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Critical properties of a one-dimensional frustrated quantum magnetic model
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The phase diagram and ground-state energy along the phase boundary are estimated for a one-

dimensional spin- —, Ising model with competing nearest- and next-nearest-neighbor interactions in

presence of a transverse field. %'e have used a self-consistent Hartree-Fock approximation and a
real-space renormalization-group treatment. The phase diagram (of this one-dimensional quantum

model) is compared to that of a two-dimensional classical axial next-nearest-neighbor model and the
Lifshitz point is located. The estimated ground-state energy, along the critical line, is seen to reduce
considerably (like the critical fields), with increasing competition, showing the effect of frustration.

I. INTRODUCTION

The study of quantum systems with frustration and
competing interactions has been of much current interest.
The question of stability of various modulated (commens-
urate and incommensurate) phases of classical magnetic
systems with competing interactions, under the effect of
quantum fluctuations, has been raised in several recent
studies. ' The model that has been especially studied is
a one-dimensional Ising model with competing nearest-
and next-nearest-neighbor interactions, and the quan-
tum Auctuation is brought about by putting the system in
a (noncommuting) transverse field. ' On the other
hand, the investigations on the nature of the ground (and
also excited) states of the quantum antiferromagnetic sys-
tem also led to the study of the effects of frustration in
quantum magnetic systems. These studies have re-
cently become quite important in the context of investiga-
tions of a possible magnetic origin of high-temperature
superconductivity. ' These investigations' ' are
indeed complementary to each other. In fact, in the first
group of models, ' the cooperative interaction is be-
tween the (classical) Ising spins, while for the second
group, all the terms in the cooperative interaction are
noncommuting. However, we believe that the simplest of
such quantum frustrated systems should really be the first
group of models' mentioned above, and we therefore
consider such a system at zero temperature. The Hamil-
tonian of this system' is

H =H„„+H
where

H„„=—J, g S;"S;"+,—J~ g S S;"+2,

with J, )0 and J2 (0 (to ensure competition or frustra-
tion). Without the transverse field (I =0), the Hamil-
tonian describes the axial next-nearest-neighbor Ising
(ANNNI) chain which has exactly known ground state:

the ferromagnetic phase for tc—=
~ J2 ~ /Ji & 0.5 and the an-

tiphase (two spins up and two spins down, respectively,
phase denoted by (2) ) for tc) 0.5. &=0.5 is an infinitely
degenerate point where the effect of frustration is most
felt.

The zero-temperature phase diagram of a quantum
spin- —, Ising system in d dimensions is usually related to
the corresponding classical system in d+1 dimensions. '

Thus, the phase diagram of (1) may be compared to that
of the two-dimensional (2D) ANNNI model. The phase
diagram of the 2l3 ANNNI model consists of a fer-
romagnetic phase, an antiphase, and a paramagnetic
phase which goes down to zero temperature at ~=0.5.
There are considerable indications for the existence of a
fioating (incommensurate) phase (where the correlation
decays following a power law as in the XF model) just
above the (2) phase, "' although the existence is not
yet established. It is also debated whether there is a
Lifshitz point at finite temperature. These questions
about the phase diagram of our system described by (1)
have already been addressed. ' Here, however, we are
interested, in particular, to see whether the zero-
temperature quantum fluctuation is able to destroy the
ordered state, especially at the fully frustrated point
~=0.5, since this happens in the corresponding classical
Hamiltonian due to thermal fluctuations. We have also
estimated the ground-state energies near the order-
disorder phase boundaries.

Frustrated antiferromagnetic Heisenberg models with
anisotropy, in general [i.e., H also includes cooperative
interaction in the y and z directions (and I =0) with com-
petition between nearest- and next-nearest-neighbor in-
teractions], indeed exhibit that the zero-point quan-
tum fluctuation can destroy the Neel order, so that the
quantum-spin-liquid phase is argued to be the ground
state of that system. For a special model, in which the
second-neighbor interaction is exactly half of that of the
first neighbor, the (twofold degenerate) dimer phase has
been shown to be the exact ground state. It is therefore
interesting to find out whether the effect of zero-point
(transverse) quantum fiuctuation in the frustrated Ising
system (1) at tc=0.5 can also destroy order, and to inves-
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tigate the (spin liquid, dimer, or otherwise) nature of the
ground state there.

The model (1) has already been studied with the use of
some approximate methods. For the spin- —,

' (S =
—,') case

using the Jordan-Wigner transformation, the Hamiltoni-
an can be diagonalized' by approximating a four-fermion
term (arising from the second-neighbor interaction) by a
two-fermion one. Here we have a Lifshitz point at a
finite value of I, and a first-order transition at ~=0.5.
However, this method could not give a vanishing I value
for the Lifshitz point because the approximation for the
four-fermion term assumes I %0. The 1/S corrections to
the 5~ ~ limit also results in a Lifshitz point at finite I
and the phase diagram has some qualitative similarity
with that of the 3D (and not 2D) ANNNI model. In
this paper, we improve upon the treatment used by Sen
and Chakrabarti' (henceforth referred to as I) by treating
the four-fermion term self-consistently, following the
scheme used by Wolf and Zittarz' in the case of an anti-
ferromagnetic Heisenberg chain. The same approxima-
tion gives an approximate value of the ground-state ener-

gy along the critical line. We also perform a real-space
renormalization-group (RSRG) study (using the trunca-
tion method) to get a rough estimate of the critical field

as well as the ground-state energy of the system and com-
pare these values with those obtained from the previous
self-consistent treatment. Our methods, as will be seen
later, are, however, practically restricted to cases with
v ~ 0.5.

II. HARTREK-FOCK APPROXIMATION:
CRITICAL FIELD AND GROUND-STATE ENERGY

In this section, we study the model (1) using a
Hartree-Fock approximation of the corresponding fer-
mion model. Using the Jordan-Wigner transformation, '

the Hamiltonian (1) can be written in terms of fermion
operators c,- and c; as'

Hf = —I g (c; c, —
—,
'

) —J, g (c; —c, )(c;+, +c, +, )/4
i 1

—Jz g (c; —c, )(1—2c;+&c;+,)(c;+z+c;+z)/4,

(2)

1 g Ci ci+1 J11 g ci ci+I+J2 g ci Ci+2

+J22 g c; c, +2 +H. c. (3)

When the Hamiltonian Hf in (2) is treated self-
consistently and the Hamiltonian is eA'ectively written in
the form of Ho, the renormalized parameters are given by
(see Appendix A)

r' =r —J,((c,.'c„,) + (c,'c,'„)),
J', =J, +4J,((c,tc,t+, )+(c,~c, ~, )),
J2 =J2[2((c;c, ) —

—,
' )],

(4a)

(4b)

(4c)

and

J22 =J2

The above results can also be obtained alternatively by
employing a random-phase approximation- (RPA) like
approximation to the Hamiltonian (2) ( ( ABC )
= ( AB ) ( C) + ( AC ) (B ) + ( A ) (BC ) with proper sig-
natures following fermion commutation rules) and col-
lecting the equivalent terms.

With i~'=
~ J2 ~

/J
&

the phase boundaries, as obtained in
I (for Ho ), are given by

I"/J', =ir'/2 (5a)

for the paramagnetic to modulated phase boundary
(ir' )0.5) and for the paramagnetic to ferromagnetic
phase boundary (ir' (0.5),

The Hamiltonian in this form cannot be diagonalized be-
cause of the Jz (four-fermion) term. In I, the quantity
(1—2c, c;) appearing in the last term of (2) was approxi-
mately taken to be a constant. With this approximation,
the resultant Hamiltonian Ho, thus obtained could be di-
agonalized. In general, Ho is of the form

Ho = —I"g (c;~c, ——,
'

)

where I"/7', =
—,
' —sc'/2 . (5b)

S, = c;exp —im g c c +c;exp in g cjc 2,
j(:i j(i

S'=c~c ——' .
1 1 1

Using relation (4), these surfaces map onto two corre-
sponding surfaces in the (r, ii) plane. For ii. (0.5, the
para- to ferromagnetic boundary is given by

ir= —2~&'/(2[a[1 —
—,'(1 ~')]+[—4v'(1 —a—')+1]' l(1 —i~')]+4''a),

I /J, =a(1—2i~')/(2[a[1 —
—,'(1 —x')]+[—4i~'(1 —a')+1]' /(1 —i~')]+4i~'a) (7)

(ir(0.5 as ~'(0.5 here). The expression for a and the de-
tails of calculations are given in Appendix B.

The other phase boundary (paramagnetic to modulat-
ed) cannot be mapped here because all values of i~ corre-

sponding to ~') 0.5 (where we get the paramagnetic to
modulated phase boundary in I for Ho) give v=0.5 and
I"=0 there (see Appendix B). This apparently signifies
that the modulated to paramagnetic phase transition only
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exists at K=0.5 and the paramagnetic phase already ex-
ists at I =0 (i.e., the infinitely degenerate spin-fiipped
states at ~=0.5 immediately become unstable at the onset
of a transverse field). What happens for i~) O.S is not
clear; it might be that the paramagnetic phase condenses
into some phase other than any ordered phase which
might be simply looked upon as a mode softened phase
(from paramagnetic); it may be some ffoating phase as
well. The known result that there should be a paramag-
netic to modulated transition at K~~ cannot be ob-
tained from this method since the ratio ~—+ ~ cannot be
mapped from any ratio of ~'.

In fact, the existence of a Aoating phase can be easily
justified for this model at zero temperature, although its
location cannot be found as easily. Using Gaussian func-
tional averages' (over the transverse field term) for the
spin correlations, the efFective Landau-Ginzburg Hamil-
tonian may be written as
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FIG. 1. The ground-state energy per site (Eg/N) along the
critical line [I'=l, (~)] is shown for v~0.S. The exact E~/Nin
the absence of any field is also shown. The inset shows the criti-
cal fields (I, /J l ) separating the ferromagnetic (F) and

paramagnetic (P) phases for ~ (O.S.

and Matsubara frequencies co =2am /P. Also, because
of the competing interactions, we expect the fluctuations
(with qo and —qo) over some modulated structure (say
with wave vector qo) to be dominant in the critical re-
gion, thereby effectively driving" an n-component com-
peting system equivalent to a 2n-component system
without competition (here n = 1 for an Ising system):

H — d"q r +q S qS —q+0 S
+=1 m

where r =r +m, r being the usual critical temperature
interval. At T=O, the Matsubara frequencies come con-
tinuous and the sum over rn gives an effective additional
dimension (d~d+I). The system therefore shows an
effective (d+ 1)-dimensional classical behavior (due to in-
tegration over quantum ffuctuations) for an effective
two-component (XY-like) regular magnetic system (be-
cause of integrations over the competing fluctuations in
the Ising system). For our one-dimensional ANNNI
model in a transverse field, we thus expect effective two-
dimensional XY-like (power-law) correlations (fioating
phase' ) at zero temperature. At finite temperatures, of
course, the lowest value of r for which the field remains
finite after renorrnalization is that for m=0 and fields
corresponding to other m values become irrelevant. '

There is thus no dimensional increase for T&0 and no
Aoating phase is expected. It may be mentioned that the
phase diagram of the S—+ ~ limit of the dual Hamiltoni-
an of (1) was also found to have a fioating phase.

Since the critical field I, cannot be obtained from this
method for ~&0.5, we restrict ourselves to the other re-
gion. In any case, it is observed that I, approaches zero
at the fully frustrated point.

The ground-state energy per site can be expressed as
[from (A2)]

E /N= —[I —J ((c;c; )+(c;c; ))](c;c;——,')
—J,((.,"„,)+(...„,) )/2

+Jz((c; c;+, ) + (c,c;+, ) )

X((c,c, +, )+(c, c, +, )) .

Using Eqs. (B 1) and (B2) (for ir ~ O.S),

E /N =Ii(J2I&/2' —I )/4n Jia/—4n J2a /4vr—
(9)

where I„I3, and o, are as given in Appendix B.
The ground-state energy along the critical line is

shown in Fig. 1. The phase diagram is shown in the in-
set.

III. CRITICAL FIELD
AND GROUND-STATE ENERGY

FROM REAL-SPACE
RKNORMALIZATION-GROUP APPROACH

The method followed here is the truncation method'
in which a number (here, three) of spins are grouped in a
cell and the Hamiltonian for a single cell is solved exact-
ly. Only the two lowest-lying eigenstates, out of the pos-
sible states (here, eight), are retained to construct an
effective Hamiltonian having the same form as that of the
original one. The process is iterated until a fixed-point
Hamiltonian is reached. It may be noted that, for finding
out the fixed point for K&0.5, cells with at least four
spins should be constructed; otherwise, even the ground
state (antiphase) for at least I =0 cannot be represented
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by the cell. However, the problem then becomes difricult
to tackle analytically and hence we restrict ourselves to
cells with three spins, thus restricting ourselves again to
studies for ~ & 0.5 only.

With the above three-spin cell, the effective Hamiltoni-
an reads (cf. Ref. 16)

H'= —I"QS;—J', gS; S;+, —J2 gS; S;"+2+c, (10)

are as follows:

I '= —(xo —x, )/2,

Ji =J,a/b,
J,' =J,a/t,
c =(xo+xi )/2

(1 la)

(1 lb)

(1 lc)

(11d)

where the renormalized quantities (denoted by primes) with

a =
I
—2J, (x +x, )[(x,—3I )(x +31 )+(x, + I )(x —I )]+4J,J (x +x, )

—8J,J2+4J,J2[(x, —3I )(x, +I )+(xo+3I )(xo —I )]]i,
b = I2[(x +3I )(x —I ) —J ] +[—2J, (x —I )+2J,J ] +[—2J, (x +3I )+2J,J ] ]

X I2[(x, —3I )(xi+I ) —J2] + [ —2J, (x, +I )+2J,J2] + [—2Ji(x, —3I )+2JiJ2] I,
and xo is the smallest root of the following equation:

x +(I +J )x~+( —5I —J —4J2+2I J )x +3I +I J2 —4(I —J )J, —3J I —J =0, (12)

while x, is the smallest root of (12) with I ~ —I . The
ground-state energy per site is given by

f(J, (n), J2(n) )
Es/X= g

n

where

3 (13)

IV. SUMMARY AND DISCUSSIONS

We have estimated the phase diagram and the ground-
state energies along the critical line of a one-dimensional
ANNNI model in the presence of a transverse field. The
phase diagram of this (one-dimensional quantum-spin- —, )

model may be compared to that of the two-dimensional
ANNNI model where the thermal fluctuations destroy
order at ~=0.5. ' The results from both the self-

f(J, (0),J~(0))=(x, +xo)/2 .

Notice that, at the zeroth iteration, Jz(0)=2Jz as the
contribution from the second neighbor appears twice in
the intercell interaction when the cells consist of three
spins. Also, the value of J2 /J, does not get renormalized
at all. Thus, the fixed point is determined only by the
fixed-point value of 1 /Ji. Above the critical value of
I /J„any initial value of I approaches infinity, while
below this value it iterates to zero; the resulting flow dia-
gram gives the phase diagram.

The estimated values of the ground-state energies along
the order-disorder phase boundary are shown in Fig. 1,
the inset showing the phase diagram. Notice that this
method does not produce the exact results
E /2V= —1/m and I,=0.5 for ~=0. The behavior of
both E and I „however, agree well with the results of
the self-consistent method.

consistent method and RSRG treatment (shown in Fig. 1)
indicate that the quantum fluctuation due to the trans-
verse Geld also destroys the order at the fully frustrated
point ~=0.5. This result contradicts some earlier
findings;' the results obtained here indicate that there is
no Lifshitz point at a nonvanishing value of I as was
found in Refs. 1 and 2. In fact, this type of disappearance
of order due to quantum fluctuation at the fully frustrat-
ed point (~=0.5) is also observed in frustrated Heisen-
berg antiferromagnets.

For ~) 0.5, the two-dimensional ANNNI system is ar-
gued to have a floating phase with XY-like algebraic
correlations. Here, also, the existence of a floating
phase is argued, using an effective Landau-Ginzburg
free-energy functional, although its exact location could
not be found out from such arguments. The absence of
disorder-order transition beyond ~&0.5, as seen in the
self-consistent method, has been interpreted as a possible
indication of an intervening floating or algebraic phase
(which cannot be viewed as a mode-softened phase; see
Sec. II). The possibility of the existence of a disorder
line (where the disordered phase has an oscillatory decay
of correlation) for the one-dimensional quantum model
cannot be examined by the self-consistent method as we
can only calculate the order-disorder boundaries using
this method.

The ground-state energies along the critical line have
been obtained here for the model. The shape of the curve
for the ground-state energy follows that of the critical
field (see Fig. 1); the absolute value of E falls consider-
ably with ~ due to the effect of frustration. At ~=0, we
get the exact result Eg /2V = —1/~ from the self-
consistent method (H& can be exactly diagonalized here).
The RSRG treatment gives an overestimation. Since the
self-consistent method gives I,=0 at v=0.5 (with similar
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indication from the RSRG method), the exact result
Es/N = —0.125 at ~=0.5 is also reproduced here. The
RSRG does not give very accurate results as ~ ap-
proaches 0.5 (from below) because the effect of J2 cannot
be taken fully into account by using the cells (consisting
of three spins) considered. However, the general varia-
tion of E /X and I „with ~, agrees well for the two

different methods employed and clearly shows the effect
of frustration.
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APPENDIX A

The renormalized quantities J
&
J

& &, etc. , are obtained by minimizing the free-energy functional

F/N =F0 IN —
( (HO ) —( Hg ) )

Applying Wick's theorem, F is given by

F/N=F /N —[ —(r' —r)(c,'c, —
—,')]—[J'„—J, —2J ((c,c;, )+(c, c, , ))](c,c, , )/2

—[J„—J, +2J2((c,c;+, )+(c,c, +, ))](c,c, +, )/2+[J22 —2J2((c; c; ) —
—,')](c;c;+2 )/2

+ [J22 —2J2( ( c, c, ) —
—,
'

) ]( c;c, +2) /2 . (A2)

Variation of F with respect to I"', J'„etc. (noting that BFo IBP' = ( BHo/BP' ), where P' is any parameter), yields, under
stationary condition BFIBP'=0, the following equation given in matrix form:

—(1 ' —I )
—J2((c;c;+2)+(c;c;+2))

[J ', —J, —4J2 ( ( c; c,. +, ) —( c;c;+, ) ) ] /2

M X [J '» —J, +4J (2( c, c;~ +)i+ ( c;c;+, ) ) ] /2

[ —J2+J2(2( c; c; ) —1 ) ]/2

[ —J22+ J2(2(c; c; ) —1)]/2

=0 (A3)

where

a& c,'c, —
—,
'

&

ar'
B(C;C;+))

al
a&etc, +, &

aI

B(c,tc, —
—,
' ) B(C; Cj+1)

BJ (

B(c,c, +, )

BJ)

B(Ci Ci+2)

BJ(

l}(c,c, +2)
0J'(

B(c,tc, —
—,
'

& B(c,c,

BJ),

8& etc, +2 &

BJ))

B(c,c, +2&

BJ))

a( c,tc, —
—,
'

&

aJ,'
B(c,c, +, )

8J2

O& c,tc, +, )
0J2

B&c,c, +2)
0J2

a & c,tc, —
—,
' )

0J22

B(ctc, +, ) B&cici+i

8Jq~

B&c, c, +, ) B(CICI+2)

8J2q

Equation (A3) leads to the self-consistent equations given in Eq. (4).

APPENDIX 8
The correlations (c; c ) and (c;ci ) at zero temperature are given by

,",&
=r ( ltl. ,.~;+ 'itl. , 'ltl„ill. , ~„~k,ltl„), -

(Cici ) =g(gklgki Qkigkj Pklgkj+Qk, Pki ),
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where P«, g«, and A, „are given by'

coski, k &0,
sinks, k )0,

g« = [ —1 'P« —J', P«cosk —J', P k;sink +Jzg«cos2k +Jzg «sin2k]/k k

A,„=I"+J', /4+J' /4+1"J', cosk —I"J'cos2k —J',J'cosk/2 .

Hence,

(c, c, ) =5; /2+(1/2') f dk(l '+ J', cosk/2 —J2c os 2k/2)cos k(i —j)/Ak (81)

( c,c ) = 1/2vr f dk (J &
sink /2 —J&sin2k /2)sink (i —j)/A k . (82)

In order to study I (~), we have to obtain 1 (Ir'), J, (a'), and J2(z'). The two regions a'(0.5 and x') 0.5 will be investi-

gated separately.

1. z'~0.5

Here 1 '/J, = (1—a.')/2 and

k„(1)=A,„(1'/J', =(1—a')/2) =J', [(1+cosk)/2 —ir'(1 —cos2k)/2+i~' (1—cos2k)/2] .

J) (K ), J2(a' ), and I (a') are now given by

J, =J', ( 4z'I2 /I, —),
J2 =2~J2 /I (,
I"/J, =[I,(J', +J2 )+J~(I3 )]/(JII) 4J2I2), —

where I„I2, and I3 are the integrals given by

I, = f dk[(1+cosk) —a'(1 —cosk)]

=2I a[1—1/2(1 —~')]+[—4~'(1 —«')+1]' l(1 K')], —

I2 = f dk [(cosk + 1)/2A, „(1)]

I3 = f dk [
—(cos2k —1)~'+cosk +cos2k]/2k&(1)

=[1—4~'(1 —~')]'~ /~'+a(1 —1/2~')

with

a=[ —1/[a. '(1 —~')]' ] [sin '2[ —4a'(1 —x')+ —,']—m. /2}/2 . (83)

Here 1 '/J', =
~

i~'~ /2 and

&k(2)—:A.q(I" /J', = ia'i/2) = 2+a.'cosk .

From Eq. (4) we get

2. v'&0.5

where
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I', = f dk [cosk —x.'(1+cos2k)]Ak(2) '/2=0,
0

I'z = dk[( —'+~'cosk)cos k +sin k +a.'sin k cosk]/Ak(2) =m .
0 2

Therefore, Jz /J, = —
—,
' for all values of a.'. From Eq. (4a),

I /J, =I, (v'/2 ~'I—' )/(I', +4''I' ),
where

I', = f dk[cos2k [cosk+~'(1+cos2k)]+sin2k(sink+~'sin2k)]/Zkk(2)=0 .

Hence, I /J, =0 for all values of ~'.
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