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1 JUNE 1991

Dirk Jan Bukman, Guozhong An, and J. M. J. van Leeuwen
Instituut-Loventz, Rijksunivevsiteit te Leiden, P.O. Box 9506, 2300 RA Leiden, The netherlands

(Received 29 October 1990)

We use the cluster-variation method to examine the phase diagram of the spin- —' XLZ model.

The clusters used consist of two neighboring spins. With this method, we calculate global phase di-

agrams for arbitrary values of the anisotropy J, /J and for arbitrary external magnetic fields. Lat-
tices with different values of the coordination number z are considered. Analytic expressions are
found for nearly all phase boundaries; the remaining phase boundary is located numerically.

Despite some problems at low temperature, the results based on this approach are in quite good
agreement with the results from series-expansion methods. A connection is made with the Hubbard

model, which can be mapped onto the XXZ Hamiltonian in the limit of strong on-site attraction.

I. INTRODUCTION

Magnetic spin models have been extensively discussed
in the literature. Interest in these models derives not only
from the need to describe magnetic materials in a
simplified way, but also from the fact that certain many-
particle systems can be mapped onto such spin models.
For instance, simple lattice gas models for classical' and
quantum Auids have been shown to be equivalent to the
Ising and XXZ spin models, respectively. Also, the ex-
tended Hubbard Hamiltonian can, in the limit of strong
attraction, be mapped onto an XXZ spin Hamiltonian. '

Because of the assumed connection between high-T, su-
perconductivity and the Hubbard model, this has gen-
erated renewed interest in these spin models.

In this paper, we wi11 examine the spin- —, XXZ Hamil-
tonian

&= —J g (cr;"cr"+o~o~) J, g o', o'—
N

where c ' is the annihilation (creation) operator for an
electron of spin o. on site i, while ni is the number opera-
tor n; =c; ci . The hopping term contains the transfer
integral t; the strength of the on-site interaction between
the electrons is given by U and of the intersite interaction
by 8'; the number of electrons is controlled by the chemi-
cal potential p.

In the limit of strong on-site attraction, U= —
~ U~

with
~

U~ ))t, W; strongly bound pairs of electrons are
formed, and (1.2) can be reduced to a Hamiltonian in
which singly occupied sites are excluded. This Hamil-
tonian can be cast into the form (1.1) as a pseudospin
Hamiltonian, and to second order in t I

~
U ~, this leads to

the following expressions for the coupling constants:
2 —W, h =@+—,

'
i Ui —zW, (1.3)

where z is the coordination number of the lattice. The
pseudospin operators are then given by

X0; =C;)C;y+C; gciy

i lCi J Ci g lCigCy (1.4)

The sum (i,j ) runs over all nearest-neighbor pairs in the
X-spin system, and the o.; are Pauli matrices. We will
only consider bipartite lattices, thus excluding the possi-
bility of frustration. In that case, the coupling constant J
in the x-y plane can always be taken to be positive (i.e.,
ferromagnetic), because the cases J)0 and J (0 can be
mapped onto each other by a rotation of spins on one
sublattice. The coupling constant J, may assume both
positive and negative values.

To make the connection with the extended Hubbard
model, we consider a system of electrons moving on a lat-
tice with interactions between electrons both on the same
site and on neighboring sites. Its Hamiltonian is given by

gj=t g (c, c +c c; )
&i,j),cr

+Urn;~n;t+W g n, n,
1 &i,j),cr, o'

(1.2)

0 =n)+n) 1

The last equation implies a relation between the average
magnetization and electron density n, = ( n

~
+ n

&
):

n, =(o')+1 .

There are some special cases of the Hamiltonian (1.1),
like the Ising and isotropic Heisenberg models, about
which much is known both from analytical results and
from approximations of different degrees of sophistica-
tion that have been applied to these models. But about
the Hamiltonian in its full anisotropic form, far less is
known, and practically the only general method dealing
with the properties of (1.1) is the mean-field approxima-
tion. In the mean-field approximation, the correlations
between Auctuations are ignored. In classical spin mod-
els, such correlations can be incorporated quite accurate-
ly by the cluster-variation method (CVM). The CVM has
the intrinsic drawback that it cannot account properly
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for the critical fluctuations, but it is quite successful in
calculating phase diagrams. Moreover, by use of the
coherent-anomaly method, nonclassical critical phenome-
na can also be incorporated.

We have applied the cluster-variation method to the
Hamiltonian (1.1), confining ourselves to its simplest
form, which only uses 2-spin clusters. As a first improve-
ment over the mean-field approximation, this already
gives significantly different results. It turns out to be pos-
sible to derive analytical expressions for the boundaries
between most of the phases, while the behavior of the sys-
tem and location of all phase boundaries can also be ex-
amined numerically. The CVM has earlier been applied
to this Hamiltonian by Kulik and Pedan. They made,
however, additional assumptions on the density matrices
which cause their results to be quite different from what
we obtain in this paper.

Using the cluster-variation method, we obtain global
phase diagrams for arbitrary ratios J, /J, both ferromag-
netic and antiferromagnetic, and for arbitrary fields h.
Lattices with different values of the correlation number z
are considered. We will examine these phase diagrams
both in the context of a spin model and in connection
with the Hubbard model, and compare them with the re-
sults of other approximations and with exact results
where available. Despite the fact that this method
behaves unphysically at low temperatures, which makes
its results unreliable in some cases, in those cases where
this behavior does not interfere with the rest of the phase
diagram, its results are quite accurate.

II. CLUSTER-VARIATION METHOD

The basic ingredient of the CVM (Refs. 8 and 9) is the
variational principle of statistical mechanics which states
that the density matrix describing a system in equilibrium
can be found by minimizing the free-energy functional X
This functional has the form

To make an expression for V in this way, we express it
in terms of the reduced density matrices corresponding to
the different clusters:

(n)
pi i = Tr p(&(& ' ' ' &in&j)~ ' ' ' ~ jpv' —n) r1''''' n Je-n

(2.5)

where all spins except the ones contained in the cluster
i„.. . , i„aretraced out. For a Hamiltonian of the form
(1.1), which only contains on-site and nearest-neighbor
interactions, the first term of (2.1) can be expressed in the
reduced density matrices as

Tr( &)= yTr(,"'h,"')+ g T ( "'h'")
i (ij)

(2.6)

where h " is the on-site interaction of spin i and h .' is
the interaction between spins i and j:

l l

h' '= —J(cr"o +o~o ) —J o'o' .l,J l J l J 2 l J

(2.7)

Now it remains to write the entropy term in (2.1) in
terms of the reduced density matrices. A quantity that is
convenient from a calculational point of view, as it in-
volves only one reduced density matrix, is the cluster en-
tropy S, defined by

fr(p lnp
Jn J)& J J)& ~ ~ ~ ) J (2.g)

These cluster entropies can be expressed in terms of the
so-called cumulants S as follows:

s'"' = ~ s"'+ ~ s,"'+ +s'"'
J)~ ~ ~ J l~J J)) & Jn

l l (J
(2.9)

s.("=s"'-s"'-s'"lJ lJ ' J (2.10)

These relations implicitly define the S, and inverting
them gives

S(1) S(1)
i i

V= Tr(p&) +k~ T Tr( p lnp), (2.1)

where P=P(j„.. . , j)v) is a trial density matrix of a sys-
tem of spins j1, . . . , jz that satisfies the constraint

Since obviously the second term in (2.1) is —TS' ', the
functional V can be written as

Trp= 1 .

The free energy F is then given by

F=ming= Tr(p~)+kz T Tr(polnpo)

=E—TS,

V=Tr(p&)+ k~ T Tr(p lnp)(2.2)
= y Tr(p'. ''h."')+ y Ti(p( .'h' ')

i &i j &

T
'

y g(1)+ y g(2)+. . . +g()v)
l l~J J)~ ~ ~ J~

(2.3)

(2.1 1)

This expression is still exact, and an approximation can
be made by making an ansatz for the density matrix that
in some way truncates the expansion in cumulants. For
example, taking all reduced density matrices as products
of the 1-spin reduced density matrix p';" causes all cumu-
lants except S '" to vanish and leads to the mean-field ap-
proximation. An improved approximation is obtained by
also taking into account the 2-spin reduced density ma-
trix p'; J', where spins i and j are nearest neighbors. This
is exact for the energy term in (2.11) and accounts for the
correlations between neighboring spins that are included
in the term S j~'. Higher cumulants in expression (2.11)

where the density matrix that minimizes 7 is

e
—P&

T, -P~. (2.4)

The advantage of the formulation (2.3) is that one can
write V as an infinite series of terms, each of which corre-
sponds to a cluster containing a certain number of lattice
points. One expects the importance of these terms to de-
crease as the cluster size increases, and an approximation
can be made by neglecting all contributions except those
corresponding to a limited number of small clusters.
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This is the approximation that we will be using in this pa-
per.

III. TWO-SPIN CLUSTER

To apply the CVM, one has to express the functional 9
in terms of variational parameters, which is done by
choosing a form for the trial density matrix. For a spin- —,

system, one can always express the reduced density ma-
trices in Pauli spin matrices. The coefBcients of these
matrices are the variational parameters of the problem.
In order to be able to describe antiferromagnetic phases,
it is necessary to introduce, for a bipartite lattice, two 1-
spin reduced density matrices p, and pb, one for each
of the two sublattices a and b. The 2-spin reduced densi-
ty matrix is of course always of the form p', b'=p' '.

Thus one can write

p; =
—,
' {I+c;a;+crcrr+c cr';I, for =a, b . (3.1)

It is easy to see that c;"=Tr(pI "cr; ) = ( cr; ), and similarly
for c,r and c,'. Also, expression (3.1) satisfies the con-
straint (2.2). For p we write

p '= —1++ g c cr + g c ~oo~b, (32)
i a=x, y, z a, P=x,y, z

with c ~—:c,g=(cr, cr~&). The parameters c, , c ~ must
now be chosen such as to minimize X

In order to explicitly incorporate the bipartite nature
of the lattice, which is of importance in the antiferromag-
netic phase, we replace the sublattice magnetizations c,'
by the total magnetization m,

are ignored in this approximation, and the entropy term
becomes, for a lattice with coordination number z,

k~T Tr(plnp)= —T g S,"'+ g S,.', '

i (ij)

a and b. This translation symmetry will be denoted by
Tab '

& is invariant under rotations of the spins in the x-y
plane around the z axis; we will denote this symmetry by
R

If the field h is zero, & is symmetric under a rotation
of the spins through an angle m around any axis in the x-y
plane. Choosing the line x =y in the plane z =0 for the
rotation axis, the result of this spin-Aip symmetry is
(cr",o. , cr') —+(cr, cr, —cr'). We will denote this symme-
try by I".

Last, & is invariant under a refiection of the spins in

any plane containing the z axis. If we take the plane
x =y as the mirror plane, then this symmetry operation,
which we will call I, is the product of time reversal
(which lets cr ~—cr), a spin Qip F as described above, and
a rotation R~y. Whereas the first three symmetries all
correspond to unitary operators, this one is antiunitary
because it contains a time reversal.

The presence or absence of these symmetries can be
used to classify the different phases of the system. Since
the symmetry of the phase is rejected in the form of the
reduced density matrix, it can also be used to reduce the
number of independent variational parameters. Namely,
the only parameters that can be nonzero are those that
correspond to operators that are invariant under the sym-
metries of the phase. For instance, the disordered phase
has the full symmetry of the Hamiltonian, and this re-
quirement causes all but a few parameters in the reduced
density matrix to be zero. In the different ordered
phases, one (or more) of the symmetries of the Hamiltoni-
an is spontaneously broken, and some of the parameters
that were required to be zero by this symmetry assume a
nonzero value. The most important of these parameters
is, of course, the order parameter of the phase in ques-
tion, but in general any parameter with the same symme-
try can and will become nonzero. Table I displays the
operators that are invariant under the symmetries of the
Hamiltonian.

We will now list the properties of the phases that con-
stitute the phase diagram.

m = —,'(c,'+cb ), (3.3)
A. Disordered (D) phase

and the staggered magnetization m,

m =
2 (c~ cb ) (3.4)

An additional advantage in introducing these parameters
is that, instead of viewing them both as variational pa-
rameters as one would do when considering a spin model,
it is also possible to fix m at an externally prescribed
value, which would be desirable from the viewpoint of a
Hubbard model with a given electron density [see Eq.
(1.5)j.

Before giving detailed expressions for the reduced den-
sity matrices, we first examine the symmetry aspects of
the problem; this is useful both for gaining insight into
the behavior one should expect and also into the struc-
ture of the matrices p. Considering the Hamiltonian (1.1)
of the spin system, we find that it has the following sym-
metries.

& is symmetric under exchange of the sublattice labels

As can be seen from Table I, the only operators that
are invariant under all four symmetries of the Hamiltoni-
an are o.",o.b+o.,o.

b and o', o.b. Consequently, the prop-
erties of the disordered phase in zero field are fully de-
scribed by the two parameters c""( =err) and c". In the
case that h&0, so that the Hamiltonian is not invariant
under the spin Aip I', one must add m as a third parame-
ter, since o', +o.

b is invariant under the remaining three
symmetries.

B. Ferromagnetic Ising (FI) phase

In the ferromagnetically ordered Ising phase, the spin-
Aip symmetry F is spontaneously broken, and so we again
have the three parameters c, c", and m to describe this
phase. The difference with the previous case is that, in-
stead of being induced by a field, m is now a spontaneous
magnetization, which is the order parameter of this
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TABLE I. Operators that are invariant under the symmetries
of the Hamiltonian. It is indicated whether the operators are
( X ) or are not ( —) invariant under the symmetries mentioned
in the text; if two operators are listed together, it is indicated
whether each one is conserved individually, or only their sum or
difference.

Operators Tab

Symmetries
Rxy F

z z
@a~ ob

x x y y~a~b&ab
z z

OaOb
x y y x~a~b& a~b

ash+~ab& a+b+ab
X Z y Z~a~b ~ ~a ~b
z x z ya~b ~ ~a ~b

Each
Sum
Sum
Each

X
Sum
Each

Each
Sum

X
Diff.

Sum Sum
Each Each

Each
Sum Sum

X X
Sum Sum

Sum
Diff. Sum
Diff. Sum

phase. If the Ising symmetry is absent because of an ap-
plied magnetic field h, the phase transition is destroyed.

C. Antiferromagnetic Ising (AI) phase

D. x-y ordered (XY) phase

If the rotation symmetry R„is broken, this leads to a
phase with a magnetization in the x-y plane. Because of

Breaking of the translational symmetry T,b is charac-
teristic of the antiferromagnetic Ising phase. This implies
,that, in addition to the three parameters cX, c", and m,
the staggered magnetization m, which is the order pa-
rameter of this phase, also becomes nonzero.

the symmetry in the Hamiltonian between —J and J, this
phase can always be taken to be ferromagnetic. We
choose the direction of the magnetization such that the
order parameter satisfies c, =c,y, in order to keep the
reAection symmetry I in the plane x =y intact. In fact, in
whatever way one chooses the direction of this magneti-
zation, there is always a reflection symmetry in the plane
containing this direction and the z axis. This symmetry
remains unbroken in all ordered phases. Because of the
sublattice symmetry, we have c,'=cb =c~=cb —=c .
Apart from the order parameter, several other parame-
ters become nonzero, once the symmetry R is broken,
such as c'~= c~, and provided that h WO,
C

xz yz zx
C zy

E. Mixed (M) phase

A final possibility is the simultaneous breaking of the
rotational and sublattice symmetries, which gives rise to
the so-called mixed phase. In this phase, the only unbro-
ken symmetry is I, and c, , cb, and m all assume distinct
values, as well as c y, c ', and c'". This phase can be
found as an intermediate phase between the antiferro-
magnetic Ising and the x-y ordered phases, but only when
the extensive quantity m is used as an externally imposed
parameter Icf. Eq. (15)]. If one chooses to use the inten-
sive quantity h instead, no mixed phase is found, and in
its place we have a first-order transition between the anti-
ferromagnetic Ising and x-y ordered phases, with a
discontinuity in the value of m. A summary of the
characteristics of these phases can be found in Table II.

Taking into account all parameters that appear in
Table II, we obtain the most general form for the reduced
density matrices. Writing p', " and p' ' in the bases

I I+ &, I

—
& j and I I++ &, I+ —

&, I

—+ &, I

——
& j, «-

spectively, we have

1+c,' (1 i )c—
(&)—

(1+i)c;" 1 —c

1+2m+c" (1—i )(cb+c'") (1 i )(c,"+c"—) —2ic xy
(3.5)

( 1+i )(cb +c'")
(2)—

4 (1+i )(c,"+c")
1+2m —c"

2c xx

2C xx

1 —2m —c"
(1 i )(c,"—c")—
( 1 i )(cP—c'—")

2ic y (1+i )(c, —c"') (1+i )(cb —c'") 1 2m+c

For the energy part (2.6), this gives

TABLE II. Characteristics of the different phases.

Phase

Disordered
Ferro Ising
Antiferro Ising
x-y ordered
Mixed

Order parameter

c
x

Ca, m

Other nonzero
parameters

cXX cZZ

C C

cXX cZZ

C xx, C
zz

C xy, C
xz ~

Cx Cxx zz Cxy xz zx
br

Spontaneously
broken symmetry

None
F
Tab

R„
R, and Tb
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Tr(p&)= g Tr(p,'. "h,."')+ g Tr(p';J'h, ' ')= N—(zJc" + ,'zJ—,c"+mh ) .
i (ij)

To calculate the entropy term (2.12),

kii T Tr(p lnp) =ks TX g Tr(p';"lnp, '")+—Tr(p' 'lnp' ')I —z (1) (1}

i=a, b

(3.6)

(3.7)

it is necessary to find the eigenvalues of the reduced den-
sity matrices.

To find the boundaries between the different phases, it
is not necessary to diagonalize the full matrix (3.5). Pro-
vided that the phase transition into a phase with x-y or-
der (XY or M) is a continuous one, the parameters
characteristic of this order, c;, c ', c', and c ~, will still
be small at the onset and zero on the phase boundary.
Therefore, it suffices to calculate V to second order in
these parameters. In fact, c"~ will be neglected altogeth-
er, since near the phase boundary it turns out to be of or-
der 0((c") ) and it only enters into 9' quadratically, thus
giving a fourth-order contribution. Note that this pro-
cedure makes it impossible to find the boundary between
the XP and M phases analytically, since there c; and the
other parameters associated with x-y order are nonzero
on both sides of the boundary. We will therefore study
this part of the phase diagram numerically.

In order to distinguish between the cases with and
without x-y order, we split the reduced density matrices
into two parts:

T. . T.X) P) X~ X~ Pi Xl

J l J
(3.10)

The first-order term A.,
' is zero because p, only couples

states with difFerent eigenvalues for S,'„,while pp only
couples equal values of S'„,. We are then left with the
second-order term, which is bilinear in the parameters c;,
c"~, c ', and c'. To second order in these parameters,
the traces in (3.7) are

Tr(p lnp) = g A, , lniP, +A, , lniP+k,

and thus exactly solve the minimization equations
throughout the phases D, FI, and AI.

Turning to the phases where rotation symmetry is bro-
ken, we must also consider the matrix p&, which does not
commute with S', , We use a standard perturbation ex-
pansion to calculate the eigenvalues of p to second order
in pi.'

x, =xp, +x,'+x,'+

p po+pi ~ (3.8) = g (k, +A, , )lniP (3.11)

where pp is the rotationally invariant part, describing the
phases without x-y order (where p, is zero), and p, is the
part that breaks the rotation symmetry. Therefore, pp
only contains the parameters that are invariant under ro-
tation, m, m, c ", and c", while p& contains the parame-
ters that only exist in phases where this symmetry is bro-
ken, c, cx, c"', and c'". Consequently, p& will be small
in comparison with pp near the boundary of these phases,
and we are allowed to treat it as a perturbation to pp in
this region.

Since it is rotationally invariant (commutes with S„,),
pp has a block diagonal form, only coupling states with
the same eigenvalue for S;„.This makes it relatively easy
to diagonalize exactly, finding its eigenvalues A.; and
eigenvectors x;. One can then calculate the free-energy
functional 9' in terms of the parameters m, m, c", andc, using

Tr( p Inp ) = g iP;iniP;,

p„=—,'(1+m+m ),

p, 2= —,'(1 —m —m ),

p»= —,'(1+m —m ),
@be=—,'(1 m+m ) . —(3.12)

The second-order corrections to this are

Pa2

x2
Cb

x2

2(m+m ) 2(m —m )

x2 x2
2 =

2(m+m ) 2(m —m )

(3.13)

Consequently

The last equality holds because Trp=g;A, , =1, and so

g, A, , =0.
We will now compute the eigenvalues of the matrices

(3.5) in this way. For p,'.
"we find, for the unperturbed ei-

gen values,

Tr(p"'lnp"') = — (1+m +m )ln(1+m +m )+(1—m —m )ln(1 —m —m )+(1+m —m )ln(1+m —m )
1

2i =a, b

x2

+(1—m+m )ln(1 —m+m ) —41n2+ ln
m+m

1+m+m
1 —m —m

x2

+ ln
m —m

1+m —m

1 —m+m
+higher-order terms . (3.14)
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Proceeding analogously for p' ', we find

' 1/2
XX2

A, , = —,'(1+2m+c") A, =
—,
' 1+2m 1+

Vl
C

(3.15)

10
3 4

1/2
XX2

1 —2m 1+—
Pl

—c" A, =—'(1 —2m+c")4 4

The second-order terms are
r

1 P;. PI,+
8(1+/ ) Ao Ao Ao Ao

(3.16)

with j=2 and k =3 for i =1 and 4, and j=1 and k =4 for i =2 and 3, and where g is defined by
1/2

XX2

(3.17)

The P; are given by

P, 2
=P2, = [cb +c '"+g( c, +c"')],P, 3

=P„=[c, +c"'—g( ci', +c '
) ]

P24 =P42 = [c, c"+g—(cb c'")]—, P34 =P~3 = [cb c'" g—(c,' —c")]—
(3.18)

Then we have, for the last term in (3.7),

(2) (2) 0 0Tr(p' 'lnp' ')= g A.;Ink, + IPi2l, 2+P,31i3+Pz412~+P3413~]+ higher-order terms,
2(1+/ )

where

ln(A, ;/A. )
I; —=
v 4(AO —A.io)

(3.19)

(3.20)

IV. MINIMIZATION OF 9
Collecting all information from the previous sections and scaling V with Nks T, we find, for the functional to be mini-

mized,

where

z(Kc "+ ,'—K,c") mH—+—,'(1——z) g Tr(p', ."lnp';")+ —,'zTr(p' 'lnp' '),
i =a, b

(4.1)

E=, K,=, H=—
k~ T' ' k~T' k~T (4.2)

A. Phases without x-y order

XX2

1+ I (4.3)

%'e will first consider the phases which do not have x-y order (D, FI, and AI). In these phases, the parameters c, ,
c ', and c'" are zero, and we only need to take into account the terms in (3.14) and (3.19) that are due to po. This leads
to an expression for N that only involves the unperturbed eigenvalues: N =&0. The minimization can then be done ex-
actly, and we find expressions describing the behavior of the system throughout these phases.

Minimizing N0 with respect to the four relevant parameters, we find
—1/2 0aeo ZC

" '2 == —ZK+ ln - =0,xx 4—

ae,
ZZ

Z Z ~1~40 0
——E,+ —ln =0, (4.4)
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ae, 1 —z (1+m+m)(1 —m+m) z c"
ln

4 (1+m —m)(1 —m —m) 4 m

~~'0 1 —z (1+m+m )(1+m —m ) z
1ln +—ln

4 (1—m+m )(1—m —m ) 4
=0,

X'4

—1/2

ln =0.

(4.5)

(4.6)

We will now apply these equations to the three phases D,
FI, and AI.

1. Disordered phase

In the disordered phase we can set m =0 in Eqs.
(4.3)—(4.5), while (4.6) does not apply. From (4.3) and
(4.4), we then find

C
1

z —1
(4.14)

The solution m =0 corresponds to the high-temperature
phase and the point where the expression in brackets be-
comes zero, allowing a nonzero value for m, signals the
onset of the ordered phase. The phase boundary is thus
given by

1+2C C4K =ln
1 2C c

(4.7)
On the other hand, on the boundary with the disordered
phase c" is also given by (4.11), and m is zero by con-
tinuity. Then (4.11) reduces to

(1+2m +c")(1—2m +c")
4K, =ln

(1+2c —c")(1—2c —c") (4.8)
2K

e ' —cosh(2IC )
2K

e '+ cosh(2K )

(4.15)

It follows from (4.7) that

2c =(1—c")tanh(2K) .
4K

Defining o =e ', (4.8) reduces to

(1+2m +c")(1—2m +c")0—
( 1 +2cxx czz)( 1 2cxx czz)

(4.9)

(4.10)

+In cosh(2E )
z —2

(4.16)

From (4.14) and (4.15), the equation for the boundary of
the ferromagnetic Ising phase is found to be

and combined with (4.9) this gives an expression for c": 3. Antiferrotnagnetic Ising phase

o+0—2[o.8+m (6} —o.6)]'~
o. —0

where we have defined 8—=cosh (2K).
From (4.5), we find

(4.11)

To examine the antiferromagnetic Ising phase, one also
needs to take the staggered magnetization into account.
Thus one needs all four Eqs. (4.3)—(4.6) to describe this
phase. An expression giving the phase boundary can be
found by combining (4.3) and (4.6) to give

4H=2(1 —z)ln +z ln
1+m
1 m

1+2m +c
1 —2m+c" (4.12)

4' (1+m+m)(1 —m+m)
c m ln

z —1 (1+m —m )(1—m —m )

Combined with (4.11), this gives m implicitly for given
values of E, K„andH, or when m is viewed as an exter-
nally controlled parameter (like the electron density in
the Hubbard model), it gives the field (or the chemical po-
tential in the Hubbard model) that is required to obtain a
certain value for m.

These equations completely determine the parameters
that play a role in the disordered phase. Next, we will
consider the two Ising ordered phases.

Z
m 1 z+ 1+c" =0. (4.13)

2. Ferromagnetic Ising phase

If the external field H is zero, m is the order parameter
for the ferromagnetically ordered Ising phase, which does
not exist outside the H=O plane. Putting the field equal
to zero in (4.12), one finds, to first order in m,

(4.17)

Then, taking the limit m ~0, this is

1 —m 2

c = ZK.
z —1

(4.18)

For m =0, we can also use (4.9) and (4.11), and together
these three equations determine the boundary of the anti-
ferromagnetic Ising phase.

B. Phases with x-y order

For the phases that do have x-y order (XY and M), we
use the perturbation expansion (3.10), and so we can only
find the boundaries where the order vanishes. As can be
seen from (3.14) and (3.19), 4 now consists of the unper-
turbed term No, plus a term due to the inclusion of p& to
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second order, which is bilinear in c;, c ', and c'". So we
can write +=+o+c @2c, where the vector c is

(c„cb,c ', c' ) and N2 is a symmetric 4X4 matrix. Tak-
ing the derivative with respect to the parameters c then
leads to the matrix equation +2c=O. The trivial solution
c=O is valid in the phases without x-y order and the
point where det@2=0, which allows a nonzero solution
for c, indicates the phase boundary.

1. x-y ordered phase

First, considering the x-y ordered phase, the matrix @2
can be simplified by using the sublattice symmetry, which
is still unbroken in this phase. This allows us to set
m =0, which implies /=1 [where we take m J, O in (3.17)].
Also, of the four parameters in c, only two are indepen-
dent: c =cb and c '= c' . We are then left with a
(2X2) determinant:

det+2= z—(l —l )12 24
z
2
—

( l,2+ l24 )

(4.19)

where the l," are defined in (3.20). This leads to the fol-
lowing equation:

tion between the AI and XY phases, with m changing
discontinuously across this line.

1 —z 1+m 12 24/ l

m 1 —m l&2+~24
(4.20) V. RESULTS

By substituting (4.9) and (4.11) into this equation, one can
find the boundary between the disordered and x-y or-
dered phases.

2. Mixed phase

In the mixed phase, the sublattice symmetry is also
broken. Consequently, m is not zero, while we have four
independent parameters in c: c, , eb, c ', and c". This
means that we have to solve the full (4X4) determinant
det+2. The expression one finds for W2, as well as the
equation it leads to, is rather cumbersome and unenlight-
ening, which is why it has been moved to the Appendix.
Still, the equation det+2 =0 in combination with Eqs.
(4.3)—(4.6), which hold in the AI phase, does give an ana-
lytic expression for the boundary between the antiferro-
magnetic Ising and mixed phases.

In contrast, the boundary between the mixed and x-y
ordered phases cannot be found within our approxima-
tion. This is due to the fact that on both sides of this line
the parameters c, , cb, c ', and c'" are nonzero; nor are
they small in this region. Therefore, the expansion (3.10)
is not valid here. Nevertheless, to get an idea of the loca-
tion of the boundary, we used a numerical algorithm.
This algorithm minimizes W as a function of the full set
of parameters as they are included in (3.5). The results of
this algorithm were also used as a check on the analytical
calculations in the preceding sections.

Our method treats all clusters as equivalent; therefore,
the magnetization m is constant throughout the system.
Thus the mixed phase is stable when one insists on a
homogeneous magnetization. This need not be so when
the system is allowed to phase separate into regions with
different values of m. The mixed phase disappears when
one does not choose a fixed value for m, but fixes the field
H instead, leaving m as a free variational parameter. It
collapses onto a single line, forming a first-order transi-

Using the results of Sec. IV, we can now construct
phase diagrams for different values of z. We will first dis-
cuss the significant features of one specific example,
which is more or less representative for the general case.
After that, we will point out the differences and similari-
ties with other phase diagrams. We start by considering
the case z =6, which corresponds to a simple cubic lattice
(note that the plane triangular lattice, which also has
z=6, is not bipartite, and thus does not fall within the
scope of our treatment). The phase diagram should of
course be considered in a three-dimensional space, as a
function of K, K„and H. But we will first look at the
plane H=O and later consider what happens as a mag-
netic field is turned on.

In Fig. 1 we have plotted the three curves correspond-
ing to Eq. (4.16), (4.18), and (4.20). These equations are
only valid for the boundaries between the ordered phases
(FI, AI, and XF), on the one hand, and the disordered
phase (D) on the other hand. Therefore, only certain
segments of the curves (the solid curves in Fig. 1) have
physical relevance. They represent second-order transi-
tions between the ordered phases and the disordered
phase. Their location should be compared to the mean-
field approximation, which gives K, =K„=1/z (the dot-
ted box in Fig. 1), and to the results from series expan-
sions for certain special ratios of K and K, (the circled
crosses in the figure). ' ' The results of the CVM turn
out to be in quite good agreement with the series-
expansion values, and in any case they are a substantial
improvement over the mean-field approximation. For
some special cases, like the ferromagnetic and antiferro-
magnetic Ising and Heisenberg models, our results agree
with those of earlier calculations with the CVM, ' and of
the constant coupling method, ' which can be shown to
be equivalent to our method.

As for the boundaries between the ordered phases, they
do not follow from Eqs. (4.16), (4.18), and (4.20). If
H =0, it is obvious from symmetry considerations that



13 360 BUKMAN, AN, AND VAN LEEUWEN 43

1. 0 0. 5

0. 8 0. 4

0. 6 0. 3

0. 4 0. 2

0. 2 0. 1

0
—1.0 —0. 6 —0. 2 0. 2 0. 6 1.0

0
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FIG. 1. Phase diagram for z =6 and H =0. The phase boun-
daries according to the CVM are indicated by continuous lines.
The dashed lines are those parts of the curves calculated in Sec.
IV that do not correspond to a phase transition. The dotted
lines are the phase boundaries as they are given by the mean-
field approximation. The circled crosses show the location of
the phase transition for some special cases according to series-
expansion calculations.

the AI-XF boundary lies on the line E,= —K. The FI-
XF boundary only exists for H =0, and, again for sym-
metry reasons, it is immediately evident that it must lie
on the line K, =K. Thus the sections of the curves
(dashed in Fig. l) that extend across those lines into a
different ordered phase, like the part of the XY curve that
lies inside the AI phase, have no physical relevance, be-
cause the equations that describe them do not apply in-
side the ordered phases.

However, the same can not be said about the parts of
the XY and AI boundaries that curve back after crossing
the line E,= —K for a second time (also dashed in Fig.
l). These curves again represent a continuous phase tran-
sition between the ordered and disordered phases. This
implies that the system, after entering the ordered phase
at a certain temperature T„becomes disordered again at
a lower temperature T,' and remains so down to T=O.
This artifact of the approximation was already noted by
Kasteleyn and van Kranendonk for the Heisenberg anti-
ferromagnet. ' lt indicates that the 2-spin CVM ap-
proach fails at low temperature, possibly because the
nearest-neighbor correlations it takes into account are
too short ranged to describe long-wavelength spin waves,
which play a role at low T. ' Nevertheless, as long as one
can make a clear distinction between the high-
temperature range, where the results of the approxima-
tion are acceptable, and the low-temperature region,
where the unphysical disordering takes place, this
method is still a useful approach for obtaining phase dia-
grams. From Fig. 1 one would conclude that this is
indeed the case for z =6 and H =0.

Turning to higher values of z, we see that Fig. 2, which
is for z =8 (a bcc lattice) and H =0, presents essentially
the same features as the previous one. The irrelevant and
unphysical parts of the curves have been omitted for clar-
ity; they are qualitatively the same as for z=6. Again,
the 2-spin CVM is a substantial improvement over the
mean-field approximation where the boundary of the
disordered phase is concerned and the unphysical disor-

FIG. 2. Phase diagram for z =8 and H=O. The same
description applies as given for Fig. 1. Those parts of the curves
that do not correspond to a phase transition (dashed in Fig. 1)
are omitted for clarity; they look qualitatively the same as in
Fig. 1.

1.0

0. 6-

0. 4

O. Z

0 i-l. 0 —0. 6 —0. 2 O. Z 0. 6 1.0

FIG. 3. Phase diagram for z =4 and H=0. Again, the
description given for Fig. 1 applies. In this case the curves cal-
culated in Sec. IV have been entirely drawn as continuous lines,
since it is impossible to divide them into real and unphysical
phase boundaries in a meaningful way.

dered phase (not shown in the figure) lies at sufficiently
low T. If z is increased further, the results of our method
become more and more like the mean-field ones, which
are exact for z= ~.

Lowering z, we see that the case z=4, for the two-
dimensional square lattice, presents a different picture
(Fig. 3). The part with E, )0 is acceptable, with the fer-
romagnetic Heisenberg transition shifted to K = ~, as it
should be. But the region with IC, &0 seems rather prob-
lematic. A gap has opened around the line K, = —K,
connecting the "physical" disordered phase at high T
with the "unphysical" one at low T. This makes it im-
possible to clearly distinguish between the high-
temperature region where the approximation is valid and
the low-temperature regime where it fails. Hence one
does not know how to interpret this part of the phase dia-
gram for z =4, and it seems that the limit of applicability
of the approximation has been reached.

We will now consider the changes in the phase diagram
when a magnetic field H is turned on. We will only con-
sider the case z =6, as it is representative for other values
of z as well. Figure 4 shows four cross sections of the
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FICx. 4. Phase diagrams for z =6 and various values of H. The same description applies as for the previous figures. (a) H=0. 01,
(b) H=1, (c) H =2, and (d) H =5.

three-dimensional phase diagram (containing K, E„and
H) at certain values of H. The first thing that happens as
soon as one turns on a field is the disappearance of the FI
phase [Fig. 4(a), where H=0. 01]. The transition in the
ferromagnetic Heisenberg model is also destroyed. The
curve giving the XY phase boundary, which for H =0
crosses the line K, =K at the critical coupling for the
Heisenberg model, is now split into two separate parts on
di6'erent sides of this line. The part where K )K, still in-
dicates the XY phase boundary, which now runs very
close to the line K, =K, while the part with K, )K is ir-
relevant and does not indicate a phase boundary. The

remainder of the figure is not perceptibly changed by the
small field H =0.01.

On increasing H some trends become apparent [Figs.
4(b) —4(d)]. The XY boundary shifts away from the line
K, =K, while the irrelevant part on the other side of this
line moves to higher and higher K values, and disappears
from the figure. In the other half of the phase diagram,
we see that the boundary of the AI phase is shifted to-
ward larger values of ~K, ~

and also changes in shape
slightly. Combined with the narrowing of the XY region,
this leads to a shift in the boundary between the XY and
AI phases, which leaves the line K, = —K, where it was

10

12—
(b)

10 "

0
0 0. 2 0. 4 0 ~ 6 0. 8

T/Tc
1.0 1.2

0
0 0 ~ 2 0. 4 0. 6

r/r,
0. 8 1. . 0 1 ~ 2

FICx. 5. Phase diagrams for z =6 and two different values of the anisotropy J, /J. Plotted vertically is the magnetic field scaled by
the x-y coupling constant, B=h /J. The solid lines again indicate the phase boundaries and the dashed lines the unphysical disorder-
ing at low T. (a) J, = —J/2 and (b) J, = —1.3J.
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located for H=O, and moves into the region —E, &K.
This phase boundary now becomes first order, with m
changing discontinuously when it is crossed. If the field
is increased still further, the XY and AI boundaries no
longer intersect [Fig. 4(d)], and the same situation arises
described earlier for z =4 and IT =0. Again, the approxi-
mation ceases to be valid beyond this point.

Another conventional way of drawing the phase dia-
gram of a magnetic system is presented in Fig. 5. Here
we have fixed the anisotropy J, /J and then plot
T/T, =K, /E versus the scaled field 8 =h /J =H/K (we
again take z =6). If the x-y coupling is predominant, the
picture is rather simple [Fig. 5(a), where J, = —J/2].
One finds the boundary between the disordered and x-y
ordered phases, with a critical temperature that decreases
with increasing field, and at lower T the "unphysical"
transition back into the disordered phase. A more in-
teresting result is obtained for a model where the z cou-
pling dominates [Fig 5(b), J, = —1.3J]. For low fields 8,
there is an antiferromagnetically ordered phase, while for
higher fields x-y order takes over. These two phases are
separated by a first-order transition. At low T, there is
again a return to the disordered phase.

Finally, we replot the data in a way appropriate for the
Hubbard model. As was pointed out earlier, the external-
ly imposed parameter in the Hubbard model is m, corre-
sponding to the electron density n, =m + 1 [see Eq. (1.5)],
instead of the field. This leads to the possibility of finding
the mixed phase M in place of the first-order transition
between the AI and XY phases. Figure 6 shows the phase
diagrams for different ratios J, /J, and again we have tak-
en z =6. The phase diagrams are symmetric around
n, =1, because of the up-down symmetry in the spin
model. In F&g. 6 we only show the half with n, ) 1. The
region around n, = 1 is an AI phase, which in this context
is associated with a charge ordered (CO) phase [for

—J, )J one sees from Eq. (1.3) that the intersite interac-
tion 8'is repulsive; in the charge ordered phase, the elec-
tron density is distributed unevenly among the two sub-
lattices so as to minimize the energy due to this repul-
sion]. This phase is flanked by an XI' phase, associated
with the superconducting (SC) phase of the Hubbard
model. In Fig. 6 a there is a thin slice of the mixed phase
in between these two phases, exhibiting both charge order
and superconducting order. The boundary between the
phases M and SC has been calculated with the numerical
procedure mentioned in Sec. IV B2. For larger values of
~J, /J~, the two phases become disconnected, and the
mixed phase disappears. This is again an example of the
limitations of the approximation, since the unphysical
phase at low T links up with the high-T part of the phase
diagram.

VI. DISCUSSION

We have applied the cluster-variation method to the
spin- —, XXZ model, using clusters containing two spins.
For the phases without x-y order, we have derived the
equations that follow from minimizing the free-energy
functional. These equations describe the behavior of the
system in the disordered and the (anti)ferromagnetic Is-
ing phases, and give analytic expressions for the boun-
daries between these phases. For the phases with x-y or-
der, we have made an expansion in the parameters that
are associated with this order. This makes it possible also
to find analytic expressions for the boundaries between
phases with and without x-y order. To examine the be-
havior of the system inside the x-y ordered phases and to
find the boundary between phases that both have x-y or-
der, a numerical algorithm was used that performs a
minimization of the free-energy functional without any
further approximation.

1 ~ 0 1.0

(b)
1.0

0.8— 0. 8— 0. 8—

0. 6— 0 6— 0. 6

N

0. t1 0. 4

0 ~ 2 0 2— 0. 2—

/

I I0 I I 0 I I

1.0 1.2 1. t1 1.6 1.8 2. 0 1.0 1. 2 1.11

I I 0
1.6 1.8 2. 0 1 ~ 0 1.2 1. 11 1.6 1.8 2. 0

FIG. 6. In the context of the Hubbard model, phase diagrams are usually plotted as a function of the electron density n, =m + 1

and temperature. Three different ratios J, /J are considered, all at z=6. The phases CO and SC correspond to the AI and XY
phases, respectively, in the spin model. (a) J, = —1.3J, (b) J, = —1.5J, and (c) J, = —2J.
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As was mentioned in the Introduction, Kulik and
Pedan have also studied some of the properties of a
Hamiltonian equivalent to (1.1) with the CVM. But in-
stead of considering both c ( = ( o.,crb ) ) and c"
( = ( o', o'b ) ) as independent variational parameters in the
free-energy functional 2, they make the assumption

c ~c2 (6.1)

0. 5 g

while keeping c"as an independent parameter. This as-
sumption does not seem to be justified, since one would
expect that for any finite, nonzero temperature there ex-
ists a correlation between both the x and z components of
neighboring spins, even if the magnetization c,"=(cr;') is
zero. Indeed, it can be seen from Eqs. (4.9) and (4.11)
that in the disordered phase c as well as c"will be of
O(1). Especially near the XY phase boundary, the corre-
lation c will be considerable, while the magnetization c,"
is still zero. As can be seen from Fig. 7, the result of in-
corporating the mean-field-like assumption (6.1) into the
CVM is that the phase diagram (dashed curves) becomes
an interpolation between the results of the mean-field ap-
proximation (dotted lines) and the full cluster-variation
method (solid curves). Some of the important features of
the full CVM result (asymmetry between positive and
negative E„the fact that the FI and AI phase boundaries
meet the X1' boundary on the lines K, =+K) are lost by
making the assumption (6.1). Thus it is essential to in-

clude both c" and c as independent parameters in a
CVM description of a spin model like the one discussed
here.

The phase diagrams calculated with the full cluster-
variation method are, for a certain range of parameters
(z) 6, FI not too large), a substantial improvement over
the mean-field approximation and agree quite well with
the results from series-expansion methods. The cluster
variation method does behave unphysically at low tem-
peratures, predicting a second disordered phase below the
ordered phases, but for this range of parameters this does
not interfere with the high-temperature part of the phase
diagram.

However, for z (4 and/or large values of H, the disor-
dered phase at low T links up with the one at high T.

This makes the phase diagram calculated with our
method unreliable in some regions, especially around
J,= —J. Other methods that have been used to study the
phase diagram of the XXZ model also sufFer from this
difBculty in dealing with the antiferromagnetic sector.
Some real-space renormalization-group approaches that
work well for the ferromagnetic Ising sector and the iso-
tropic Heisenberg model turn out to be unable to deal
with the rest of the phase diagram in an acceptable
manner. ' ' Despite its shortcomings, the full cluster-
variation method seems to be a useful tool to examine the
phase diagram of the XXZ model. It is considerably
more sophisticated than the mean-field approximation
and gives qualitatively better and quite accurate results
over a range of parameters.
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C2 3 i C)

C)

(A 1)
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FIG. 7. Comparison between the CVM results with and

without assumption (6.1). The phase boundaries shown in Fig. 1

are reproduced, and again we have z =6 and H =0. The solid
lines are the result of the full CVM and the dotted lines those of
the mean-field approximation. The dashed lines that form an
interpolation between these two are the result of incorporating
assumption (6.1) into the CVM.

(A9)
Z

C3 = g( l,3+ l34 l13 l34 ),2(1+(' )

where g and l,j are defined in Sec. III. Solving (Al) in
combination with Eqs. (4.3)—(4.6) leads to an analytic ex-
pression for the boundary between the antiferromagnetic
Ising and mixed phases.
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