co=0). Thus e„„s
diverges as ~5~ with A, =(2+z —d)v.

In many cases the magnetic field H is a thermodynami-
cally relevant perturbation at the H =0 metal-insulator
transition since it breaks the symmetry between positive
and negative winding numbers in the coherent back-
scattering picture of localization. The relevant length
scale is set by Q4o/H, where 4& oA'c/e is the flux quan-
tum. This quantity should then appear scaled by g as a
third argument, z =6~ 5

~
QH /No, in (7), with

Ro =—6/go+ universal. Various further universal ratios
may now be defined. A simple example is to consider

o(5=0, T =O, H)

(e2/g)R R 2R R d —2Y (H/q) )(d —2)/2

(13)

where Y„=lim, „z "Y+(0,0,z) which gives
o ~H'" ~~ with a universal coefficient 'Finally, th.e
transition at small H must take place at a universal value,
z„of the argument of Y+ (0,0,z). This yields
5,(H)~H'~ . The constant of proportionality is
nonuniversal, but this relation gives an experimental
means of extracting the exponent v. '

where a is the atomic hard-core diameter. Thus in order
to obtain a universal ratio (in this case I/2~) the double

logarithm should be divided out as well.
As a final point, it is also possible to construct more

comp1icated Universal amplitude combinations in three-
dimensional Bose systems, an example of which is
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