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For a spherical metallic cluster of large radius R, the total energy is F =o.4~R '/
3+o.4~R +y2~R, the chemical potential is p= —8' —c/R, and the first ionization energy I and
electron amenity 2 are —p+1/2(R +d). By solving the Euler equation within the Thomas-Fermi-
Dirac-Gombas-Weizsacker-4 approximation for jellium spheres with up to 10 electrons, we extract
the surface energy a, curvature energy y, work function 8, and constants c and d. The constant c
is not zero, but neither is it —8, the prediction of the image-potential argument. We trace c to the
second- and fourth-order density-gradient terms in the kinetic energy, which are present even in sys-
tems with no image potential. However, the constant d is found to be the distance from a planar
surface to its image plane. In the absence of shell-structure oscillations, the asymptotic forms hold
accurately even for very small clusters; this fact suggests a way to extract the curvature energy of a
real metal from its surface and monovacancy-formation energies. We also discuss asymptotic R
corrections to the electron density profile and electrostatic potential of a planar surface.

I. INTRODUCTION AND SUMMARY I = W+( —,'+c)/R

—p= 8'+c/R, (2)

where 8' is the bulk work function. Since all the excess
charge in a metal at equilibrium resides on the surface,
the change in the electron number is dN= —4~R dX,
where X is the surface charge density. Thus

Bo
ar
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2

(3)

(4)

where Eq. (3) is well known. To order R, the first ion-
ization energy I and electron amenity 2 approach '

I= —@+1/2(R +d),

A = —p —1/2(R +d), (6)

where d is a microscopic distance. Thus, to order R

As a spherical metallic cluster grows, its properties
evolve from those of a single atom to those of a bulk met-
al. ' At first, the electronic properties oscillate with
growing cluster radius R, rejecting the shell-structure of
a finite system (Fig. 1). For large R, the valence-electron
energy levels approach a continuum limit and the total
energy E takes the asymptotic form

E=a R +o.4~R +y2mR,4~
3

where a, o., and y are the volume, surface, and curva-
ture energies, respectively. The chemical potential
p=BE/BN becomes, to order R

3 = W+( —
—,'+c)/R .

The principal aim of the present study is to understand
and evaluate the constant c in Eqs. (2), (7), and (8).
Wood's image-potential argument predicts c = —

—,', a
value that seems to be confirmed by the recent photo-
emission study of Muller, Schmidt-Ott, and Burtscher.
This study of large clusters containing 5000—40000 Ag
atoms finds c = —0. 12+0.06, where the uncertainty
arises from calibration of the cluster radius. However,
the image-potential argument has been challenged by
Makov, Nitzan, and Brus' and by Perdew, ' who in-
dependently suggested that c might be zero. Here we will
show that c is not zero, but neither is it exactly —

—,'.
Nonzero c arises from nonlocal (density-gradient)
corrections" to the Thomas-Fermi kinetic energy, and
thus is expected even in systems with no image potential
(e.g. , nonmetallic liquids or nuclei).

The outline of the paper is as follows. Section II re-
views the shell-structure oscillation of I and 2, and the
derivation ' of the asymptotic forms (5) and (6). Section
III introduces the jellium model of a metallic cluster. ' '
In order to suppress the strong shell-structure oscilla-
tion' of this model (which is much stronger than that
of real metals), we make the Thomas-Fermi-Dirac-
Gombas-Weizsacker-4 (TFDGW4) approximation for the
energy as a functional of the electron density. And in or-
der to avoid possible artifacts of a restricted variational
calculation or a limited data set, we numerically solve the
TFDGW4 Euler equation for jellium spheres containing
as many as 10 electrons. To our knowledge, this is the
first study of asymptotic size dependence not hampered
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FIG. 1. Size dependence of the total energy E of a neutral jellium sphere with density parameter r, =4. c is the energy per electron
in the bulk. The horizontal line is the N~ ~ asymptote of the plotted quantity, which displays cusps at shell-closing numbers. Vert-
ical lines indicate the half-filled shells, treating shells separated by small energy gaps as a single shell. IData from the spin-
unpolarized Kohn-Sham calculation of W. Ekardt (Ref. 1), who employed the local-density approximation with the Gunnarsson-
Lundqvist correlation. ]

by restrictions on the size of the system or the form of the
solution.

Section IV presents our results for o, y, 8', c, and d
(which turns out to be the distance xo from the jellium
edge to the centroid of excess charge at a planar surface,
as suggested in Ref. 4). We confirm the asymptotic forms
(1), (2), and (5), and find that they hold with remarkable
accuracy even for the smallest metallic clusters. This re-
sult suggests a way to extract the unknown curvature en-
ergies of real metals from measured surface energies and
mono vacancy formation' energies. Finally, Sec. V
identifies explicit curvature contributions to the kinetic-
energy component of the chemical potential, which seem
to make a dominant contribution to c of Eq. (2). The Ap-
pendix discusses the asymptotic R ' corrections to the
electron density profile and electrostatic potential of a
planar surface. Our numerical method for the solution of
the Euler equation is essentially that of Engel and
Dreizler. '

Concurrently with our work, Spina, Seidl, and Brack'
have made three-parameter variational calculations for
large jellium spheres in the TFDGW4 approximation. '

They find that asymptotically, with an error less than
1%,

I —g =1/R,
as implied by Eqs. (7) and (8).

In this paper, all equations are expressed in atomic
units (fi=e =m =1). The unit of energy is 1 har-
tree=27. 21 eV=4.360X10 " erg, and the unit of dis-
tance is 1 bohr=0. 5292 X 10 cm.

II. DERIVATION OF THE SIZE DEPENDENCE
OF THE IONIZATION ENERGY

AND ELECTRON AFFINITY

Consider a metal with bulk valence electron density

n =3/4~r, , (10)

1 2BE
02K

(12)+ ~ ~ ~ ~E~ =Eo+5
~ ofc

We shall work within the density-functional theory of
Hohenberg, Kohn, and Sham. ' ' The first derivative in
Eq. (12) equals' e for b, (0, and c" for b. )0, where
c and c" are the highest-occupied and lowest unoccu-
pied Kohn-Sham orbital energies of the neutral cluster.

The exchange-correlation energy will be represented by
a continuum approximation, such as the local-density ap-
proximation

where r, is the Wigner-Seitz radius or density parameter.
A spherical cluster which contains N* valence electrons
at neutrality has a Gibbs surface of radius

R =7,(N*)'

The problem is to determine how the energy E of such
a cluster, with N*+6 valence electrons, depends upon
the excess electron number A. Crucial to the derivation
is electronic relaxation, which places the excess charge on
the surface.

Consider the Taylor expansion
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Exc[n]= f d r ncxc(n) (13) III. MODEL PROBLEM: JELLIUM SPHERES
IN THE TFDGW4 APPROXIMATION

where rxc(n ) is the exchange-correlation energy per par-
ticle of an electron gas of uniform density n. This ap-
proximation usually gives a good account of ionization
energies (6= —1) and electron affinities (6=+1). It
fails to reproduce the behavior of the exact density-
functional F& for fractional 6, but that is of no concern
here as we shall ultimately set 6=+1. Within any con-
tinuum approximation for Exc [n ], the second derivative
in Eq. (12) is dominated by the electrostatic energy:

In the jellium model' ' of a spherical metallic cluster,
the positive charge on the ions is smeared into a positive
background of density

n (r(R),
0 (r)R) .

The valence electrons are then added to neutralize the
cluster.

As a functional of the electron density n(r), the total
energy of the cluster is

BE
BX'

N

1

R+d (14) E [n, n+ ] =E„[n,n+ ]+Exc[n ]+T, [n] .

The electrostatic energy is

I=E, Eo = —c. —+1/2(R +d), (15)

A =Eo E, = —s" ——1/2(R +d) .

If the only contribution to Eq. (14) were electrostatic, and
if all the infinitesimal excess charge on the particle were
located at its radial centroid just outside the Gibbs sur-
face, then R +d would equal that radial centroid. In
fact, the distribution of excess charge has a finite width;
moreover, the kinetic and exchange-correlation energies
can contribute to order R . These effects could "renor-
malize" the value of the microscopic distance d in Eq.
(14). The first omitted term in Eq. (12) is of order b, /R
and may be neglected.

The ionization energy I and electron amenity 2 are
now, from Eq. (12) (Ref. 5)

E„[n,n+ ]=—,
' f d rP([n, n +];r)[n(r) —n+(r)],

where

P([n, n+ ];r)= f d r'[n(r') — n+(r')]/~r' —r( (20)

is the electrostatic potential. The exchange-correlation
energy Exc[n] is represented by the local-density ap-
proximation of Eq. (13), using accurate electron-gas in-
put. "

The noninteracting kinetic energy T, [n] can be con-
structed exactly from Kohn-Sham orbitals, but we choose
instead to use the density-gradient expansion truncated at
fourth order:"

Note that the shell-structure oscillations in I and 2 are
embedded in the Kohn-Sham orbital energies. Equations
(15) and (16) have been tested against self-consistent
Kohn-Sham calculations' for jellium spheres, and thus
confirmed.

In a roughly spherical cluster of large volume 4~R /3,
the energy difference between adjacent valence-band lev-
els (and hence the amplitude of the shell-structure oscilla-
tions) varies as R . Thus, to order R, s and r.

" in

Eqs. (15) and (16) may be replaced by the single quantity
p, the chemical potential or Fermi level. This completes
the derivation of Eqs. (5) and (6).

Kohn-Sham calculations' have been reported for jelli-
um spheres containing up to about 10 electrons. The
shell-structure oscillations of the ionization energy (see
Fig. 4 of Ref. 5) are still substantial for N*=10, so no
conclusion can be drawn from them about the asymptotic
size dependence of the chemical potential. For this pur-
pose, we need a continuum approximation for the kinetic
energy as a functional of the electron density, such as the
density-gradient expansion described in Sec. II. Continu-
um approximations for the kinetic and exchange-
correlation energies (but not necessarily the particular
ones we shall use here) are justified asymptotically by the
argument of the previous paragraph.

T, [n] = To[n]+ T~[n]+ T4[n],
T [n]=—'(3ir ) f d r n'"

(21)

(22)

(23)

2) —2/3
T4[n]= f d r n'~

540

2
V' n

9 V n

8 n

1 V'n

3 n
(24)

f d r n(r)=N . (25)

It is found by solving the Euler equation

5n(r)

The required functional derivatives are

(26)

The optimum density n(r) minimizes E(n, n+ ] subject to
the constraint
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5E„
=P([n, n+ ];r),

5n r
~Exc a

XC

(27)

(28)

5TO
( 3 2 )2/3 2/3

"on (r)
(29)

6T2

on(r) 72
lVn '

n 2

V n

»4 (3~2)-»3 (V~)~n—2/3

5n(r) 540 n

53 Vn VV~n

12 n

11 (V n) 9 V lVnl 68 (V n)lVnl
4 2 8 2 9 n3

+ 14 Vn. VlV'n

3 n 3

22 Vnl4
n4

(31)

Equations (18)—(24) define the TFDGW4 approxima-
tion. Related approximations are generated by neglect-
ing T& (TFDGW2), T& and T~ (TFDG), or T&, T2, and

Exc (TF).
Within the TF approximation, all neutral systems have

the same chemical potential, p=0, so the constant c of
Eq. (2) is zero. Similarly, within the TFDG approxima-
tion, all neutral clusters with r, (4.2 have the same
chemical potential, ' p= —0.0775 hartree, and again
c =0. It is the gradient terms T2 and T4 which make
c&0 in the TFDGW4 approximation.

There have been several TFDGW2 restricted varia-
tional calculations for jellium spheres with N* ~ 10 .
While Snider and Sorbello find c= —0.07 at r, =4,
Makov et al. ' seem to suggest that their own results
could be consistent with an asymptotic value c =0.
Clearly, a definitive determination of c requires an accu-
rate solution for very large clusters.

where b, n(r ) is the change of electron density due to re-
moval of one electron.

Measured ionization energies for metallic clusters are
often analyzed by plotting I W(wher-e W is the
R ~ oo limit of I ) versus 1/R. Figure 2 presents such an
analysis of our theoretical data. Although the formulas
of Wood (3/8R ) and Perdew [1/2(R +1.54)] approxi-
mate the data for the large radii shown in Fig. 2 (and for
the smaller radii not displayed), neither formula is asymp-
totically exact.

The results of our analysis are summarized in Tables I
and II. Table I compares our TFDGW4 values for cr, 8'
and xo with those from a Kohn-Sham calculation for a
planar surface; the difference refiects the error of the
gradient expansion (21). The TFDGW4 Euler equation
for a planar surface has been solved by Tarazona and
Chacon, and our results for o. and 8'agree with theirs

IV. NUMERICAL RESULTS

We solve the TFDGW4 Euler equation (26) by the nu-
merical method of Ref. 14, which directly yields the
chemical potential p and density profile n(r). The total
energy is then constructed from Eq. (18), and the first
ionization energy is found from the total-energy
diff'erence of Eq. (15). For very large clusters (N =10 ),
where there is loss of accuracy in the difference between
two large energies, the ionization energy can be found
more reliably from

0.2

0.1

I= ,'(p+ p+ ), — (32)

where p+ is the chemical potential for the single positive
ion. The quantities o. , y, 8' and c are obtained by fits to
the asymptotic formulas (1), (2), and (5), while the dis-
tance xo from the Gibbs surface to the centroid of excess
charge at a planar surface is obtained from the R ~ ~
limit of

0.03 0.02

INVERSE RADIUS 1/R (bohr ')

—I dx4ir(R +x ) x b n(R+x ),—R
(33)

FIG. 2. Analysis of TFDGW4 first ionization energies I for
jellium spheres of large radius R.
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TABLE I. Bulk energy per electron E=a4~r,'/3 (hartree), and quantities extracted from the
TFDGW4 calculations for jellium spheres with density parameters r, : the surface energy o.

(hartree/bohr ), the curvature energy y (hartree/bohr), the work function W (hartree), the constant c of
Eq. (2) (hartree bohr), and the distance xo from a planar Gibbs surface to the centroid of infinitesimal
excess charge (bohr}. Values in parentheses are from a Kohn-Sham orbital calculation for the planar
surface (Ref. 22).

0.002 372

—0.077 266

—0.071 021

—6.079 X 10
( —5.533 X 10 )

8.759 X 10
(10.50 X 10 )

3.1210X 10
(3.82 X 10 )

1.64X10 '

2.60 X 10

6.82 X 10

0.125 50
(0.138 9)
0.099 38
(0.106 6)
0.078 71

(0.082 7)

—0.0723

—0.0825

—0.0750

1.63
(1.58)
1.02

(1.23)
0.79
(1.11)

after account is taken of the difference between the
Wigner correlation they use and our Vosko-Wilk-
Nusair ' correlation.

Table II presents a subset of our calculated values for
E, p, and I (with fewer significant figures than we calcu-
late), and compares them with the asymptotic forms (1),
(2), and (5). (Note that E includes the background elec-
trostatic self-energy, 3e N /5R. ) The numbers show
that taking d of Eq. (2) equal to xo yields the correct ion-
ization energy to order R . [In fact, (p —p+) ' —R
tends to xo as R tends to ~. j

In the absence of shell-structure oscillations, the
asymptotic forms provide an accurate account of the size
dependence, even for very small particles. In particular,

the error of Eq. (1) for the energy per electron E/N is no
more than 1 (mhartree), even for N= l. This fact sug-
gests a way to extract the unknown curvature energies of
real metals from experimental data, which we now de-
scribe.

The shell-structure oscillations in small clusters make
it difficult to extract the curvature energies, as in the
work of Utreras-Diaz and Shore. (See also Fig. 1.) But
these oscillations are absent for vacancies in bulk metals,
since the one-electron levels then form a continuum. The
formation energy c„, of a monovacancy' is defined as
the energy required to remove one atom from the bulk of
a macroscopic metal, and place it on the surface. This
process creates a "hole" of area 4~ro and negative curva-

TABLE II. Total energy E, chemical potential p, and first ionization energy I (hartree) from
TFDGW4 calculations for neutral jellium spheres with N electrons, compared with asymptotic forms of
Eqs. (1), (2), and (5).

E/N c.+(o.4+R +@2')/N —p W+c/R I —@+1/2(R +xo)

1

10
10
10
104
10'

5X10

—0.006 317
—0.007 152
—0.003 231
—0.000 476

0.000 998
0.001 723
0.001 990

—0.007 576
—0.007 371
—0.003 254
—0.000 477

0.000 998
0.001 723
0.001 990

0.0971
0.1112
0.1183
0.1220
0.1238
0.1247
0.1250

0.0894
0.1087
0.1177
0.1219
0.1238
0.1247
0.1250

0.3063
0.2048
0.1653
0.1453
0.1350
0.1300
0.1282

0.2348
0.1954
0.1641
0.1451
0.1350
0.1300
0.1282

1

10
10
10'
104
10'
10

—0.053 633
—0.067 760
—0.073 176
—0.075 440
—0.076 435
—0.076 884
—0.077 089

—0.053 120
—0.067 684
—0.073 169
—0.075 440
—0.076 435
—0.076 884
—0.077 089

0.0805
0.0902
0.0950
0.0973
0.0984
0.0989
0.0992

0.0788
0.0898
0.0949
0.0973
0.0984
0.0989
0.0992

0.2036
0.1442
0.1208
0.1095
0.1042
0.1016
0.1004

0.1801
0.1420
0.1205
0.1095
0.1042
0.1016
0.1004

1

10
10
10
104
10'
10'

—0.054 301
—0.063 925
—0.067 862
—0.069 584
—0.070 361
—0.070 716
—0.070 879

—0.054 331
—0.063 914
—0.067 860
—0.069 584
—0.070 360
—0.070 716
—0.070 880

0.0668
0.0730
0.0760
0.0775
0.0781
0.0784
0.0786

0.0662
0.0729
0.0760
0.0775
0.0781
0.0784
0.0786

0.1543
0.1104
0.0936
0.0857
0.0820
0.0802
0.0794

0.1405
0.1095
0.0935
0.0857
0.0820
0.0802
0.0794
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E, 0 47TI'p p27TI"p2 (34)

ture radius —rp, where rp=z' r, is the radius of the
Wigner-Seitz spherical cell containing one atom, so

TABLE III. The constants c2 and c4 of Eqs. (37) and (38), ex-
plicit contributions to c of Eq. (2) from the second- and fourth-
order gradient terms of the kinetic energy, for jellium spheres in
the TFDCiW4 approximation. (hartree bohr).

From measured surface energies and vacancy-formation
energies, one may estimate the curvature energy y. '

More generally, a "liquid drop model for crystalline met-
als" has been developed in Ref. 31.

—0.044
—0.036
—0,032

Cp+C4

—0.059
—0.064
—0.068

—0.0723
—0.0825
—0.0750

V. ORIGIN OF THE ASYMPTOTIC
SIZE DEPENDENCE

OF THE CHEMICAL POTENTIAL

As argued near the end of Sec. III, nonzero c in Eq. (2)
arises within the TFDGW4 approximation from the gra-
dient terms T~ and T4 of Eq. (21). Here we will describe
an explicit mechanism by which this happens.

The chemical potential p satisfies the Euler equation
(26). Equations (30) and (31) show that the functional
derivatives of T2 and T4 involve Laplacians such as

dn 2dn
d p' 7" dl

(35)

The second term on the right-hand side of Eq. (35) arises
explicitly from curvature. For a jellium sphere of large
radius R, this term may be replaced by (2/R ) dn /dr,
since dn /dr vanishes away from the surface. In this lim-
it, the terms of this form can be treated as a weak pertur-
bation on the planar surface problem.

For a planar surface with electron density profile p(x ),
we multiply both sides of Eq. (26) by —p'(x)/n and in-
tegrate over x=r —R, the distance from the surface
plane x =0, obtaining

~--""5p( )

—1 dp
dx

(36)

Now the perturbation theory described in the previous
paragraph contributes c2/R from 5Tz/5p(x) and c&/R
from 5T4/5p(x ), where

2—1 ~ 1 dp
c2 = dx

18n —oo p dx

and electrostatic potential near the surface have asymp-
totic R ' corrections. These contributions add up to
c=0 in the TF and TFDG approximations, but not in
TFDGW2 and TFDGW4.

Two neglected effects could increase the magnitude of
c2+c4. (1) Errors in the surface energy arising from the
fourth-order gradient expansion of the kinetic energy
(Table I) could be reduced by scaling T4 by a factor of
about 1.34, and c4 would then be scaled by about the
same factor. (2) Even in the simple metals, the planar-
averaged valence-electron density profile p(x ) can be
rather different ' from that for the jellium surface, be-
cause of the ionic pseudopotential. Within the simple
"structureless pseudopotential model, " these effects
enhance c2+c4 by as much as 40%%uo for the high-density
metals (r, =2). Thus it is not hard to accept that
c = —0. 12+0.06 for large Ag clusters, as reported in Ref.
9.

Finally, we note that nonlocal contributions to the
exchange-correlation energy could also contribute to c of
Eqs. (2), (7), and (8). Accurate determination of c for any
given metal awaits the development of more accurate
continuum approximations to the kinetic and exchange-
correlation energies (perhaps along the lines of Refs. 35
and 36), or more accurate measurements for very large
clusters. [By applying the conclusions of Ref. 20 to Eqs.
(5) and (6), we find that the optimum continuum approxi-
mation to Exc [n j makes lim„5Exc /5n (r )

=1/2(R+d) for large R, and not 0 as in the local-
density approximation of Eq. (13)].
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The third derivative in Eq. (38) may be eliminated via in-
tegration by parts.

Table III shows cz and c4, obtained from our
TFDGW4 electron density profiles in the limit R ~ao.
Together, c2 and cz account for most but not all of c. As
discussed in the Appendix, the electron density profile

APPENDIX: ASYMPTOTIC SIZE DEPENDENCE
OF THE DENSITY PROFILE

AND ELECTROSTATIC POTENTIAL

Consider a jellium sphere of large radius R, and let
x =r —R represent distance from the surface. Let
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p~ (x ) =n(R +x) (A 1)

be the electron density profile. The charge neutrality
condition is

barrier of the planar surface, which is clearly not zero.
The electrostatic potential Ptt (x ) satisfies Poisson's

equation

f dx4sr(R +x) [p~ (x )
—n 6( —x ) ]=0, (A2)—R

where 6( —x ) is a step function which vanishes for x & 0.
Equation (A2) must be satisfied to all orders in R, so (to
order R ') the profile near the surface is

d' 2 dNR

d~2 R dx

4'—p(x )+ —n6( —x )
f (x)

R
(A6)

(x)
ptt(x ) =p(x)+

Expand
(A3)

(hatt( x)=(t( x)+
h (x)

(A7)
where p(x ) is the profile for a planar surface and f(x )

vanishes away from the surface:

f dx[p(x) —n6( —x)]=0,

f dxf (x ) = —2 f x [p(x )
—n 6( —x ) ]

1 [p(~ ) —tIi(
—~ )] .

2&

(A4)

(A5)

The right-hand side of (A5) involves the surface dipole

where

d'
4' [p(—x )

—n 6( —x )],
dx

and find

(A8)

h(x)= —f dx, f dx& 2 +4srf(x2) . (A9)
X2
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