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Hubbard model: Functional-integral approach and diagrammatic perturbation theory
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We present a careful analysis of the functional-integral approach as applied to the Hubbard mod-
el in the framework of diagrammatic perturbation theory. It is demonstrated that a proper
comprehension of the formalism can be attained and that the functional-integral method is a very
systematic technique, free of ambiguity. In particular, additional exact relations among physical
quantities of interest are derived in the context of the formalism.

I. INTRODUCTION

Functional-integral (FI) methods have been widely
used to describe physical properties of quantum-
mechanical many-particle systems, including correlation
effects in interacting Fermi systems. ' However, the use
of these methods to treat both the Hubbard and Ander-
son models has been hindered by many technical and
conceptual difficulties. ' In fact, through the years the
method has been variously termed "arbitrary, " "ambigu-
ous, " and even "enigmatic. "

In the context of itinerant-electron magnetism, the ap-
plication of FI methods has been based on the use of the
Hubbard-Stratonovich transformation. Using this iden-
tity in the calculation of the partition function of the sys-
tem, one transforms the interacting fermion problem to
one involving space- and time-varying auxiliary fields (bo-
sonization) with complicated field interactions. In the
literature it is often pointed out that the difficulties of
the method arise from the fact that it may be possible to
resolve the electron interaction into quadratic forms of
spin and electron number operators (properly applying
the Hubbard-Stratonovich transformation) in an infinite
number of ways. If the partition function is calculated
exactly, the final result is obviously independent of the
decomposition used. However, if different decomposi-
tions are exploited by nonrigorous approaches, one ob-
tains distinct results and, as a consequence, an apparent
ambiguity. These questions led Castellani and Di Castro
to conclude that a clarification of the formal apparatus in
which this problem has been formulated is preliminary to
any practical application to a specific physical situation.
This clarification is urgent because the model has been
widely used to describe very diverse physical systems
such as liquid He, low-dimensional conductors, and
more recently, extended versions of it have been invoked
to explain the basic mechanisms underlying the high-
temperature superconducting copper oxides.

In this paper we present a careful analysis of the FI
formalism as applied to the Hubbard model. This is done
in the framework of diagrammatic perturbation theory.

We demonstrate that we can attain a proper comprehen-
sioin of the formalism and that the FI method is a very
systematic technique, free of ambiguity. Our results will
help to clarify the proper application of FI methods to
the Hubbard and similar model systems. Recently, a
Letter concerning this subject has been published.

This paper is organized as follows. In Sec. II the parti-
tion function in a generalized FI representation is intro-
duced. This is done for a generalized transformation of
the electron interaction into quadratic forms of spin and
electron number operators. We then compare the severa1
classes of representation of the formalism using a di-
agrammatic perturbative analysis of the thermodynami-
cal potential. In Sec. III we calculate various basic physi-
ca1 quantities within the framework of a systematic di-
agrammatic analysis using the FI method. In particular,
additional exact relations among these quantities are de-
rived and the rules to calculate them are presented. Sec-
tion IV summarizes the conclusions of our work.

II. CRITICAL ANALYSIS
OF THE GENERALIZED FUNCTIONAL-INTEGRAL

REPRESENTATION

We consider the single-band Hubbard model with the
Hamiltonian

H= g (t~ optth5—;, )c; c +Up n;&n;i,

where t," is the hopping integral between sites i and j, h is
an external1y applied small magnetic field, U is the on-site
Coulomb repulsion between electrons of different spins,
c;t (c, ) are creation (annihilation) operators for an elec-
tron of spin 0., and n; is the electron number operator.

The functional-integral formulation of the Hubbard
model requires the representation of the Coulomb in-
teraction of (I) in terms of squares of one-body charge
and spin operators. We adopt the following identity:
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x,y, z

n, (n, )= —
—,'(b, —l)n, —g b (S, )',

n, =n, t+n;&, S; = g c,. S c;
0 &

0'

where S' ~
=

—,'i6 ., and S ~ with o.=x,y, z are the
spin- —,

' matrix elements. The parameters 6 satisfy the
constraint g„b =2.

Using the above equations and the Hubbard-
Stratonovich transformation, the grand partition func-
tion

Z =Tr exp —P H —p g n;
l, 0

where /3 is the inverse of the temperature and p, is the
chemical potential, can be written in the form

Z=zo D qexp —
2 q q+ Tr ln I—V '

Ik, aj

(4a)

decompositions because the system is expressed in terms
of response to longitudinal auxiliary fields. Conversely,
when b, =b, =0 and b +b =2, we have transverse
decompositions and response to transverse auxiliary
fields. The physical meaning of each representation be-
comes transparent when we develop a diagrammatic per-
turbative analysis of the thermodynamical potential

0= —P 'lnZ,

using the free-field propagator in order to generate the
same Feynman diagrams found when using the canonical
operator formalism in the context of many-body theory. '

The following form holds for 0 when one uses the
linked-cluster theorem:

fl=BO —p '(exp x xf —I
t=1

where Ao is the thermodynamical potential of the nonin-
teracting system,

+0,0
k, k'

' 1/2

g (b )' gk k.S (4b) ).,=ID', -p --,'r gr,

G (k, k') =G (k)6i, „5
G (k)=(ice„—Peq )

U
c,k =c.k —crpsh —p — (b, —1), —

(4c)

where ck are the band energies.
The question remains of the necessity and physical

significance of the various auxiliary fields conjugate to the
spin and charge operators. Among the infinite possibili-
ties of writing n, & n; ~, two are special ones: When

bx =by =0 and b, +bz =2,, we call them longitudinal

In (4a), Zo is the partition function of the noninteracting
system and g are the Fourier transforms of the auxiliary
fields; q =(q, co„) fk—:(k, co„)] indicate wave vectors and
boson [fermion] Matsubara frequencies; N is the number
of sites and G is the noninteracting one-electron Green's
function,

indicates connected diagrams only, and

x, = —l 'Tr(VG )' (6c)

we can generate all diagrams of the theory.
For longitudinal decompositions, the diagrams of order

U" are generated by terms of the type (Xi X&
. )0„for

1 2

l
1
+ l2 =2n, because each X& contributes with a

power U . Terms with l1+12+ ' =2n + 1 do not ap-
pear because Gaussian averages of an odd product of fac-
tors are null. The expressions of contributions to first or-
der in U, for example, are

Expanding the exponential function in (6a), we get a mul-
tiple power series in g~, including averages of the type

(g 'g '
g ")o,. Using the Wick theorem, a contrac-

n

tion defined by

& kq,'kq,') 0=&q, , „&, ,

(Xi /2. )o, = —— g (b, b, ) g G (k)— QG (k') +2 g Go (k) +Go (k')
0 k, k' k k'

&X, )„=— (b, b, ) y G'. (k)G—'. (k+q).
2 2%

(9)

In F&g 1 we show the diagrams of (8) and (9) as well as the diagrams to order U2 using standard rules of the canonical
diagrammatic formalism. ' In the next section, diagram rules in the context of the FI method are discussed. One
should note that diagrams with coe%cients depending on the parameters b are spurious because they are related to for-
bidden equal-spin electron interactions, " thus violating Pauli's principle. As expected these spurious diagrams cancel
out when grouped order by order in a power series of U. However, since any XI contributes to the generation of dia-
gra to all orders in U, beginning with U for l even or with U"+" for l odd, any approximation that truncates the
expansion in (6) carries effects of spurious diagrams, unless b, =b, Thus, among t.he infnite number of longitudinal
decompositions, i.e.,

n, tn;(= —,'(b, —l)n, b, (S,') —b,(S ) w—ith b, +b—, =2, (10)
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(b) X =-2 bc-b~

-a

+ — tl~- b~)

approximate solution of the FI method because one-body
terms (of the type Un, ) are treated exactly in the free
part of the thermodynamical potential. We thus con-
clude that the fermion identity n =n is violated" in
any approximate solution using a longitudinal decompo-
sition in which b, Wb, .

On the other hand, for transverse decompositions, i.e.,

(c) (X~/2!)Oe=
] 2

a+ q &c-bz
n;&n;&= ,'n, —bx—(S,") b~—(Sf) with b~+b =2,

(13)

(d) X& X2/2! Oc

+2 bc bz

(m) (X,X~) =-& h~-bz)

b -b1 2 2
C

-a

a

a

the diagrams to order U (see Fig. 2) are generated by
(Xz )0„(Xz/2!)o, and (X4)0, since X, in (6c) for 1 odd
is null because of the fact that V is nondiagonal in spin
space [cf. (6c) and (4b)]. Here diagrams of order U" are
also generated by terms type (X!X&

. . )o, for
1 2

1 i + lp + ' ' - =2n. In Fig. 2 the diagrams with
coefficients proportional to (b„b~ ) are—spurious because
they arise as a result of interactions that violate spin con-
servation. Again, if we take approximations that trun-
cate the expansion in (6), the spurious diagrams are not
nullified unless we take b =b„. Thus, among the trans-
verse decompositions, the only one that does not generate
spurious diagrams is

n;&n;& =
—,'n; —(S;") —(Sf) (14)

(f) X =- b-b b-b which we denote the T decomposition.
Rewriting (13) in terms of raising and lowering spin

operators, S;+ =c;t c;& and S; =c,&c;&, we obtain

FIG. 1. Diagrams contributing to the thermodynamical po-
tential using longitudinal decompositions. (a) and (b) Diagrams
to order U. (c)—(f) Diagrams to order U'. Solid lines represent
noninteracting electron Green's function and dashed lines the
interaction U. Note that the coeScients depending on b van-
ish in each order of U.

the unique decomposition free of spurious diagrams is
(b, =b, = 1)

n;tn;! = —(S') —(S')

In what follows we denote the expression (11) by the L
decomposition.

To further understand this result, let us rewrite (10) in
terms of electron number operators, i.e.,

n;&n;&= —
—,'(b, —1)( &+n()n+ —,'(b, b, )(n;&+n;& )—(a) X~

-a

n, &n, ~=n;&n;& ——'(b„b)[(S,+—
) +(S; ) ] .

It is clear that for b, Wb the identity (13) is true only by
using the fermion property (S, ) =0, whereas for the T
decomposition this is not required. These observations
allow one to conclude that the origin of noncanceling
spurious diagrams is, in this case, the approximate treat-
ment of terms type U(S, ) when using transverse decom-
positions in which b, &b

As an example of problems arising when dealing with a
decomposition generating spurious diagrams, we mention
a study' in which b& 1 and bx by bz 3

The author
develops inverse-degeneracy (v) expansion trying to cal-
culate corrections to the large degeneracy limit. Howev-
er, because of the above-mentioned problems, the value

+ —,'(b, +b, )n;tn;) . (12)

Observing (12), we enlighten the origin of spurious dia-
grams for decompositions having b, Wb, . Since
b, +b, =2, the first two terms in (12) must nullify. How-
ever, for that to occur in the general case b, Wb„one
needs the use of the fermion property n =n, but not in
the special case b, =b, =1. What in fact happens is that
forbidden equal-spin electron interactions (of the type
Un; ), implicitly contained in (S,') and (S,'), generate
spurious diagrams which do not fully cancel out in any

(b) X~/2! , ' 4 (bx-by)

(c) X4
2

4(b-b )

FIG. 2. Similar to Fig. 1 with use of transverse decomposi-
tions.
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about which the expansion is developed in the ferromag-
netic state is not the true Stoner Hartree-Fock theory of
the Hubbard model. This is also manifested in the dia-
grams contributing to the partition function to 0 (1) and
0 ( I/v) shown in Fig. 2 of Ref. 11. Three of them violate
Pauli's principle and are not true corrections for the
theory. The same questions can be raised for the expan-
sion in the paramagnetic phase. '

Let us conclude our analysis by summarizing the main
derived results.

(i) The diagrammatic series generated by decomposi-
tions in which b, Wb, violate Pauli s principle. Quite
similarly, decompositions in which b„&b generate spuri-
ous diagrams which violate spin conservation. These
spurious contributions are canceled out when grouped in
a power series of U (but not in every order of the auxili-
ary field expansion), since any decomposition will ulti-
mately produce the same result if a rigorous approach is
used.

(ii) The L and T decompositions are the only ones to
generate a diagrammatic perturbative series in which
each diagram appears only once, resulting from a specific
term X&, with the right numerical coeScient found when

using the canonical formalism.
(iii) Any linear combination of the L and T decomposi-

tions, i.e., using n, &n;& =aT+(I —a)L (a real), is free
from spurious diagrams. A given diagram may appear
several times in different orders of the field expansion, but
the right numerical coeScient can be found when group-
ing and summing up these various contributions in a
power series of the physical coupling U. In particular,
choosing a= —,', we obtain a decomposition in which the
L and T Auctuations are treated on the same footing to
any order of perturbation theory.

III. DERIVATION
OF BASIC PHYSICAL QUANTITIES

The results of the preceding section suggest that we
should examine the L and T decompositions in more de-
tail. In order to derive several physical quantities of in-
terest using the FI method, it is convenient to generalize
the potential V in (4) by including sources which permit
our goal. In direct space we take the following space-
and imaginary-time-varying generalized potential:

W, , (r, r') =—
1/2

2PU (,(r)+Ph, (r) S 5, 5( , r')rP, ' (r, r'—), (16)

where h, (r) are proportional to local external electromagnetic fields and P, ' (r, r') are nonlocal retarded potentials.
The inclusion of the last potential permits the derivation of the desired physical quantities without using anticommut-
ing (Grassmann) variables. After some manipulations we write the functional generator in the form

Z(h, P)=Z0 fDrp exp ——g y &p + Tr ln(I —VG )+ Tr ln(I —JGIcp I )
2 Io, k I I cr, kj

(17)

where

for the T decomposition, and

q ~
= —(P~+icrgq ),1

for the L one; G I cp ] are the one-electron Green's functions in the presence of the auxiliary fields,

GIcp I
=Go(3.—VGO)

and J is defined by the matrix elements

(21)

A. Thermodynamical potential

The calculation of II follows from (6a), but now adopting the above notation for Z (0, 0) in which

),= JD cp exp
' —

—,
' g y y (22a)

and

(22b)
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Using the T decomposition, X& is expressed as follows:

~r
0XI

pI M X ~ Vq~qq& Vq& ~V
—(q~+ . +qI &)Xo, —a, . . . , cr—,o(ql~ ' ' ~ql —1)

cr q& qI

I =2,4, 6, . . . , a =(PU!N)'

(23a)

(23b)

where

I —1

X (q), . . . , qI, )= ——g G (k)G (0+qI) . G k+ gq, (24)

are the response of the noninteracting system to the auxiliary fields to all orders of nonlinearity.
In order to systematize the calculation of Feynmann diagrams in the FI framework using the T decomposition, one

symbolizes XJ by a ring of I vertices, with wavy lines referring to auxiliary fields and solid lines specifying the nonin-
teracting Green s function [Fig. 3(a)j. The following diagram rules for the Gaussian average of the products of rings are
then obtained.

(i) The contraction (Wick theorem) of two wavy lines creates a broken line representing the interaction U in the form
sketched in Fig. 3(b).

(ii) The Green's functions (solid lines) require k and o summations satisfying conservation in the vertices.
(iii) The numeric coefficient of the diagram is given by

ml—a 1

m, t
2

ml—a ' 2

(2&)

where p is the number of possible ways of contracting the wavy lines, in a non-null form, and ml is the number of rings
I

of the type X, .
(iv) The order in U of the diagram is given by

n = ,'(l, mI —+12mI + ) .

For the L decomposition we obtain

0
$0, . . . , 0(q1» ql —I) ~+q1 —1

(27)

where I =1,2, 3, . . . , and y (q, , . . . , qt, ) is indicated in (24). The rules for the Gaussian averages of the prod-
ucts of rings are similar to those described for the T decomposition with the ring represented as in Fig. 4(a). The con-
traction of the wavy lines as in Fig. 4(b), and the numeric coefficient (25) requires an extra factor ( cr ), wher—e n is the
order in U of the diagram (26).

-0
Vq a

II

(a) X()
~ +0

q~ (a) X(I
=

+-(q +-.+q )1 g-1 +-{q+"-+q )
1 g-1

-0

I

I
I
I
I
I

-0'

(b)

-a

-a

FIG. 3. (a) Functional ring for the T decomposition; (b) con-
traction of auxiliary transverse fields (wavy lines).

FIG. 4. (a) Functional ring for the T decomposition; (b) con-
traction of auxiliary longitudinal fields (wavy lines).
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In the following we use the above diagram rules to study the structure of the two diagrammatic series appearing
when using the T and L decompositions. This will help us to understand the characteristics of each decomposition and
to elucidate several questions and doubts raised in the literature.

In the field-quadratic approximation, we obtain, using the T decomposition,

Q(2I —00——p (X2+(X2/2. )+ . . ) (r),
= —(1/2P) g I UX (q)+ —,'[UX (q)] + —,'[UX (q)]'+ .

o', q

=(1/2P) g in[1 —U (q)],
o, q

(28a)

(28b)

(28c)

where the diagrams are indicated in Fig. 5. We see that using the T decomposition 0~2]' gives the bare ladder diagrams
of the random-phase approximation (RpA). '3 On the other hand, using the L decomposition, we have

flI2)' —Qo= —P '(X, +(XI /2!)+ . +X2+X,X2+(X2/2!)+ ' )0, (i.) (29a)

+(1/4P) g in[1 —U'X (q)X (q)], (29b)

where the diagrams are indicated in Fig. 6. Thus, using
the L decomposition, we generate part of the Hartree-
Fock (HF) diagrams (those in which the interaction lines
can be linked by just one line) and all bare ring diagrams
of the RPA, ' showing that at this level of approximation
the results are quite distinct. However, exploiting
higher-order terms, we can understand the two different
ways of expressing the same physical quantity Q. Using
the L decomposition, the ladder diagrams, as well as oth-
er types of diagrams, are spread out in the diagrammatic
perturbative series because 0 is built up of response func-
tions to longitudinal auxiliary fields. For example,
(X3/2!)o IL~ generates the diagram of order U of the

ladder series. On the other hand, using the T decomposi-
tion, the HF and ring diagrams are spread out in the per-
turbative series because the systems are built up of
response functions to transverse auxiliary fields. In this
case, e.g., (X4),r~ generates the HF diagram of order

U, whereas (X4/2! ),T, generates the diagram of order
U of the ring series. Therefore, both series are diagram-
matically identical. It is relevant to stress that using the
L decomposition all Hartree-Fock diagrams are generat-
ed by contracting the uniform components of the fields,

The transverse dynamic susceptibility can be defined
by

1 6
(q) = lnZ(h, o)& 5h 5h: (3O)

where

h =
—,'(h "+ioh~) . (31)

P Qtp)+ PQ o M)

i.e. , yo (cf. Fig. 6). This explains why in the uniform stat-
ic saddle-point approximation the L decomposition is the
unique choice to give the full HF result, since in this pro-
cedure this class of diagrams is taken into account to all
orders of perturbation theory. On the contrary, the T
decomposition generates the HF diagrams by contracting
field Auctuations, i.e., cp, giving zero contribution in the
uniform static saddle-point approximation.

B. Transverse dynamic susceptibility

0 -0
(T) +q +q-PQ +PQ = ==== ===-+

G -0' a
+

aI I
I

I I
I I +
I I
I I

-a

I g
I

I

I

I

I
-0

I g I
I

I I
I I
I I + '
I I
I I

I

I
-0

-0

+ 0 ~ ~

+

FIG. 5. Field-quadratic approximation for the thermo-
dynamical potential with use of the T decomposition. FIG. 6. Same as Fig. 5 with use of the L decomposition.
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Using (17) and (18) [see also (6a)], for the T decomposi-
tion, y' ' is conveniently written in the form

(q)= U '((q, q, )~T,
—1), (a) -„py x

(( ' ' ))(()=((. )exp gX( )o, ,
1

(32b)
a a

where X& is given by (23).
The diagrammatic study' of y' ' follows that

developed for 0 in what concerns contractions of fields
belonging to the rings as in Fig. 3 [rules (i) and (iii)]. The
contraction of a single field with a field belonging to a
ring generates two free propagators (solid line) as in Fig.
7; p in rule (iii) includes also the later contractions and
the order in U of the diagram is now U" [cf. rule (iv)].

In the quadratic approximation (I =2), we obtain the
ladder approximation for X' ' (see Fig. 8):

a a

(b) 9g Pq Xyi ~. I

-a -v -a

-tX -0
0 0

0

1 —UX (q)
(33)

'a/a

Higher-order corrections such as U (g~y ~X6)0,
[Fig. 9(a)] and U '(y y X4/2!)o, [Fig. 9(b)] include
self-energy corrections for the one-particle propagators
and irreducible vertex corrections. Taking the correc-
tions fully into account (see Fig. 10), X' ' satisfies a
Dyson-type equation:

-o -o -a -a
I I

,'Qol

G

a a

-a

I

r'rr
-0

where

(q)=@ (q)+4 (q)UX' ' (q), (34) FIG. 8. Higher-order corrections to the transverse suscepti-
bility from cumulants appearing with use of the T decomposi-
tion. They include one-particle self-energy corrections and irre-
ducible vertex corrections.

(q)= gP (k, q)
k

= ——gy (k, k+q)G (k)G (k+q), (35)
k

C. Longitudinal dynamic susceptibility

The longitudinal dynamic susceptibility can be defined

where y denotes the irreducible vertex corrections and
6 the one-electron Green's function including self-
energy corrections. '

X„(q)=—,
' g 00'X' ' (q),

O', 0'

$2
' (q) = lnZ(h, O)

13& nD nD
q q h=o

where

(36a)

a
(o)

-a
~ o o QQ

D = ,'(hq+icr—h') . (37)

X ~q& =
////' ////' ////

-0

(T),(&)
(b) X (q)

a, -a
-a -a -a

+ 4 ~

(b) $ (q)
t

-a

X (q) =-

t

FIG. 7. {a) Contraction of a single field {wavy line) with fields
bound to a ring using the T decomposition; (b) ladder approxi-
mation for the transverse susceptibility with use of the field-
quadratic approximation of the T decomposition.

FIG. 9. (a) Diagrammatic structure of the transverse suscep-
tibility; (b) few terms in the expansion of the irreducible "trans-
verse" electron-hole pair propagators. (a) and (b) have been ob-
tained with use of the T decomposition.
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(a)
In the quadratic approximation (l =1,2), we obtain the

ring approximation for X' ' (see Fig. 12), that is.
-a

a
(b) x (q)= ~+

Q, O

+ --- --- +"'

and

v(0) ( )(1-),(2)( )—
1 —UX'. ..(q) UX' ., .-(q)—

0 0Xee(q) UX o', —a(q)

1 UX'..
—.(q»X' ., .(q-)—

(39a)

(39b)

+ 0 ~ ~

x'(q) =- Q Q
t

FIG. 10. (a) Same as Fig. 7 with use of the L decomposition;
(b) ring approximation for the longitudinal susceptibility using
the field-quadratic approximation of the L decomposition.

(q) = ——g G (k)G (k +q) 4 (q)
k

= ——g y (k, k+q)G (k)G (k+q) (40a)

Higher-order terms (l )2) introduce very complex self-
energy and irreducible vertex corrections (cf. Fig. 12). By
exploiting the diagrammatic structure of these higher-
order corrections, the full susceptibility is obtained from
(39) by replacing

Using (36) and (37) [see also (6a)], for the L decomposi-
tion, g' ' is conveniently written in the form

and

(q) UX (q) ~A (q)

/

'(q)=
U

((p g )(L) & — ) (38) k, k'
(k, q)I (k, k', q)P (k', q), (40b)

where ( . )(I) is defined as in (32b) but with X& given
by (27).

The diagrammatic study g' ' is similar to the previous
case, but now using the characteristics of the I. decompo-
sition, which better describe the longitudinal charge and
spin fluctuations. The contraction of a single field with a
field belonging to a ring generates two free propagators as
in Fig. 11.

(L)
Xo 0 q

1 Ug
t

(41b)

with (() .(k, q) given by (35). We end with the following
formally exact expressions:

@0 0 (q)
Xo', cT

(a)
U p (lt X2Xs/2!

OC

-o~o

with g' ' satisfying the Dyson-type equations

X.".'(q) =~'. .(q) +~. —.(q) UX.".'(q)

and

X."' .(q) = —~..(q)+ ~. .(q) UX."' .(q) .

(42a)

(42b)

o o o -o a o o -o o -a o a
(o) X (q) ~~~--~ ~ ~--~—~.o, a o a

(b) U~ (p &p X X
Q

I

'-o

a -a o -a o -a
(b) -X (q) = ~+QP—-~+".

-a
a a o a o o g a

(c) (I) (q) a. ~+~O-c + Q Q+".
a a -a

a -a a -a o -o o & o -o
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FIG. 11. (a) and (b) One-particle self-energy and irreducible
vertex corrections to the longitudinal susceptibility y' ' from
cummulants appearing with use of L decomposition.

FIG. 12. (a) and (b) Diagrammatic structure of the longitudi-
nal susceptibilities; (c) and (d) few terms in the expansion of the
irreducible "longitudinal" electron-hole propagators. These re-
sults have been obtained with use of the L decomposition.
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D. One-particle Green's function On the other hand, the T and I. susceptibilities are also
obtained from the expressions

The one-particle Green's function of a uniform system
may be derived from

$2
XI,, — (q)= —g 5h:q lnZ(h, P)

~~k, k —
q 4=0, P=O

G (k)=
$P 0', cT

k, k

lnZ (0,P)
P=0

(43)

and

(45a)

or from Dyson's equation for Gk k{q) j, resulting, for
both decompositions, in

[6 (k)] '6 (k)=l —a g &q) qGk+~ k{q) j )(r),
q

(44a)

(L)
( NX 5Pk k, k+q

resulting in

5Dq lnZ(h, P )

4=0,P =0

(45b)

[6'(k)] '6 (k)=1—a~X&q-, Gk+, k{q j}(L)
q

(44b) and

X & q ,Gk+-,', k {q j &(r)Xa (46a)

I

(q)= g [&q) Gk +k{'y j )(L,—5 o'a¹ .6 (k)],
k

where era¹ = &q)p )(L). Now, using Eqs. (34), (35), and (46a), we have

&q) qGk+q k{q) j)(T)= —a[1+UX' ' (q)]y (k, k+q)G (k+q)6 (k) .

Substituting this result in Eq. (44a), we obtain an exact expression for the proper self-energy, defined by

X (k)=[G (k)] ' —[G (k)]

which for null field (h =0) is written as

X (k) = g [1+Uy' ' (q)]y (k, k +q)6 (k +q) .U

q

(46b)

(47)

(48)

(49)

In the ordered phase of itinerant-electron magnets, Eq. (49) corresponds to building up the problem in terms of
electron-magnon interactions, ' the magnons being the poles of g' '. It is important to emphasize that in the context of
the FI formalism this is naturally obtained through the use of the T decomposition. We also should mention that,
neglecting Ug( ' and vertex corrections (y =1) in (49), we obtain the self-consistent equations of the HF approxima-
tion. Moreover, using the HF approximation for G and y = 1, we get the RPA expression (33) for g' ' and the trans-
verse contribution of the RPA for X . Using now Eqs. (42a) and (46b), we have

a [1—Ug' ' (q)]y (k, k +q)G (k +q) Q I (k, k', q)P (k', q)+5 pa¹ 6 (k) . (50)

Finally, substituting this expression in (44b), we obtain the exact relation (h =0)

X (k)=PUn + g [1—Uy' ' (q)]y (k, k+q)6 (k+q) Q I ~(k, k', q)P ~(k', q)N k'
(51)

This is a result derived using the L decomposition and
corresponds to working the problem in terms of longitu-
dinal fluctuations. It is certainly of interest when study-
ing charge and longitudinal spin correlations in Fermi
systems. In this case, neglecting the second term on the
right-hand side of (51), we obtain the HF result. In addi-
tion, taking the HF approximation for 6 and neglect-

ing vertex corrections (y = 1 and I = U), we get the RPA
expression (39b) for y( ' and the longitudinal contribu-
tion of the RPA for X .

IV. CONCLUSIONS

The above-derived results evidence that, using the FI
method to describe the Hubbard model [Eqs. (1)—(4)], we
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may distinguish two basic or fundamental auxiliary field
fluctuations: longitudinal and transverse fluctuations.
The latter are associated to transverse spin fluctuations,
whereas the former to both charge and longitudinal spin
fluctuations. These features appear naturally incorporat-
ed in the formalism, as clearly demonstrated in the
derivation of Eqs. (49) and (51). Although any formula-
tion can be used to calculate a desired physical quantity,
the convenience of the T (L) decomposition is dictated by
the relevance of the T (L) Iluctuations on the quantity of
interest, as explicit1y shown in the derivation of the di-
agrammatic structure of the T (L) susceptibility. The FI
formalism has the advantage of considering the T (L)
Iluctuations in increasing order of nonlinearity [see Eqs.
(23a) and (27)]. It should be observed that the results also
evidence that if use is made of decompositions in which
terms violating Pauli's principle or spin conservation are
present, care must be exercised; otherwise, a nonrigorous

approach may lead to illogical results.
Finally, we comment on the calculation of the critical

properties of the system. In this case the partition func-
tion is most conveniently renormalized' using the
decomposition in which the T and I, fluctuations are tak-
en into account on the same footing. It is then possible to
show that the spin fluctuations are critically coupled to-
gether, whereas the charge fluctuations act as a back-
ground on noncritical fluctuations. This is the subject of
a forthcoming paper.
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