
PHYSICAL REVIEW 8 VOLUME 43, NUMBER 16 1 JUNE 1991

S = 1 antiferromagnetic Heisenberg chain in a magnetic field
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A one-dimensional S= 1 Heisenberg antiferromagnet in a magnetic field H (~~z axis) at T=0 is-
studied by numerical diagonalizations up to 1V=16. We give the magnetization curve at the ther-
modynamic limit, and derive an anomaly at H, l ( =5), where 6 is the Haldane gap. It is also found
that the transverse spin correlation has the asymptotic form (SOS„)—(

—1)"r ", and the transverse
staggered susceptibility y„"diverges between H, l and H, 2 ( =4). The exponent g has a minimum

(g =0.3 ) at magnetization m = —,
' and g =0.5 at H„and H, &. If the system is quasi-one-dimensional,

even small interchain couplings can create a canted Neel order, within a mean-field approximation
for interchain interactions. This is consistent with a recent NMR measurement for
Ni(C2H8N&)2NO&(C104) (NENP) at low temperature.

I. INTRODUCTION

Haldane' predicted that a one-dimensional Heisenberg
antiferromagnet has an energy gap for integral S, but not
for half-integral S. This prediction has been supported
by many theoretical studies, which are, for example,
finite-size scaling, numerical diagonalizations, ' Monte
Carlo calculations, analyses of an exactly solvable mod-
el, a variational method, etc. The gap in the thermo-
dynamic limit has been estimated to be 6=0.411+0.001
for S=1, using numerical diagonalization up to 1V =16,
which gives good agreement with the result of a Monte
Carlo calculation, 0.41. We use the unit such that the
coupling constant of the exchange interaction is one.

On the other hand, some experimental studies "have
also given the evidence of the Haldane gap for
Ni(CzHsNz)zNOz(C10&), abbreviated NENP, which is an
S =1 quasi-one-dimensional antiferromagnet. Although
most real quasi-one-dimensional antiferromagnets have
Neel order due to interchain interactions at low tempera-
ture, NENP has no Neel order at least down to 1.2 K. It
was expected that, if the interchain interactions are small
enough, the system has no Neel order even at T =0. This
has been supported by some theoretical studies, which
are a perturbative approach, ' a field-theoretical analy-
sis, ' a mean-field approximation for interchain cou-
plings, ' and a rigorous proof in the reduced Hilbert
space. ' Using a mean-field approximation for inter-
chain interactions, it has been shown' that NENP has
no Neel order even at T =0. Thus the Haldane gap can
exist also in a quasi-one-dimensional system such as
NENP, which is intrinsically three dimensional.

High-field magnetization measurements' '" have also
indicated the evidence of the Haldane gap for NENP.
According to those experiments, a transition occurs from
the nonmagnetic to magnetic state at H, &, which supports
the existence of an energy gap between the ground state
with g.S'=0 and the first excited states with

g S'=+1. It is also noted that the curve of the field
derivative dm/dH in an experiment" has an anomalous

behavior at H, &.

Recently, it has been reported that a NMR measure-
ment' indicates a strong antiferromagnetic correlation
for the magnetic state of NENP in such a high field as
H )H, &

~ Then it is expected that canted Neel order, that
is, the state which has both ferromagnetic order along the
z axis (~~H) and antiferromagnetic sublattice order in the
xy plane (lH), exists at suKciently low temperature.

In this paper we study a one-dimensional S = 1 Heisen-
berg antiferromagnet in a magnetic field H at T=0 by
numerical diagonalizations up to N =16. At first, we
give the magnetization curve at the thermodynamic limit
and derive an anomaly at H„.Next, we show that the
transverse spin correlation (SoS„")decays algebraically
and the transverse staggered susceptibility g„diverges in
the whole region between H, i and H, 2, where H, 2 is the
magnetic field which gives the saturated magnetization.
Then we consider the quasi-one dimensional case and
show that a transition from disorder to canted Neel order
exists at H, i, using a mean-field approximation for inter-
chain interactions.

II. MAGNETIZATION CURVE

At first, we consider the magnetization process at
T =0 for the ideal one-dimensional case. The Hamiltoni-
an is

&=+S S +, HQS'. —
J

Actual Haldane magnets have the anisotropic term
D g Sf +E g.(Sg —S~~ ). For simplicity we neglect
this term. We define E (N, M) as the lowest energy of the
first term of (1) in the subspace where g.S'=M, for an
¹ite system. We calculate E (N, M ) (M =0, 1,2, . . . , N )

under the periodic boundary condition for even-site sys-
tems up to X = 16, using Lanczos' algorithm. The results
are shown in Table I. Using those data, we give the mag-
netization curve at the thermodynamic limit. Correctly
speaking, we do not give all the points of the curve, but
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TABLE I. Numerical results of the lowest energy E(X,M) of g.S, S,+, in the subspace where
M= Q Sf. for ¹ite systems.

10 12 16

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

—8.6174
—7.8968
—6.4617
—4.3988
—1.4893

2
6

—11.3370
—10.7434
—9.5966
—7.8756
—5.6381
—2.9174

0.2984
4
8

—14.0941
—13.5693
—12.2597
—11.1548
—9.2775
—6.9946
—4.3257
—1.2672

2.1983
6

10

—16.8696
—16.3854
—15.5294
—14.2781
—12.6524
—10.6729
—8.3592
—5.7244
—2.7674

0.5232
4.1355
8

12

—19.6551
—19.1962
—18.4227
—17.3097
—15.8693
—14.1157
—12.0641
—11.7284
—9.1177
—6.2319
—3.0632

2.3902
6.0999

10
14

—22.4468
—22.0040
—21.2916
—20.2830
—18.9844
—17.4056
—15.5578
—13.4527
—11.1005
—8.5076
—5.6747
—2.5965

0.7321
4.3014
8.0767

12
16

give some points and connect them by a smooth curve as
a guideline.

We define H„such that nonzero magnetization occurs
for H )H, &, and H, 2 such that magnetization is saturated
for H )H, 2. The Haldane gap, which is defined as 6, is
the energy gap between the ground state and triplet of
the first excited states for the first term of (1). These first
excited states are the lowest-energy states in the sub-
spaces where M =+1, respectively, and the second-
lowest-energy state in the subspace where M =0.'
Thus we get 6= lim~ [E(N, 1) E(N, O) ].— At
H=E(N, 1) E(N, O), the grou—nd state of the Hamil-
tonian (1) changes from nonmagnetic to magnetic for
an ¹ite system. Therefore, H, &

=A. In addition,
since the ground state of (1) has saturated mag-
netization for H )E (N, N) E(N, N —1), —we get
H, 2

=lim~ „[E(N, N) E(N, N —1 )]. T—he lowest-
energy state in the subspace where M=N —1 is exactly
given by N ' g+:o'( —1)"~. . . 11011.. . . )„,where
~. . . 11011.. . )

„

is the state with S„'=0and S'= 1 (j&r).
The state has the energy E(N, N —1)=N —4, and
E(N, N) E(N, N —1)=4 is in—dependent of N. Thus the
critical field H, 2 is given by H, 2=4. In this paper we do
not write the g factor and Bohr magneton explicitly for
simplicity.

It is well known that the conformal field theory' is a
powerful method for one-dimensional quantum systems.
It predicts that if the lowest-energy state is massless, the
size-dependence of the energy per site has the form'

lim E(N, M)=s(m)+—C(m)
2

1 1

~ N N2

where m =M/N is the magnetization and e(m) is the
lowest energy per site at the thermodynamic limit. The
second term represents the finite-size correction. It is
noted that we must change N with m =M/N fixed. Plots E'(m) =H, (3)

of E(N, M)/N versus 1/N for m =0, —,', —,', and —' are
shown in Fig. 1. The plot is almost linear for m&0, but
the value for m =0 converges faster than 1/N . It sug-
gests that the lowest-energy state is massless for m&0,
while massive only for m =0. Thus we assume that (2) is
satisfied for 0 & m & l. In order to estimate E(m),
we extrapolate from the largest- and next-largest-size
values of E (N, M) /N by the form (2). For ex-
ample, we use E ( 16,4) and E ( 12, 3 ) to determine
E( —,')= —1.1823+0.0002. We estimate the error by the
difference from the result extrapolated from the next- and
next-next-largest-size data, which are E(12,3) and
E(8,2) in the example. We can estimate E(m) by the ex-

The error due to extrapolation is smaller than 0.01% for
m =

—,', —,', and —,'. The error cannot be estimated for other
values of m, because only two points can be used for ex-
trapolation; for example, we can use only X =8 and 16
for m =

—,'. But we think that these estimations are also
sufficiently accurate to plot in the figure. In fact, the
diff'erence between the estimation of E( —,') extrapolated
from E(14,7) and E(16,8), and the one extrapolated
from E(6,3) and E(12,6), is about 0.03%. Thus we
think that estimations even from only two points are as
accurate as the latter estimation of E( —,

' ), because the size
dependence of E(N, M) does not have a drastic change
when m changes in the region 0(m &1, where the
universality class does not change. Estimated values of
e(m) are plotted in Fig. 2, where the value of E(0) we use
is from results of the Vanden Broech and Schwartz (VBS)
method as used by Betsuyaku. '

Minimizing the total energy of the system (1),
e„,= c.(m) Hm, it is found that the m—agnetization curve
at T =0 is derived from
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0.5 0

UJ

I

H„(=A~)

FIG. 4. Plot of m vs H [=e'(m)], that is, the magnetization
curve at the thermodynamic limit. Each point is estimated by
averaging the two results extrapolated by (5) and (6). For the
extrapolation we use the largest- and next-largest size data of
E(N, M+1)—E(N, M) and E(N, M) —E(X,M —1), respective-
ly. We estimate the error of each point by the difference be-
tween the two results extrapolated by (5) and (6), but it is so
small (less than a few percent) that we do not write it explicitly.
The solid curve is a guideline. We use H, &

=0.411, which is the
result of another paper (Ref. 4).

are so small that we do not show them explicitly here.
The solid line is a guideline to show nonlinear behaviors
at H„and H, z. The anomalous behavior at H, &

and H, 2

will be discussed at the end of this section.
The field derivative dm /dH is derived from

dm 1

dH E"(m)

at the thermodynamic limit. In order to estimate E"(m),
we use the asymptotic form

N{[E(V,M+1) E(N M)] —[E(N —M) E(N M —1—)]]

=E"(m)+(—'E.' '(m)+C"(m)) +0 4 . (8)2 N

Extrapolating the quantity of the left-hand side of (8) by
the same method as E(m) [fitting s( m) +contsN/], we
can estimate E"(m). We have checked that errors are less
than a few percent by the same analysis as E(m). Now we
want to know the value of E"(0)—:lim o+s"(m) and
E"(1)—:lim

&
c,"(m). In order to estimate e"(1), we

use the form

E (N, N —1 ) E(N, N) —2)—
3 „1=E'(1)——E"(1)—
2

+ —s"'( I ) +C'( I ) +0
N2 N3

Since E'(1)=lim &E'(m)=4, we can estimate s"(I) by
extrapolating N {4—[E(N, N —1) E(N, N —2)]I line—ar-
ly to 1/X, as shown in Fig. 5. The result is
8"(1)=0.01+0.01. Thus we conclude s"(I)=0, that is,
dm /dH ~ ~ at H, 2. The form of the anomaly at H, 2 has

1/16 1/10 1/6

FIG. S. Plot of N{4—[E(N,N 1) E—(N, N——2)]j vs 1/N.
The extrapolated value is 0.01+0.01. The result is estimated
from the two points for N =14 and 16 by 1/N linear extrapola-
tion, and the error is the difference from the result for N =12
and 14. It suggests c"(1)=0.

been predicted as
r

2 H
f71 1 1

H, 2
(10)

by a Bethe ansatz approach. Assuming that the form is
m —1 —A(1 H/H, z)~, an—d using the values of E"(—,')
and c,"(—,') estimated by our analysis, we get A =0.66 and
P=0. 51. Thus our result is almost consistent with (10).

At last we determine E"(0). Now we assume that s(m)
is continuous at m =0 and the finite-size correction of
E (N, O)/N is less than I /N, that is

—E(N, O) = s(0)+o1 1

N

C(0)—= lim C(m) =0 .
m ~0+

The conformal field theory' brings the relation

(12)

C(m) = ——cu (m),
6

(13)

where c is the central charge of the conformal anomaly
(we have checked c= 1 for m&0 numerically ), and
U (m) is the sound velocity, which is the derivative of the
dispersion curve at the origin. Then the assumption (12)
means lim o+v(m)=0. This is valid if the dispersion
curve near k =sr has E = [k —m) +g' z]'/ for
Q.Sg= l. Using (2), (11), and (12), we get

E(N, 1) E(N, O) =E'(0)+E"(0)——+o —,(14)
1 1

where 8'(0):—lim o+e'(m) and s"(0)=—lim o+E "(m).

where E(0)= lim 0+ s(m ). The absence of a correction
larger than 1/N is supported by the plot of E(N, O)/N
versus 1/X in Fig. 1. Actually, it has been reported that
the correction decays faster than 1/N by an analysis up
to N = 14. In addition, we assume
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III. TRANSVERSE SPIN CORRELATION

We consider the behavior of the transverse spin corre-
lation (SoS„)in this section. We define ~M) as the
lowest-energy state of the first term of (1) in the subspace
where g.S'=M. For H (H„the ground state is ~0),
where the spin correlation is isotropic, and has the
asymptotic form

(SoS„')—( —I )"r '~ exp( r /g), — (15)

which was predicted by Haldane and has been supported
by some numerical analyses.

The analysis in the previous section suggests that the
ground state is massless for 0(m (1. Thus the trans-
verse spin correlation is expected to have the asymptotic
form

(S,"S„")-(—1)"r-~, (16)

On the other hand, the plot of E(N, 1) E—(N, O) versus
1/N in Fig. 3 suggests that the finite-size correction de-
cays faster than 1/N. Therefore, we conclude E"(0)=0
and dm /dH —+ ~ at H, &. If higher-order derivatives of
E(m) at m =0 can be estimated, the form of divergence at
H, &

can be determined. But it is difficult to estimate
E"'(0) from E(N, M) up to N =16, which is too small.
This anomaly at H, &

has also been found in the curve of
dm/dH based on a experiment" of NENP. We think
that it could be seen clearer at a lower temperature. The
existence of the anomaly at H, &

has been supported by
the theory of three Majorana fermions, the one of repul-
sive bosons, and the field-theory method. The curve
of dm /dH based on the above analysis is shown in Fig. 6.
Besides the two anomalies at H, &

and H, z, there is a
broad peak at rn —

—,'. We think that this peak is also a
quantum eFect.

for H„&H(H, 2 at T=O. We calculate (SoS„')up to
N =16 numerically, as shown in Table II, and show plots
of in[( —I)"(SoS„)j versus Inr for N =16 in Fig. 7,
where the dashed line is the plot for M =0 and the solid
lines are for MAO. It is found that the transverse spin
correlation for M =0 decays faster than the others. In
order to check the form (16) more clearly, we consider
the size dependence of the transverse structure factor at
wave vector k =~, defined by

S:(N)= y ( —I)"(S;S,") .

When the transverse spin correlation has the form (16),
S"(N) depends on the system size as

S".(N)-N'-~, (18)

for sufficiently large N. In Fig. 8 we plot lnS (N) versus
lnN for m =0, —,', —,', and —,', up to N = 16. It is found that
the plots are almost linear for m =—,', —,', and —,', which
suggests that the transverse spin correlation has the form
(16) for 0&m & l. Assuming the form (18), we estimate
the value of g by

S (N) N
n

N
q=1 —ln (19)S"(N')

for NWN'. The values of il calculated by (19) with
N'=N+2 for m =

—,', N'=N+4 for m =—', and —,', are
shown in Table III. Since those values converge well, we
estimate g as the value derived from the largest pair
(N, N ') we can use, even for other values of m. Our es-
timations of q are shown in Table IV. We determine the
error of g by the diA'erence between the values derived
from the largest pair (N, N') and the one derived from
the next-largest pair (N, N '). We plot q versus m in Fig.
9, where we can use only one pair (N, N ') to estimate q
by (19) for m =

—,', —,', —,', —,', —', , —', , —'„and —', . The accuracy of

0.4— -1.0—

0 ~
2—

H~

I

0.&

H, t (= A) 2.0
I

H, g(= 4)
H -2.0—

FICr. 6. Curve of the field derivative dmldH [= I /s" (m)] at
the thermodynamic limit derived from the extrapolation (8).
We apply the same extrapolation as c(m) to estimate c,"(m)
here. The error is so small (less than a few percent) that we do
not write it explicitly. In the test we show that dm /dH diverges
at H, &

and H, 2 because c"(0)=c"(1)=0 and has the form (10)
near H, 2, but the analytic form near H, &

cannot be determined.
The solid curve is a guideline to show the existence of these
anomalies. A broad peak exists at m = z.

In 2
In r

I

ln 5 In 8

FICr. 7. Plots of ln( —1)"(SoS„")vs lnr for N = 16. It is found
that the transverse spin correlation decays faster for M=O
(dashed curve) than MAO (solid curves).
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TABLE II. Numerical results of the transverse correlation function (SDS„")for the lowest-energy state of g.S, S,+, in the sub-

space M= + . Sf, for ¹ite systems.

0.6667
0.7111
0.7123
0.6984
0.6575
0.5833
0.5

—0.4787
—0.5182
—0.4853
—0.4133
—0.3048
—0.1667

0

0.2884
0.3854
0.3915
0.3544
0.2669
0.1667
0

—0.2861
—0.3622
—0.3580
—0.3306
—0.2485
—0.1667

0

0.6667
0.7024
0.7106
0.7096
0.6971
0.6694
0.6223
0.5625
0.5

—0.4724
—0.5108
—0.4999
—0.4653
—0.4084
—0.3309
—0.2360
—0.125

0

0.2721
0.3558
0.3758
0.3732
0.3413
0.2817
0.2100
0.125
0

—0.2409
—0.3223
—0.3342
—0.3310
—0.3047
—0.2507
—0.1853
—0.125

0

(ii) +=8
0.2156
0.3147
0.3310
0.3239
0.2964
0.2429
0.1755
0.125
0

(iii) N=10
0
1

2
3

5

6
7
8

9
10

0.6667
0.6966
0.7071
0.7112
0.7077
0.6964
0.6757
0.6428
0.5989
0.55
0.5

—0.4698
—0.5048
—0.5038
—0.4861
—0.4531
—0.4061
—0.3459
—0.2742
—0.1923
—0.1

0

0.2639
0.3378
0.3630
0.3720
0.3630
0.3355
0.2904
0.2348
0.1756
0.1

0

—0.2214
—0.3005
—0.3197
—0.3243
—0.3164
—0.2939
—0.2538
—0.2027
—0.1562
—0.1

0

0.1848
0.2813
0.3042
0.3092
0.3005
0.2778
0.2389
0.1886
0.1414
0.1

0

—0.1818
—0.2742
—0.2946
—0.3028
—0.2955
—0.2732
—0.2347
—0.1857
—0.1358
—0.1

0

(iv) %=12
0
1

2
3

5
6
7
8

9
10
11
12

0.6667
0.6924
0.7037
0.7098
0.7104
0.7060
0.6960
0.6795
0.6548
0.6216
0.5828
0.5417
0.5

—0.4686
—0.5001
—0.5041
—0.4955
—0.4753
—0.4449
—0.4049
—0.3557
—0.2983
—0.2337
—0.1620
—0.0833

0

0.2592
0.3254
0.3526
0.3664
0.3676
0.3565
0.3324
0.2962
0.2515
0.2039
0.1510
0.0833
0

—0.2108
—0.2857
—0.3090
—0.3176
—0.3171
—0.3081
—0.2883
—0.2565
—0.2158
—0.1748
—0.1370
—0.0833

0.1681
0.2604
0.2877
0.2984
0.2980
0.2883
0.2687
0.2380
0.1985
0.1572
0.1237
0.0833
0

—0.1540
—0.2487
—0.2733
—0.2852
—0.2862
—0.2776
—0.2587
—0.2288
—0.1904
—0.1505

0.1144
—0.0833

0

0.1454
0.2466
0.2718
0.2822
0.2825
0.2741
0.2555
0.2258
0.1874
0.1493
0.1110
0.0833
0

(v) N=-14
0.6667
0.6892
0.7006
0.7076
0.7104
0.7095

—0.4680
—0.4963
—0.5031
—0.4997
—0.4872
—0.4668

0.2562
0.3162
0.3440
0.3601
0.3664
0.3637

—0.2044
—0.2746
—0.3004
—0.3117
—0.3149
—0.3121

0.1581
0.2454
0.2757
0.2895
0.2937
0.2905

—0.1382
—0.2314
—0.2590
—0.2727
—0.2781
—0.2762

0.1236
0.2249
0.2526
0.2659
0.2705
0.2686

—0.1212
—0.2218
—0.2485
—0.2632
—0.2683
—0.2663
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TABLE II. (Continued).

6

8

9
10
11
12
13
14

0.7047
0.6958
0.6821
0.6625
0.6366
0.6054
0.5712
0.5357
0.5

—0.4390
—0.4041
—0.3626
—0.3149
—0.2617
—0.2034
—0.1398
—0.0714

0

0.3519
0.3306
0.3004
0.2633
0.2232
0.1811
0.1323
0.0714
0

—0.3027
—0.2851
—0.2587
—0.2252
—0.1895
—0.1567
—0.1221
—0.0714

0

0.2807
0.2635
0.2382
0.2059
0.1706
0.1385
0.1115
0.0714
0

—0.2673
—0.2508
—0.2263
—0%950
—0.1615
—0.1287
—0.1024
—0.0714

0

0.2600
0.2439
0.2197
0.1889
0.1561
0.1254
0.0962
0.0714
0

—0.2577
—0.2417
—0.2178
—0.1871
—0.1539
—0.1248
—0.0941
—0.0714

0

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.6667
0.6867
0.6979
0.7053
0.7093
0.7104
0.7085
0.7037
0.6957
0.6839
0.6678
0.6469
0.6214
0.5927
0.5623
0.5313
0.5

—0.4676
—0.4933
—0.5017
—0.5014
—0.4939
—0.4799
—0.4600
—0.4345
—0.4037
—0.3677
—0.3270
—0.2819
—0.2328
—0.1799
—0.1229
—0.0625

0

0.2543
0.3089
0.3367
0.3539
0.3630
0.3651
0.3604
0.3485
0.3294
0.3035
0.2721
0.2376
0.2018
0.1632
0.1176
0.0625
0

(vi) N=16
—0.2003 0.1517
—0.2659 0.2339
—0.2931 0.2661
—0.3063 0.2820
—0.3119 0.2889
—0.3124 0.2897
—0.3083 0.2852
—0.2988 0.2756
—0.2830 0.2603
—0.2605 0.2387
—0.2323 0.2116
—0.2012 0.1813
—0.1713 0.1516
—0.1433 0.1263
—0.1101 0.1018
—0.0625 0.0625

0 0

—0.1285
—0.2183
—0.2484
—0.2633

0.2709
—0.2729
—0.2695
—0.2606
—0.2459—0.2252
—0.1990
—0.1702
—0.1414
—0.1150
—0.0938
—0.0625

0

0.1102
0.2092
0.2393
0.2542
0.2614
0.2630
0.2596
0.2511
0.2369
0.2166
0.1910
0.1627
0.1357
0.1094
0.0874
0.0625
0

—0.1023
—0.2038
—0.2324
—0.2482
—0.2558
—0.2576
—0.2544
—0.2460
—0.2320
—0.2120
—0.1867
—0.1586
—0.1318
—0.1076
—0.0831
—0.0625

0.0984
0.2030
0.2315
0.2467
0.2539
0.2558
0.2527
0.2756
0.2304
0.2105
0.1852
0.1575
0.1301
0.1073
0.0817
0.0625
0

0.5

0.4

0 O

0
0

1.0-
I

0.5 1 ' 0

In12
In N

I

In16

FIG. 8. Plots oflnS" vs lnNwith m =0, ~, 2, and 4 fixed, re-

spectively. The plots are almost linear for m&0 (solid curves),
while not for m =0 (dashed curve).

FIG. 9. Curve of the exponent g estimated by (19). We use
only the largest pair (N, N') up to N = 16 for each m. For exam-
ple, (N, N')=(14, 16) for m = 2, (6,12) for m =

—,'. The error is
estimated from the next-largest pair (N, N'), but it is so small

(less than a few percent) that we do not write it explicitly. It is

found that g has a minimum at g= —' and g is about 0.5 at

m =Oand 1.
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TABLE III. Transverse structure factor at k=m and exponent g estimated by (19) up to N=16 for
m = 4, —,and 4. g converges well.—1 1 3

10

12

14

S"„

3.4613

4.5181

5.4549

1m =—
4

0.3428

0.3451

2.5644

3.1023

3.5963

4.0578

4.4936

4.9085

1m=—
2

0.3381

0.3378

0.3379

0.3382

0.3386

S'„

2.0606

2.6110

3.0845

—3m =—
4

0.4161

0.4207

these estimations cannot be determined, but based on the
size dependence of g for m =—', —,', and —,', in Table III, we
think that the errors are also within a few percent for
other values of m because the size dependence does not
have a drastic change as mentioned in the previous sec-
tion. Thus we do not show the errors explicitly in Fig. 9.
It is noted that the curve of g has a minimum at m = —,',
which means that the transverse spin correlation is the
strongest there. Such a minimum exists for S ~1, al-
though the curve is monotonous for S=—,'. ' We have
checked it at least for S=1, —,', and 2. It is also found
that g=0. 5 at H, &

and H, 2 in Fig. 9. Since we do not
know the analytic behavior of g for m -0 and 1, we fit
the quadratic function to three points nearest to I =0
and 1, respectively, in Fig. 9, to estimate g at H„and
H, 2, respectively. Thus these are rough estimations, and
we write only one digit here. It is consistent with
Schulz's statement. He conjectured that g= —,

' at H, I,
by representing a spin-1 operator as the sum of two spin-
—,
' operators.

IV. QUASI-ONE-DIMENSIONAI CASE

We consider the quasi-one-dimensional case in this sec-
tion. The system is represented by the Hamiltonian (1)
with interchain interactions defined by

(20)

where g' is the sum about all the nearest-neighbor pairs
that connect adjacent chains. Here we treat interchain
interactions by a mean-field approximation, '"' which is
eA'ective for J ((1. Now we define the critical value J,

such that the ground state has Neel order for J)J„
while not for J, )J)0. The mean-field approximation
for interchain interactions yields

J, = 1

Z+aa
(21)

where g„ is the staggered susceptibility of one-
dimensional system described by the Hamiltonian (1), a is
the easy axis of staggered magnetization (a=x or y for
H )0), and Z is the number of adjacent chains [Z=2 or 4
for NENP (Ref. 16)j. Thus, within this approximation,
we have only to calculate the transverse staggered suscep-
tibility for the one-dimensional system at T =0, which is
defined by

where

l 1 g

(22)

M;, = g ( —1)JS,
J

(23)

~g) is the ground state, ~l) is the excited state, and
6,6I are their energies, respectively, for the Hamiltoni-
an (1) at finite H. We calculate y,", at T =0 numerically
as follows: At first, using the Lanczos algorithm, we get
the wave function of the ground state for the Hamiltoni-
an (1) with' a staggered magnetic field described by

&"=—h g( —1)JS
J

Next, we calculate the transverse staggered magnetizaton
(M„)for this state. At last, we differentiate it with
respect to h numerically to estimate y„".Thus our nu-

merical calculation is based on

TABLE IV. Exponents g and m estimated by (19) and (31),
respectively, for m = 4, —,', and 4. The scaling relation co=2 —g
is satisfied within the errors.

(25)

m =1/4

0.345+0.003
1.66 +0.04

m =1/2

0.339+0.001
1.65 +0.01

m =3/4

0.421+0.005
1.55 +0.01

rather than (22). We use this method to calculate g"„up
to X =12. This method can be used to calculate g„at
most up to X =14, because Q.Sg is not conserved, owing
to the staggered magnetic field (24), and the dimension of
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the Hilbert space used for calculation becomes larger.
However, the direct calculation based on (22) is available
only for smaller systems. The behavior of g„for N =12
is shown as a dashed curve in Fig. 10. It is found that y„
diverges at each level-crossing point, which is defined by
HM =E(N, M) E(N—,M —1) (limz H, =H, &, Hz
=H, 2). The form of the divergence at each HM is

+1IM",„IM) I ] versus lnN for m =0, —', —,', and —' are
shown in Fig. 11. They look linear for m&0, which sug-
gests that (30) is valid and y„diverges for H, &

&H & H, 2.
In order to consider the size dependence ofg„,we define

as the value of g„"at H = (HM+H~+&)/2 and take
as an approximation of g„"for m =M/X. We have

checked the form

XX 1

IH —H
I

(26) lim g"„"=X
&—+ oo

(31)

In particular, for H )H, 2, g„canbe calculated analyt-
ically because the ground state is completely ferromag-
netic here, and we get

XX 1
+St

c2
(H &H„), (27)

for HM & H & HM+ i (1 & M & N —1). This satisfies the
inequality

~XX)~ XX (29)

g"„givesa good approximation of y„".According to our
check, g„"and g „coincide within 0.4% and the
difference between them decreases as H approaches HM,
at least up to N =14. Since the system (1) is massless be-
tween H, &

and H, 2 as shown in Sec. II, we think that g,",
always diverges in this region, as shown by the solid
curve in Fig. 10. In order to make sure of it, we check
that the numerator (2/N)l &M+ 1lM „IM)I diverges as

»m —'
I &M+1IM;, IM & I'=N-,

x N
(30)

which is independent of N. Now we define the quantity

2 1&M+1IM;,IM & I'
+st- +

N H —H HM+& H

(28)

with fixed m =M/N= —,', —,', and —'„respectively, up to
N =16. The values of co, which are estimated by apply-
ing (31) to g„,are shown in Table IV. It is found that
the scaling relation

(32)

is satisfied within the errors for m =—', —,', and —'. The re-
lation (32) is of two-dimensional classical systems and is
also derived from the conformal invariance. ' Therefore,
this analysis is consistent with the result in Sec. III.

Now we determine the asymptotic form of y"„"for
H-H,

&
(H & H, &). Here we also define g"„"as

c1 c1

where we use &
—1IM;, 0) =

& 1IM „IO).According to
our numerical checkup to %=14, y"„"is also a good ap-
proximation for O~H (H„,and the difference between

and g„decreases as H approaches H, &. It suggests
that only the first term of (33) contributes to the diver-
gence of g„"at H„.In order to make sure of it, we con-
sider the second lowest-energy state which has a nonzero
matrix element of M;, with 0). This state must be in
the subspace where Q.S'=1 and k=rr. We define I 1)z
as the second-lowest-energy state in the subspace and
E2(N, 1) as its energy for an ¹ite system. We calculate

with m =M/N fixed. Plots of in[(2/N) I & M

80—
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FIG. 10. Transverse staggered susceptibility g„'at T=O
plotted vs H for N = 12 (dashed curve) and the thermodynamic
limit (solid curve). The latter always diverges between H„and
H, ~, and has the asymptotic form g,", = (H, &

—H )
' at

H=H, &(H &H„).The form y„"=(H—H, 2)
' for H &H, & is

independent of N.

ln N

FIG. 11. Plots of 1n(2/N)I &M+11M,",IM) I ] vs 1nN with
m =0, 4, 2 and 4 fixed, respectively. The plots are almost
linear for m&0 (solid curves), which suggest that the numerator
of (28) diverges as (2/N) I & M+ 1IM „IM) I

—N .
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Ez(N, 1) up to N =16 and plot Ez(N, 1) E—(N, 1) versus
1/X in Fig. 12. It suggests that there is a gap between
~1)z and ~1) even at the thermodynamic limit. The es-
timated value of this gap is Ez(N, 1) E(—N, 1)
—+0.563+0.001 (N —+oo). Therefore, we conclude that
the asymptotic behavior of y"„ for H-H„(H(H„)is
determined only by the first term of (33), because no oth-
er term of (22) diverges at H„.Since y,'," is finite at
H =0, the factor (2/N)~ ( I ~M,",~0) ( is finite at the ther-
modynamic limit. Thus we use Shanks' transforma-
tion to estmate the value of (2/N)~(1~M„~0)( at the
thermodynamic limit. The transformation is one of tech-
niques for accelerating the convergence of a sequence
{P„I to its limit P, when I P„I satisfies

Once Twice

6
8

10
12
14

2.457 651
2.797 896
3.054 720
3.247 799
3.391 431

3.845 386
3.832 626
3.808 645

3.859 898

TABLE V. Results of the Shanks transformation applied to
(2/N) ~

(1~19 "st~0) ~' twice. The column with three data is the re-

sult from the first transformation and the rightmost value is

from the second one, which is the best value we can get here.
The error is estimated by the difterence from the farthest result

among the three results of the first transformation. Thus we es-

timate (2/N)((1~M,",~0) (' —+3.86+0.06 (N~ oo).

P„=P„+O(e'"), n ~ oo, (34)

where c is a constant. The asymptotic form (34) is
characteristic of data from a finite lattice when the sys-
tem is not critical even at the thermodynamic limit. The
algorithm of applying this transformation to a sequence
{P„{is given by

P„)P,+)—P„P„'=P„ i+P„+i
—2P„ (35)

Z
UJ

I

Z
UJ

2.0

I 1 1

1/16 1/10 1/6

FIG. 12. Plot of E&(N, 1)—E(N, 1) vs 1/N. It suggests that a
finite gap exists between the lowest- and second-lowest-energy
states in the subspace where Q.Sf=1 and k =n, even at the
thermodynamic limit. The estimated gap is 0.563+0.001. Here
we use the same extrapolation as in Fig. 5.

If {P„I is exactly of the form (34), then P„' is exactly P„;
otherwise, P„' approaches P more rapidly than P„.
Since three data (P„,, P„,and P„+,) are needed to
determine P„' by (35), the number of data of P„' is less

than P„by2. If sufficient data are available to apply (35)
to P„'again and determine P„",P„"approaches P more
rapidly than P,'. Then we can get the best value for P
by applying the transformation as many times as we can.
In addition, it was shown that the transformation can
be used to estimate the limit P, when {P„I satisfies the
condition

P„—P
lim &1 .

n ~P„ i
—P

(36)

y„—(3.86+0.06) (H &H„),1

c1
(37)

at the thermodynamic limit.
Then we give the behavior of g„"for the one-

dimensional system at the thermodynamic limit as a solid
curve in Fig. 10. The asymptotic forms for H —H„
(H (H„)and H-H, z (H )H, z) are given by (37) and
(27), respectively, and always diverges between H, &

and
H, ~.

At last, we return to the quasi-one-dimensional prob-
lem. Treating interchain interactions (20) as a mean field,
the critical value J, is given by (21), where we may putg„=g„.Therefore, within this approximation, we con-
clude that, however small J is, Neel order exists in the xy
plane between H, &

and H, z, because y„ofthe one-
dimensional system diverges for H„&H&H„.This or-
der is canted Neel order because finite magnetization ex-
ists along the z axis here. Thus, if a measurement is done
at sufficiently low temperature, canted Neel order can be
found for H, i &H &H, z. It is consistent with the NMR
experiment. ' In particular, a strong signal could be ob-
tained at m =—,', because the transverse spin correlation is

strongest there in the one-dimensional case.

V. CONCLUSION

In this paper the S =1 one-dimensional Heisenberg an-
tiferromagnet in a magnetic field at T=O is studied by

The result is shown in Table V, where we use the data of
(2/N)~(1~M„~O) ( for N=6, 8, 10, 12, and 14, and ap-
ply the transformation twice. We did not use the value
for N =16 because it leads to rnisconvergence on the
second application of the transformation due to a finite-
size effect or a round off. Such a misconvergence some-
times occurs in quantum systems. The result of the
second transformation in Table V gives the best estima-
tion we can get, and we determine the error by the
difference from the farthest result among the three of the
first application of Shanks' transformation. Thus we
determine the form of the divergence at H, &

as
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numerical diagonalizations up to N=16. We gave the
magnetization curve at the thermodynamic limit in Fig. 4
and derived that two anomalies exist at H, &

and H, z in
the curve of dm /dH, but the analytic form of the anoma-
ly at H„could not be determined. It is also found that
the transverse spin correlation decays algebraically and
the transverse staggered susceptibility diverges between
H„and H, z. Thus the phase transition at H„does not
break the rotational symmetry in the xy plane yet in one
dimension. In quasi-one dimension, however, interchain
interactions break it and canted Neel order occurs,
within a mean-field approximation for interchain interac-

tions. It is consistent with a recent NMR measurement
for NENP at low temperature.
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