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Crossover from a fractal lattice to a Euclidean lattice for the thermodynamic properties
of a triplet-interaction Ising model
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We study how thermodynamic properties of the triplet-interaction Ising model on a family of
Sierpinski-type gasket fractals cross over to that of the Ising model on a triangular lattice with
three-spin interaction in half of the triangular faces. By using a spin-variable transformation, the
exact free energy f, for the triangular model and f, for the fractals are obtained in closed form and
found to be analytic in temperature. The free energy f, varies smoothly with the parameter b

{which labels each member of the fractal family), and for large b the difference between f, and f, is

asymptotically directly proportional to 1/b. For fractal lattices with b=2 (m =1,2, 3, . . . ), the
crossover behavior of the critical exponents is also discussed by using a renormalization-group ap-
proach. In the meantime we find that the correlation-length exponent v=ln2/In3, which is in-

dependent of the parameter b and hence the fractal dimension df and is di6'erent from v= ao for the
two-spin-interaction Ising model on the fractal lattice given by Gefen et al. It shows that the
universality hypothesis is violated here.

I. INTRODUCTION

df =ln[b (b +1)/2]/lnb

and crosses over from its value for a fractal lattice to its
value of 2 for a triangular wedge with the form

df =2—ln2/lnb . (2)

Some studies of systems on Sierpinski-type fractal in this
direction have been carried out. Among these, the fol-

'Recently there has been increasing interest in exact
mathematical fractals. ' The principal reason is that
there are many objects in nature that can be modeled by
these fractal lattices. Much of the current interest in the
systems on the fractals concentrates on the inhuence of
the geometrical structure on the physical properties.
As yet, however, how physical laws on fractal substrates
cross over to the laws on translationally invariant Eu-
clidean lattices is an open question, and far less is known
about it. One way to answer this question would be to
construct a sequence of fractal models which increasingly
more closely approximate a translationally invariant lat-
tice and to see how the physical properties vary as the
fractal model becomes closer and closer to the transla-
tionally invariant lattice. A suitable candidate for frac-
tals to this end is the fractal family of Sierpinski gaskets
proposed by Hilfer and Blumen. ' Each member of the
fractal family can be labeled by a geometrical parameter
b, where b is an integer that runs from 2 to infinity, in
such a fashion that b=2 is the Sierpinski gasket and
b = ~ is a wedge of the triangular lattice. Its fractal di-
mension df depends on b as follows:

lowing are very significant: The difference between the
exact value of spectral dimension d, for the fractal lattice
and the exact value d2=2 for a triangular lattice is
asymptotically a logarithmic function of parameter b, '

and the ground-state entropy' o. of the Ising antifer-
romagnet on the fractal family varies smoothly with b
and approaches for large b the exact value O.B,„„,calcu-
lated by Baxter and Tsang' ' for the hard-hexagon
problem on the triangular lattice.

In this paper we study a triplet interaction Ising model
situated on Sierpinski-type fractal lattices. ' The
definition of the model will be seen in Sec. II. In order to
discuss the crossover behavior for thermodynamic prop-
erties of the model from fractal lattice to regular lattice,
we also consider a triangular lattice Ising model which
has a triplet interaction in every up-pointing triangle.
Using a spin variable transformation the exact free ener-
gy f, (T) for the triangular Ising model with triplet in-
teraction in alternate triangular faces (see Fig. 2) and
f, (T, b) for the triplet interaction Ising model on the
fractal lattices are obtained in a closed form and found to
be analytic in temperature. The systems, thus, exhibit no
phase transition in any positive temperature. When b is
sufBciently large and the fractal lattice is very close the
translationally invariant one, we find that the difference
between the free energies f, (T) and f, (T, b) is asymptoti-
cally directly proportional to 1/b.

To show the critical behavior near T, =0, the decima-
tion RG transformation is employed, and results in the
exact recursion relations for the system on Sierpinski-
type gasket fractals with b =2 (m =1,2, 3, . . . ).
Through calculating the critical exponents, the crossover
behavior of critical exponents is also discussed. We find

43 13 342 1991 The American Physical Society



43 CROSSOVER FROM A FRACTAL LATTICE TO A EUCLIDEAN. . . 13 343

in the meantime that the correlation length exponent,
v=ln2/ln3, is independent of the parameter b, in con-
trast with v= ~ for the two-spin interaction Ising model
on the fractal lattices given by Gefen et al. It reveals
that the critical behavior depends on the form of interac-
tion.

The outline of this paper is as follows. In Sec. II, the
triplet interaction Ising model is defined. In Sec. III, we
calculate the free energy for both triangular lattice and
fractal lattices, and analyze the crossover behavior for
the free energy. In Sec. IV, the critical exponents are
given by using a RG method and the crossover behavior
of the critical exponents is exhibited. Section V is a sum-
mary.

II. DEFINITION OF MODEL

with the summation extending over all up-pointing trian-
gles of the lattice. Where K =PJ is the reduced interac-
tion parameter and f3=1lkT. We wish to evaluate the
partition function

Z, ( T, b) = g Q exp(Ks, sjs„),
Is}

where Isj represents all site spins and the product is tak-
en over all up-pointing triangles.

From expression (3) it is obvious that reversing all
spins is equivalent to negating J, and hence K. Since such
reversal leaves Z, (T, b) unchanged, we shall hereinafter
take J )0 without loss of generality.

III. FREE ENERGIES

A. Two-dimensional triangular lattice

PH=K+—s;s sk (3)

As we know, each member of Sierpinski-type fracal lat-
tices may be built iteratively from a generator G(b), here
b =2, 3, . . . , and G(b) is an equilateral triangle (Fig. 1)
that contains b an identical smaller triangle of unit side
length, of which only the upward oriented are physically
present. One can repeatedly use an operation of enlarg-
ing each unit side length in the structure by a factor b in
linear dimension, then filling the upward-pointing trian-
gles with the generator G(b) and leaving the downward
triangles empty (Fig. 1). Until an infinite number of
times, one obtains the fractal lattice.

Consider a system of X spins s; =+1 located at the ver-
tices of the fractal lattice (Fig. 1). The three spins sur-
rounding each up-pointing triangular face interact with a
three-spin interaction of strength J so that the Hamiltoni-
an reads

For obvious reasons, when b —+ ~ the generators and
corresponding fractals are approaching the ordinary tri-
angular lattice. Accordingly, it is necessary to consider
an Ising model with the three-spin interaction J )0
among every three spins surrounding an up-pointing tri-
angular face on a regular triangular lattice. The situation
is shown in Fig. 2, where the shaded triangles indicate the
Ising triplet interaction. The partition function can take
the form as

Z, (T)= g g exp(Ks, ,s, , +,s, +, , ),
IsI

where s," denotes an Ising spin on the lattice site (i,j)
The sum is over all spins and the product is over all up-
pointing triangles. It is fortunate for us that the partition
function in (5) can be calculated explicitly by using a spin
variable transformation. The calculation can be done as
follows: Let the lattice be L XL (Fig. 2), where L is the
number of horizontal bonds and the bonds which along
the direction of a 60 angle to horizon. For convenience
we call the vertical and horizontal lines columns and
rows respectively. Then the lattice holds L identical
up-pointing triangles and (L+1) lattice sites. We asso-
ciate with each up-pointing triangular face a variable:

n=3 ij i,j i j +1 i +1,j

where s;, s; +&, and s, +& are the three-apex spin vari-

Lk LLk4.

kkLkX ~4+
n= 2

3131iL313141/
Aaiiiiaaacii/

Jiggiiaiaaaa/
Aiiaagaa&Eia/

3131JEJ13131/
iaiiaiiiiaaa/

(a) (b)

FIG. 1. Growth of the fracal lattice with (a) b=2 and (b)
b= 3. The first stage (n = 1) is termed the generator. For b ) 2,
there are two kinds of sites, some have four nearest neighbors
and others have six.

FIG. 2. (a) The Ising model on a L XL triangular lattice with
three-spin interaction at each shaded triangle. (b) and (c) two
simplest finite lattices present after the transformation is ap-
plied.
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ables of an up-pointing triangular face. Using the vari-
ables It; I +&] and Itl +&;](i =1,2, . . . , L+1) instead of
Is;L+, ], spin variables on the (L+1)th row sites, and

Isl +, ; J, spin variables on the (L+ l)th column sites, re-
spectively. That is,

t,L+& =S;I.+i

(i =1,2, . . . , L+1) (7)

tL+ i, , =sL+

It can be found that the new variables I cr, t ] are all in-
dependent, that each of them takes only the values +1,
and that the set I o, t ] is a complete set of coordinates in
the sense that to each configuration I s ] there corre-
sponds a unique I o, t] and vice versa. We take a 3X3
lattice as an example to illustrate this situation in the Ap-
pendix. Thus the partition function Z, (T) may be de-
scribed by the variable set Io, t] and the Io, t] summa-
tion can be performed to give

Z, (T)= g Q exp(Ks, s, +,s;+, )

Is I

=g g +exp(Ko, )

ItI IcrI

—22L + 1( K+ Ic)L—

where M, and N are the number of t variables and o.

variables, respectively, and

M, =2+2[(b )"—1]I(b +2), (12)

N =(b ~)". (13)

The free energy per site in the thermodynamic limit
n~~ is then

f, (T,b)= —kT lim lnZ, '"'(T, b)
1

n ~X„
= —

kT [21n2+ (b +2)ln(e +e ) ] l(b +4),
(14)

pointing triangular face a o. variable, and a t variable in-
stead of the spin-variable s on each site indicated by an
open circle (see Fig. 1). We find that for the structure of
order n of the lattice the partition function in (4) is as fol-
lows:

Z,'"'(T, b) = g + exp(Ks;sjsk )

Is I

= g g g exp(Ko. , )

t( eK +e K)x~

Here 2L +1 is the number of the t variable. In the ther-
modynamic limit L ~ ~ the free energy per site is

f, (T)= —lim
kT

lnZ, ( T)L-- (L+1)'
kTln(e +—e ) . (9)

L+K] +K2+K3 K& K2 K3e ' ' ' —e ' —e ' —e '+2=q, (10)

which is valid for E, 0 and L +E, +E2+E3 ~ 0.
When E& =Ez=E3=0, i.e., only the three-spin interac-
tion L exists, the system exhibits a finite-temperature
phase transition at e =q +1 even if q =2. However, for
the Ising case our result shows that there is no phase
transition at a finite temperature, and the physics under-
lying the property awaits further discussion.

B. Sierpinski-type gasket fractal lattices

We now turn to the model on the Sierpinski-type gas-
ket fractal lattices defined in Sec. II. The spin-variable
transformation used in Sec. III (A) can be straightfor-
ward to apply to this case. One introduces to each up-

It is surprising that the free energy f, (T) in (9) was the
same as that of the one-dimensional nearest-neighbor-
interaction Ising model. Therefore f, (T) is analytic in
temperature T and no long-range order exists in finite
temperature. It will be interesting to compare the tri-
angular Ising model with the triangular Potts model,
both have three-spin interactions only in every up-
pointing triangle. We know that the triangular Potts
model which has anisotropic two-spin interactions E&,
E2 E 3 and a three-spin interaction L in every up-
pointing triangle has the exact critical condition

where

N„=3+(b+4)[(b ~)"—1]l(b+2)
denotes the number of lattice sites on the nth structure
state of the fractal lattice with b.

The expression (14) states that the free energy f, (T,b)
is simply associated with the parameter b, and is an ana-
lytic function of temperature T. To reveal the way that
f, (T,b) converges to f, (T), we now investigate the be-
havior of f, ( T, b) for very large b. From (14) we find that
the asymptotic form of the free energy f, (T,b) is

f, (T,b)=f, (T)—B(T)
(16)

when b is sufficiently where
= —2kTln(coshK).

Consequently, we can come to the conclusion that all
thermodynamic quantities, which are determined by the
temperature derivative of the free energy, have the same
asymptotic form as (16). We also note that (16) has the
point of similarity with the asymptotic power law of the
ground-state entropy o(b) for the antife. rromagnet Ising
model

o.(b) =o.B,„„,—P
(17)

b 0!

B(T)large,

f (T, b)= —kT[21n2+b ln(e +e )]j(b+2) .

found by Stosic et aI. ,
' where P and o. are the fitting

constants and o B»„,calculated by Baxter and Tsang' '
is the exact value of the ground-state entropy for the Is-
ing antiferromagnet on the ordinary triangular lattice.

For the sake of comparison we now give the free ener-
gy f ( T, b) of the generators (Fig. 1, n = 1)
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It is evident that as b increases the difference between

f, (T, b) in (14) and fs(T, b) in (18) decreases and both
converge to f, (T) according to the same form (16). This
is a consequence of that, both the fractals and the corre-
sponding generators, in the limit b~~, approach the
triangular lattice.

tanhK' = ( tanhK) (19)

The only fixed points of Eq. (19) are K*=0 (T= ~ )

and K*= oo ( T=O). The point K*=0 is an infinite tem-
perature stable fixed point and corresponds to the disor-
dered phase in high temperature. K*=~ is a zero-
temperature unstable fixed point and denotes the critical
point. Linearizing (19) near T, =O yields the coefficient
of the linear term

3m (20)

The correlation length exponent is found to be

v=lnb, /Ink =ln2/ln3 . (21)

Equation (21) tells us that the value of v is a constant
independent of m, and hence fractal dimension d&. It is
noteworthy that our result v differs from that of the two-
spin interaction Ising model on the Sierpinski gasket.
The latter has v= ~ given by Gefen et al. This distinc-
tion means that the form of interaction among spins
influences the critical behavior of the spin system. It is
well known that the two different exact solutions for the
spin model on the two-dimension translationally invari-
ant lattice had revealed that the notion of universality in
critical phenomena is not so all embracing that all Ising
models with short-range interactions and the same spatial
dimension are in the same universal class. One of these is
the nearest-neighbor spin-pair interaction Onsager solu-
tion, ' which contains the correlation length exponent

IV. CRITICAL EXPONENTS

In this section we analyze the critical property of the
Ising model placed on the lattices with b =2
(m =1,2, 3, . . . ), which is an infinite subsequence of the
sequence of the fractal lattices discussed above. In the
absence of a magnetic field and given m, the RG equa-
tions are obtained by summing over the internal spins of
all the triangles of linear size 2 . The rescaling factor
here is b, =2 . The RG procedure is shown schematical-
ly in Fig. 3. The resulting recursion relation for K is

v=1. The other is Baxter and Wu's' solution of the
three-spin interaction Ising model, which exhibits a
different exponent v =—', . Our present result and the re-
sult of Gefen et al. are worked out on the fracal lattice
and also violate the universality hypothesis. It would
seem to show that such violations have generality for reg-
ular or fractal lattice.

Since the number of spins in a volume of the correla-
tion length size g is g ~, we expect the singular free ener-

gy per spin to behave as

a(b) =2—d/v . (23)

We now add a small magnetic field. As can be seen in
Fig. 1 the first member of the family differs from all the
others. Each site of the lattice with m = 1 (b=2) has four
nearest neighbors (except for the three apex site), whereas
in the case of lattices with m ~ 2 (b ~4) some sites have
four nearest neighbors and others have six. Since one
iteration of the RG will generate different magnetic fields
for the sites with different coordination numbers, we thus
introduce two kinds of magnetic fields h 2 and h

&
for the

m 2 case, where h2 and h
&

denote the magnetic fields at
the sites with four and six nearest neighbors, respectively.
To derive the recursion relations for h; (i=2,3), we take
tanhK, tanhK' —+1 (zero temperature) and find

h2=3h~=b, ~h2 (m =1) (24)

and

b —2

h2 =h~+ —3(b —1)h2+h~ g i
i =1

b —2

hi =h~+3(b —1)her+hi g i .

(~ & 1), (25)

From Eqs. (24) and (25) we always get one eigenvalue b„
as expected by the general argument near a discontinuity
fixed point. ' ' Thus we expect the general scaling rela-
tion:

(22)

If we wrote this as g '"', where g =e is chosen from
(19) and a(b) is the specific heat exponent, we would con-
clude that

f, (T,h)=g f, (g' 't, g h), (26)

LLL

LLL LLLLLLLLLLLh h hLLL LLL LLLLLLLLLLLLLLLh h h hLLL LLL LLL LLLLLLLLLLLLLLLL+4L

hLLLLk LL

FICi. 3. The RCx transformation from the second to the first
construction stage for the b= 4 case.

d
and we find that M ~ g, y ~ g, etc. One can now iden-
tify the critical exponents, e.g. ,

P—0, 1 (i )
—vd/, 5 —~ (27)

Next we evaluate the critical exponents for the two-
dimension system described in Sec. III (A). An approxi-
mate RG scheme used for the triplet interaction Ising
model on triangular lattice by Imbro and Hemmer, a
finite-lattice method, is employed to produce the recur-
sion relations. We use the smallest finite lattices shown in
Figs. 2(b} and 2(c}, corresponding to a rescaling factor
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Note that the RG calculation corresponded to the Fig.
2(c) leads to a factor independent of spin variables and it
has only a contribution to the regular part of the free en-
ergy. Equation (28) is obtained from Fig. 2(b).

Using Eqs. (28) and (29) we can immediately gain the
critical exponents

v = ln2/ln3, /3= 0, (30)

and if all the scale relations were valid, we should have

0,' =2 2v, Q=Zv .

From comparison of (23), (27), and (31) we will reach
the following asymptotic forms of the exponents for b

very large:

a(b ) =a+ Q /lnb,

y(b) =y —Q/lnb,

(32)

(33)

where Q =vln2.
We may argue that, according to our results, some ex-

ponents, 1ike correlation length and magnetic exponent,
are independent of b and df, and have the same values
for both fractal and regular lattices; some, such as,
specific heat and susceptibility exponent, vary smoothly
with parameter b and when b is a su%ciently large ap-
proach to that of the regular lattice with a logarithmic
asymptotic law which is the same with that of fractal di-
mension df and spectral dimension d, . ' '

V. SUMMARY

b„=2. The yielding recursion relations for K and h are,
respectively,

tanhK' = ( tanhIC)

h'=4h =(b„)h .

to be analytic in temperature. Considered as a function
of the parameter b, the free energy of fractals crosses over
to that of a triangular lattice with a asymptotic power-
law form as b~ ~. The critical properties near T, =O
are studied. %'e find that the correlation-length exponent
is a finite constant independent of the fractal dimension
df and different from that of the two-spin-interaction Is-
ing model on a Sierpinski gasket.

The crossover behavior from fractal to Euclidean lat-
tices for the critical exponents which are relative to the
parameter 6 is also discussed. A logarithmic asymptotic
law of b for exponents is found. However, it should be
noted that our analysis on the critical exponents is based
on the scaling equations (22) and (26) of the free energy
and the modified various scaling relations at the zero-
temperature transition which had been argued to be valid
for any self-similar lattice by Gefen et al. ' our findings
about the crossover behavior of the critical exponents,
thus, needs to be verified in further work.
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APPENDIX

To illustrate that I s I configurations and I o, t I

configurations are in a one-to-one correspondence, con-
sider a 3X3 lattice shown in Fig. 4, in which there are
nine up-pointing triangular faces and 16 lattice sites. The
variables $," (i,j = 1,2,3,4) denote Ising spins placed on the
lattice sites. Using (6) we introduce new variables ]T,"
(i,j=1,2,3) associated with the up-pointing triangular
faces, and

We have examined a triplet-interaction Ising model on
the fractal-lattices family of the Sierpinski-type gasket
and the model on the triangular lattice which was regard-
ed as the case of limit b~ ~ for the fractal family. The
exact free energies are obtained in closed form and found

I

t,4=$;4 (i =1,2, 3,4),
t4 =$4, (j =1,2, 3,4) .

If we give an IS I configuration, for example,

(Al)

(S ] ] &
$ ]2 &

S 1 3 &
S ]4 &

S2 ] &
$22 &

S23 &
S24 &

S3 1 &
S32 & $33 & $34 & $4 ] & $42 &

S43 & $44 )

(A2)

21

31

12

32

13

23

42

;33

43 44 From (Al), t variables are known as

(r]4 r24 f34 r4 r44] r42 r4 )=3(
—1, 1, —1, —1, —1, —1, 1 )

(A3)

Using (6), (A2), and (A3), the values of o. variables can be
readily determined as

(a]1&a]2&a13&a2]&a22&a23&a31&a32&a33)

(A4)

FIG. 4. A 3X3 triangular lattice, on which there are 9 up-
pointing triangular faces (shaded faces) and 16 lattice sites.

Otherwise, if Io, t I variables are given by (A3) and
(A4), according to (Al), we have
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($ 14)$24) $34) $44) $41)S42) S43 )

(A5)

32 S32$ 33$42

23 S23$24$33

(A7)

Other s variables can be calculated through using (6),
(A4), and (A5). From (6)

&33 =$33$34$43 (A6)

Substituting 0.
33 1 $34 —1, and s43=1 given by

(A4) and (A5) to (A6), then $33 = 1 can be obtained.
Again because

Using know~ 032 1, 023 1 $33 24, and
s42 = —1, one gets s23 = —1 and s32 = —1. Similarly, one
can successively calculate remainder s variables, and have
$/3 1 $22 1, $3&

= 1, s, 2
= 1, $2&

= 1, and s&&
= —1 ~ It

can be seen that from (A4) and (A5) one reaches (A2)
uniquely. Therefore, we may say that the system de-
scribed by the IS[ variable is completely equivalent to
that described by the I o, t I variable.
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