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We investigate the manner in which quantum interference is suppressed when a particle interacts
with a spatially localized, dynamical environment. To do so we examine a model with two classical
paths along which an electron can travel and allow it to interact with a bath of harmonic oscillators
on one path and travel freely on the other. In particular, we show that the quantum Auctuations of
the path of the particle can couple to the environment and thus lead to dephasing and calculate the
dephasing time in the high-temperature limit. We compare this result to other views of how propa-
gating electrons lose phase coherence.

I. INTRODUCTION

The crossover from coherent quantum-mechanical be-
havior in microscopic systems to classical dynamics in
macroscopic ones has long generated interest. With the
advent of microfabrication techniques and cryogenic
technology, such discussions are no longer simply specu-
lative, but have bearing on practical measurements. For
example, experiments have shown that as the tempera-
ture is lowered, nonlocal effects can be seen in transport
measurements in some systems due to the wave nature of
the electron. ' It has been shown theoretically that such
interference effects, the hallmark of quantum systems,
can be suppressed when a quantum-mechanical system
interacts with an environment. However, it must be
stressed that not all interactions destroy such interfer-
ence. It is perfectly possible (and has indeed been experi-
mentally demonstrated ) for a quantum system to ex-
change energy with its environment and still display in-
terference. Thus, it is incorrect to simply equate an in-
elastic scattering time with the characteristic time over
which the system loses phase coherence, or "dephasing
time, "~&.

A discussion of some of these issues was recently
presented by Stern, Aharanov, and Imry (SAI) in the
context of an electron traveling across a one-dimensional
ring (Fig. 1). After introducing a local environment on
only one side of the ring, they show that it is possible for
the electron to interact elastically with its environment in
such a way that interference is destroyed. On the other
hand, they show theoretically that in certain cases a par-
ticle can absorb energy from its environment and still
demonstrate interference. Furthermore, they derive a re-
lation between the trace the electron leaves on the envi-
ronment and the expectation value of the phase shift of
the electron.

However, in this approach, the effects due to the quan-

turn Auctuations of the path of the particle about its clas-
sical trajectory are not taken into account. In essence,
this does not allow the environment to alter the path the
electron travels. Although this approximation is useful
in certain cases, it is not, in general, consistent. When all
paths have the same environment, the quantum-
Auctuation contributions to the dephasing can cancel out.
However, when we are considering the case of paths en-
countering disjoint, distinct environments, they, in gen-
eral, do not. This raises the intriguing question of when
an environment should be treated as a single entity, or
when it is best to describe it as two different heat baths.

In Sec. II of this paper, we first brieAy discuss some
common misunderstandings of the origin of dephasing.
While much of this discussion is implicit in other works,
we have not seen them stated simply in print. We will
then brieAy summarize the SAI discussion and some of
their results. In Sec. III, we introduce our own model
with a dynamic environment in an approach similar to
that of Caldeira and Leggett. This model cannot be
solved exactly, and we are forced to make certain physi-
cally motivated assumptions about the propagator. We
can then solve the model exactly in the high-temperature
limit and find that dephasing (in addition to that found

Interact ion
Region

FIG. 1. An example of an interference experiment in which
the system interacts with an environment on one trajectory but
not on the other.
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by SAI) results from the quantum Auctuations of the path
of the electron about its classical trajectory. In particu-
lar, we find in the strong damping limit a dephasing time

~ v T, where T is the temperature; this is in distinc-
tion from the result for the single, uniform environment,
in which ~& ~ T. In the zero-temperature limit, we show
that the model predicts rapid destruction of the interfer-
ence and discuss how this can be interpreted.

In Sec. IV, we discuss the implications of our results
and possible experiments in which they could be tested.
We find that the definition of what we mean by an envi-
ronment and when one environment can be considered to
be two disjoint environments can be problematic. Such
issues not only have a direct bearing on many basic philo-
sophical issues in quantum mechanics, but also upon
specific theoretical predictions of conductivity. ' '" We
discuss the limitations of our approach and possible fu-
ture directions.

II. DKPHASING AND INELASTIC COLLISIONS

+2Re(g„(xf, t)*g((xf, t)] . (2.1)

If the right partial wave creates a phonon in the sur-
rounding lattice, then f„will pick up a time-dependent
phase factor exp(ihEt/A') relative to g(, so that we ob-
tain

P (xf, t) =
I g„(xf, t)e' '~"+P((xf, t) I

=If„(xf t)I + If((xf t)I

+2 Re[/„(xf, t)*f((xf, t)e ' '~"
] . (2.2)

It is then argued that the time-dependent interference
term will average to zero.

This argument is unsatisfactory because it neglects the
environment. To see this, let us introduce g, and g&, the
wave function of the environment coupled to the right-
and left-partial waves, respectively. We note that the em-
itted phonon is part of this environment, so that g„will
also pick up a time-dependent phase, exp( ibEt lfi), rel-—

It is widely accepted that dephasing and inelastic col-
lisions are synonymous. Two plausible (though incorrect)
lines of argument are often given to support this view.
To be concrete, consider, for example, an electron pass-
ing through a ring device similar to Fig. 1, so that the
probability amplitude to travel on the left- or right-hand
side of the ring are comparable. Assume further that, on
one path, the electron has an inelastic collision generat-
ing a phonon energy AE. The following are often offered
as explanations of the loss of coherence:

(1) The change in the electron energy makes all interfer
ence terms oscillatory and they average to zero. If we in-
troduce the notation g„(x,t) and P((x, t) for the right-
and left-going partial electron wave functions, then it can
be argued that at the final position xf the probability to
observe the electron at time t is given by

P(xf, t)=If„(xf,t)+g((xf t)

=
I p„(xf, t) I'+

I @((xf,t) I'

ative to y(, a phase that will exactly cancel that of P„.
Thus, any appeal to such time-dependent oscillations of
the wave functions must fail if the energy of the total sys-
tem is conserved. In addition, the fact that inelastic
scattering does not change the time development of the
phase of the total wave function casts suspicion on such
concepts as "phase diffusion" and "quasielastic scatter-

»10, 11

(2) The emission of a phonon makes the enuironment or-
thogonal with respect to an environment without the pho-
non. This argument appeals to the fact that the phonon
part of the environment can be expanded in a basis

I [n; ] ), where the [n; ] denote the state with n; phonons
in modei. Since

(2.3)

any initial environmental eigenstate would be orthogonal
to one with one more phonon, and the interference term
in Eq. (2.2) would be zero. If this argument holds, then
the emission of any phonon, no matter how small in ener-
gy, would destroy the interference pattern. This does not
agree with our intuition.

The Raw in this approach is that there is no reason a
priori to assume that the initial state of the system is a
number eigenstate; we could equally assume a superposi-
tion of such states,

c(„) I[n, ]) . (2.4)

V(x)=
V,o, for Ix —x, « I,
0 otherwise,

(2.5)

where o., is the spin of the impurity (the dynamics of the
spin of the electron is neglected), and xo is its location.
The interaction is assumed to be perfectly elastic short
ranged so that the impurity only interacts with the elec-
tron on the right branch and extremely weak so that
rejections are negligible. If the impurity is initially in an
eigenstate of

In this case, shifting the occupation number of one state
need not make the final environmental wave function or-
thogonal to the initial one. Having such a superposition
of states means that there is an uncertainty in the phonon
occupation number. The issue is not whether the elec-
tron alters the environment, but rather whether or not it
alters it in a way that is larger than the uncertainty in the
initial state. Such a condition is sometimes referred to as
"leaving a trace on the environment. "

Of course, this is not a new formulation of the prob-
lem; such requirements have been discussed elsewhere in
the literature. ' However, both of the above two ap-
proaches are commonly presented as the origin of de-
phasing. Furthermore, it is not often realized that de-
phasing is as much a function of the initial conditions of
the system as of the interaction itself.

In order to put our work in context, we first consider
the case of an electron moving on a ring that has a single
spin impurity located on one side (Fig. 1) in the fashion of
SAI. The two interact with a potential:
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Io =+1)=(Icr, =+1)+Io., = —1))/&2, (2.6)

P= —f dt V[x(t)] (2.8)

where x (t) is the classical path of the electron, which is
assumed to be unaltered by the potential.

In the case where the environment has its own dynam-
ics, SAI write down the equation corresponding to Eq.
(2.7),

(e'&) = fdqyo(q)f'exp —i f dt Vz[x(t), t) go(q),

(2.9)

where f' is the time ordering operator, yo is the initial en-
vironment wave function, and Vl is the potential in the
interaction picture. '

However, implicit in Eq. (2.9) is the concept of the
classical path x(t). Its presence alone should make us
suspicious since we are interested in quantum-mechanical
effects. This treatment is inconsistent since it treats the
quantum-mechanical nature of the bath, but not of the
trajectory of the particle. In particular, this approach
neglects the loss of interference due to the coupling of the
bath to the quantum Auctuations of the trajectory of the
particle about its classical path. SAI demonstrate that a
particle moving along a certain trajectory in an uncertain
potential leads to dephasing; it should also be possible
then for a particle moving along an uncertain trajectory
in a certain potential to lead to dephasing. These effects
should be of comparable order, and one should not
neglect the latter. In Sec. III below, we propose an ap-
proach in which we calculate the dephasing or loss of in-
terference in a system, including those contributions due
to quantum Auctuations of the particle about its classical
path.

then by Eq. (2.5), we see that the electron experiences an
uncertain potential. This uncertain potential can destroy
the interference, and indeed, interference is completely
suppressed when the interaction leaves the impurity spin
in a state

I o, = —1 ), leaving a trace on the environment
marking which path the electron has taken. We note that
this is elastic dephasing and that no net energy need be
exchanged between the electron and the scatterer. For
the case of a nondynamic environment, SAI arrive at the
result:

(e'~) = fduty;(q)y„(g), (2.7)

where in their notation g denotes the degrees of freedom
of the environment, and the phase angle P has the simple
form:

in Fig. 2. Our wave packets start together at the point 3
in Fig. 2, move apart until they reach turning points at 8
and C, and rejoin at the point D: The projected motion
along the x axis is that of a one-dimensional oscillator.
We are interested if there is interference at the point D
after half a cycle, t =2'/(2'), so that we do not have
multiple crossings of the classical path. We include a re-
gion on the right-hand side over which the electron in-
teracts with the bath of harmonic oscillators. Given an
electron initially in a superposition of a left- and right-
going wave packet,

I
I ) +

I
r ), at point 3, we wish to

determine the magnitude of the interference term when
the electron reaches point D.

Since the bath variables are not of interest, we solve for
the reduced density matrix of the electron, and more sim-
ply just those contributions that stem from the interfer-
ence terms. We assume that the initial density matrix of
the system factorizes into a product of system and bath
matrices:

—PHbPb= Zb
(3.2)

where Zb —=Trbe is the canonical distribution for the
bath, and Trb denotes the trace over the bath coordi-
nates. The electron is initially in a superposition of left-
and right-going states:

p, =(Ii)+ I. ) )((i + (.I)
prr +PII +prt +plr . (3.3)

We are specifically interested in the interference terms re-
sulting from PI„and p„I ~ The time development of the full
density matrix is then given by

p( t )
—iHt lfip p iHt Ih' (3.4)

where the Hamiltonian H has three contributions, from
the system (the electron), the bath, and the interaction be-
tween the two:

H =II, +Hb+ V . (3.5)

Energy

(3.1)

the bath starts out in thermal equilibrium at temperature
T (with P= 1/kT),

III. A MODEL %'ITH A DYNAMICALLY
INTERACTING ENVIRONMENT

We wish to study a case where an electron can follow
two classical paths, only one of which will interact with
an environment" given by a bath of harmonic oscilla-
tors. We, therefore, consider an electron moving in a
two-dimensional system, with a harmonic potential in the
x direction, but no potential in the y direction, as shown

X

FIG. 2. A schematic drawing of the potential for the Hamil-
tonian given in Eq. (3.6). The parabolic potential serves to force
all classical paths leaving A to intersect later at point D. We
choose our electron to be in an initial state that is a superposi-
tion of states with equal and opposite momenta in the x direc-
tion, so that there are two "classical paths, " one passing
through 8 and one through C.
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The system and bath Hamiltonians are harmonic oscilla-
tors:

H, = +—mmx
2P?l 2

N p2
Hi —g + rnk cubi R™g 2

(3.6)

(3.7)

and they interact with a potential

ck(x )V=x g ck(x)Rk+x
Ic =1 2&i k COk

(3.8)

where the spatial dependence of the ck(x) is chosen so
that an interaction occurs only along the trajectories on
the right-hand side of the potential. If the ck(x) were
constants in space, this formulation reduces to the Cal-
deira and Leggett model (CL), with a counterterm, or
what is sometimes referred to as the "independent oscilla-
tor model. "' We are interested in just the interference
contributions to the reduced density matrix of the elec-
tron,

I(x, t)=2Re(xITr, e ' "~"p, e'~""IX) . (3.9)

The problem as defined above is analytically intract-
able due to the highly nonlinear spatial variation of the
potential. We make the mathematically simplifying as-
sumption that the left-going path has no interaction with
the heat bath, so that VI l ) =0, while the right-going path
always interacts with the bath. This implies

—i (H, +Hb )t/A iHt/Ae pIrpI e (3.10)

and the ck(x ) are replaced by a set of constants, ck in Eq.
(3.8). Approximations very similar to this have been ad-
vanced elsewhere. ' This assumption is crucial to the
subsequent analysis and, therefore, must be understood in
detail.

Although we start with a two-dimensional problem, we
have already effectively reduced it to a one-dimensional
problem by considering only the motion in the x direc-
tion. If we were to solve the full path integral problem,
we would consider all paths that leave A, crossing into ei-
ther the left or right region and end at D a time ~/co
later. In Eq. (3.10), we have effectively "split" our prob-
lem into two "parallel" sheets, one on which the initial
state Ir ), propagates over the entire horizontal extent of
the surface, interacting with the environment, and a
second one on which Il) propagates and does not in-
teract with the environment (Fig. 3). To justify this ap-
proximation, we note that the classical paths of Ir ) and
Il ) do remain on the right- (interacting) and left-hand
(noninteracting) sides of the system for t (2vr/2'. The
issue is whether or not fluctuations in the path in the full
problem, (for example, those fiuctuations in which Il )
strays into the interaction region) contribute strongly to
the final interference term. We argue that these Auctua-
tions lead to large variations in the action, and so their
contributions to the path integral will average to zero.
Furthermore, our analysis is consistent so long as we find
exponential destruction of the interference on a time
scale smaller than 2m/(2'). We will return to this issue
in Sec. IV.

Our model is similar to the ring problem in SAI with a
harmonic oscillator bath coupling on one side of the ring,
but with the assumptions that (i) higher order winding
number paths are suppressed, and (ii) paths that cross
from one region to the other do not contribute strongly
to the interference. These assumptions seem reasonable
in the limit that the damping is sufficiently strong to
suppress paths that deviate strongly from the classical
path.

In making the approximation of Eq. (3.10), we have
rendered the time-development operator nonunitary. We
can simply repair this by including an overall time-
dependent normalization function C(t). This will be dis-
cussed in more detail below.

With this assumption granted, we can proceed to ex-
pand Eq. (3.9):

I(x, t) =2 ReC(t)(xITrbe pi„pbe' '~"Ix )

=2ReC(t) f dR dR'dQ'dx'dy'(x, RIe ' Ix', R')(x', R'Ipi„pbly' Q')(y' Q'Ie' ' (3.11)

where Ho= H, +Hb, and ck(x)=ck —along the right-hand
path. We then express the transition amplitudes as path
integrals

I

Hamiltonians Ho and H. We then follow the usual pro-
cedure of integrating out the contribution from the heat
bath, '

(yi QiIei~t/A'I R ) f f ~e ~eQ —is[y Q]lh'
Q'

(3.12b)

where 2)*x represents the complex conjugate of the mea-
sure X)x, and the actions So and S are derived from the

I(x, t) =2 Re f dx' dy'J(x, x, t;x', y', 0)pi„(x',y'), (3.13)

where we define

J (x,x, t;x', y', 0)

X

and F Iy] is the "inhuence functional"
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Inserting this form of F [y] into Eq. (3.14) and factoring,
we obtain

m mJ =C(t)f X)x exp —f dr —x(r) — x (r)
X o 2 2

x +
—(s& [y]+is&[y]]/sR (3.20)

FIG. 3. A schematic interpretation of the approximation in-
volved in Eq. (3,10). One packet (passing on the upper sheet) is
coupled to the environment as it travels, while the other (on the
lower) is not. Each packet has fluctuations (e.g. , the solid line)
about its classical path (dashed lines); it is assumed that paths
with large fluctuations that should take a packet from one re-
gion to the other (say, noninteracting to interacting) do not
dominate the path integral. Note that this picture is not literal-
ly true, since it implies that the two wave packets do not overlap
before the point D. The vertical separation of the sheets does
not imply an energy di6'erence between the two.

where

SI d~ my~2 mey72 y72
0 2 2 2

+ 'dsy wy sal w —s

Sz = f dr f 'dsy( r)y(s) az(r s) . —

(3.21a)

(3.21b)

In this form, the path integral over x (t) is separated out
and is just that of a simple harmonic oscillator, since
these paths do not interact with the heat bath. Perform-
ing this integral, we can write'

F [y]=f dR dR'dQ'pi, (R', Q')

X R * exp —S~ R —S~

X 1J =C(t)& (x,x', t) f 2)*y exp — (iSt—+Sz ),
3'

where
' 1/2

(3.22)

—S [3),Q]) . (3.15) A (x,x', t)= m Q)

2mik singlet
We note that there is no term Sz[x,R] in the exponent of
Eq. (3.15) because of our assumption in Eq. (3.10). This
means that F [y] is not a "true" infiuence functional in
that integrals over it are not unitary. Following the
Feynman-Vernon approach and integrating over the bath
coordinates yields: '
Fly]=exp ——f dr f dsy(r)a(r —s)y(s)

o o

Lm co
Xexp . [(x +x' )coscot —2xx']

2A singlet

(3.23)

We now examine the behavior of aI(r —s). For this,
we replace the sum over oscillators with weights c/, by an
integral over co with a spectral distribution G(co) defined
as

'P
( )2

2
(3.16) Ck

2

G(co)=sr g 5(0)—CO), ) (0) ~0) .
k=~ 2mk~k

(3.24)

where we have defined the coe%cient of the counterterm: We introduce a function y(t) defined so that
2

c/cp= 2
k=~ mk~/

and we have introduced the memory kernel,

(3.17) m d y(t)=a, (t) .
2 dt

Note that

(3.25)

2
c/ca(r —s)= g 2mk cok

—t cok (v.—s)
i cok (v —s)

e
pA'co~

e

2 ~ G(co)
my(t) = —— dao cos0)t, (3.26)

&~k(~—s)+'
pficok

e
(3.18)

C14
2

at(r —s) —= g sincok(r —s)
2mk cok

(3.19)

We split a (r s) into its r—eal and imaginary com-
ponents,

e/c Pficoka„(r—s)—:g coth cosco„(r—s),
2mk~k 2

so m y(0) = —p. The distribution G (co) is yet
unspecified. We choose the response of the bath at low
frequencies to be independent of co, so that the bath is
ohmic. This fixes G(co)=myrio, where y is an effective
dissipation constant with dimensions of inverse time.
This, of course, holds only for low frequencies; the spec-
tral distribution function must be finite as co —+ ~ or else
the system has infinite energy. We can assume that the
distribution is ohmic up to some high-frequency cutoff
0, and investigate the resulting behavior. In this case,
we note that
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0
lim y(t) = — lim f dao cosset

Q ~oo 0 —+co 0
C C

2—y5(t) . (3.27)

Taking such a limit means that physically we are interest-
ed in times t ))0, '.

Some care must be used in manipulating time and fre-
quency integrations; it is well known that the thermo-
dynamic limit must be taken before the long time limit
t~ ~. By choosing a continuous spectral distribution
function, we have effectively taken the thermodynamic
limit for the heat bath. If we do not perform such a limit,
then our heat bath would never be dissipative; there
would always be Poincare cycles of finite period.

If we examine the integral over s in Eq. (3.21a) and in-
tegrate by parts, we have:

my Pleode Co cotll coscot
7T 0 2

(3.30)

We first treat the high-temperature limit, assuming first
13fico&(1 and later taking the limit Q, ~ ~. We can ap-
proximate az(r) as

2m@ c
aii (r) = de cosset,

irfi o

which in the limit Q, —+ ~, yields

(3.31)

the classical equation of motion for the path. ' '
The real part of the kernel, az(r), can now be written

as

1 c ficoPaz(r)= — de G(co)coth coscot
7T 0 2

nl ~—sy s = — y ~y 0 —y Oy ~
0 2 a~(r)= 5(t) .2m/ (3.32)

+ f dsy(~ —s)y(s) .
2 0

(3.28) Integrating over this 5 function in S~, we finally obtain
the following effective action in the high-temperature
limit with ohmic dissipation

Inserting this back into Eq. (3.21a), canceling the coun-
terterm, and integrating over the 5 functions, we obtain
from SI an effective action SI.

SI= — [y(t) +y(0) ]+f dr [y(~) co y(r)—
] .

4 0 2

S[y]=St iS~ =—— (y' +x )

+ f dr [y(t) co' y(t)—],
0 2

where co' is a complex frequency, given by

(3.33)

We already see one striking result of this model. In the
normal CL approach, the imaginary terms in the effective
action yield the equations of motion of damped oscilla-
tors; here the imaginary terms display no such damping.
Clearly, if there is to be any damping it must result from
S~. Yet, in the CL approach, these terms do not change

I

' 1/2

CO =CO +l. 2
fi

(3.34)

We have reduced the problem to that of a simple har-
monic oscillator, albeit with a complex frequency. We
can then use Eq. (3.23) to write down the final expression
for J(x,x, t;x', y', 0)

J =C(t)
2mB sincot since't

lm co
exp . [(x +x' )cosrot —2xx']

2A singlet

Xexp . , [(x +y' )costo't —2y'x]+ (y' +x )2' since't 4A
(3.35)

In order to obtain an explicit example for the interference term, we must assume a form for the initial wave packets.
For calculational simplicity, we assume that our initial state consists of wave packets that are already displaced from
the origin (i.e., at the points B and C):

—(x +xi) —(x +x„)
g(x) =g&(x)+P„(x)=N exp +exp

4o 4' (3.36)

1/2 2
XI

exp —ao(t)x
4~2

X

4o.
I(x, t)=C(t) Rea, (t) '~ az(t)

X m COCO

singlet sinco't

where x& and x„are the initial displacements of the wave packets, o is their initial (identical) width, and N is the nor-
malization constant. With these initial conditions the interference occurs at a time t =2~/4'. Performing the Gauss-
ian integrals over x' and y' in Eq. (3.13), we arrive at

T

Xexp— 1 lmco

4a
&
(t) 2A' sincot

2
2XI 1 —i~' 2

+
4az(t) 2irt si ntco

2

(3.37)
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where

—im o) cote)t 1
a1 — + (3.38b)

im m cot&@'t
a2=— imp I

4 2
(3.38c)

a = (2m co' cotro't —2m'~ cotcot —m y, ,) (3.38a)0

2 1/2

Strictly speaking, we should only p lot times t &2~/4', '

however, we p ot up oe lot u to t =2m/co to help show the eAect
of the overall damping. Since m' is complex, t e term
since't in the denominator of the square-root grows ex-
ponentia y. is e av

'
ll . This behavior is not compensated by terms

am ed asth onent so the whole expression is ampe as
e ' we can calculate this damping constant; i we
set co'=0+i I, then

1/2

I'( t) to be the above result, without
the normalization function C ( t &l,C (t& ~that is, x,
=I(x, t)/C (t) ], then we can determine the overall nor-
malization function C (t) simply by integrating over
I'(x, t):

1 g Zy0= — ui +

1 4 2y
I3A

2 1/2

CO
2

1/2

(3.40a)

(3.40b)

C(r)= 1+f dx I'(x, t) (3.39) In the strongly damped limit, y /P)&Ace, this reduces to
1/2 1/2

T '
1 1 ts of our results are presented in Fig. 4.Typica p 0 (3.41)

CO
C3
C
CO

Q)
N

CD

C

(D
C3
C
CD

CO-

(D

I

I

~

pl

I)I=

(b)

(D

CD

CD

osition in the high-temperature limit. In thesee term [E . (3.37)] as a function of time and position in e 'g-
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where we have related these quantities to the diffusion
constant D by the Einstein relation D =2m y/P. In the
weak damping limit y /P « A'co, we find I =ykT/fico.

Thus, we see that there is a damping factor e "' that
arises in the prefactor. This prefactor is generated by the
path integral over the quantum Auctuations about the
classical path of the particle. These fluctuations couple
to the heat bath and, thus„ lead to damping. Without
these effects, there would be no damping in the high-
temperature limit. We note that since I'(x, t) is damped
exponentially, the normalization function C(t) rapidly
approaches unity. It has no systematic effect on the in-
terference term.

We now consider the zero-temperature limit. Since the
kernel az is temperature independent, we may proceed as
before. Since integrating over it leads only to finite con-
tributions at the boundaries, as in Eq. (3.29), we concen-
trate on ai, . Using the definition of az in Eq. (3.18) and
noting that limr Ocothpirico/2=1, we then have in the
ohmic limit

inary part of the action can only yield oscillatory factors
that cannot compensate for this damping.

We focus on Sz, writing it as

S~ =S)—Sq

f di.f ds [y (r) +y (s) ] k (r s)—
7T' 0 0 d'T

- f dr f ds [y(r) —y(s)] k(r —s) .
0 0 d~

(3.47)

Clearly, the second term is less singular than the first,
since the numerator will have a zero at the pole of the
kernel, and, therefore, it cannot alter the leading order
behavior of the integral. Performing one integration in
S„we obtain

aii (r) = f ™dcoco coscot
0

S, = f dt k(t)[y(r) +y(t —r) ] .
0

(3.48)

ic(t),mp d
dt

where ic( t) is the distribution defined by,

f dt f (t)ic(t)=P f dt

(3.42)

(3.43)

The dominant contributions come from the terms at the
boundaries

Si = [y(0) +y(t) ]f drk(r)
'7T 0

t~+0, 2
(3.44)

so that limci k(t)=ic(t). Substituting this back into
C

our expression for the action, we have

S= f dr y(r) co y(~) +—
2 0 7T

X f ds y (r)y (s) k (r —s)
0 dt

=S~+iS~, (3.45)

where we have dropped the constant boundary terms and
exploited the symmetry of the kernel to extend the upper
limit to t. The propagator is then

XJ =C(t)A (x,x', t)f 2)*y exp ——(iS&+Sz ) . (3.46)

We will endeavor to show that all paths in the integral
produce divergent terms in SR so that the interference is
totally suppressed as 0,~~. Integration over the imag-

where P denotes the principal value of the integral. Since
ic(t) is singular, it is possible that the action will be
infinite. To see that this is indeed the case we first intro-
duce a high-frequency cutoff 0, into the spectral distri-

/0
bution in the Drude fashion so that G (co)= m ycoe
thereby defining a new function k (t),

k (t) =—f dt e sincot
0

(x +y' )[ln(t +0, ) —In(Q, )] . (3.49)2'

If we now take the limit 0,~ ~, we find that S& diverges
logarithmically, and so, the interference is suppressed.
All other contributions to the path integral will be less
singular, so this is the dominant behavior. After per-
forming some Gaussian integrals, one finds that at x =0
the interference term is proportional to I/+my lnA, .
We stress that this result holds only for zero temperature
and t )0,

It is tempting to try to extract a cutoff dependent de-

phasing time from S&. However, for times t )0, , this
does not yield a rate but rather an overall, time-
independent factor that suppresses interference, a factor
that tends to zero as Q, ~ ~. This can be interpreted as
stemming from our choice of factored initial conditions.
At T=O and t =0, the oscillator bath is in its ground
state, decoupled from the particle [Eq. (3.2)]. For
0 & t & Q, , the oscillators must adjust to the position of
the particle, with the high-frequency oscillators adjusting
most rapidly, and the amount of the adjustment depend-
ing upon the displacement of the particle. The new equi-
librium point of each oscillator is shifted with respect to
its original equilibrium point, resulting in a reduced over-
lap between the initial and final states of the bath. This
transient response (t &0, ) will be dependent upon the
exact form of the cutoff and may not be observable in real
physical systems, although it has been seen in numerical
calculations. It is, therefore, inappropriate to call this
dominant behavior found in Eq. (3.49) "dephasing, " even
though it does lead to the suppression of interference.
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IV. DISCUSSIQN

The dephasing time ~& is an important parameter for
understanding the behavior of mesoscopic systems. And
yet, it has heretofore often been treated as a parameter,
rather than calculated from the microscopic dynamics of
the system. While it is common to equate this with the
inelastic scattering time, as we have shown in Sec. II, this
is by no means obvious. SAI have already shown that de-
phasing can occur in elastic interactions when the poten-
tial is uncertain. Our work complements this by showing
how the quantum fluctuations in the path can lead to de-
phasing even in a certain potential. We find a dephasing
time

rt,
' =+y /AP =&D /2m fi

in the strong damping limit (y/P ))%co ), and

~~ '=I =ykT/%co

in the weak damping limit (y/p«A'co ). While in our
particular model, dephasing may also be accompanied by
a loss of energy of the electron, this is not in principle
necessary. A system (consisting of a particle interacting
with its environment) can lose phase coherence by its
own internal dynamics, and need not transfer energy.

We find that in the zero-temperature limit, interference
terms are suppressed by a factor proportional to
1/+my in', for times t )0, '. One cannot extract a
cutoff dependent dephasing time in this limit. The tran-
sient response (t & A, ) will be dependent upon the exact
form of the cutoff and is not observable in real systems.
Ideally, one should attempt to factor off this behavior and
examine the subsequent time dependence.

SAI are able to write a general expression for dephas-
ing in the limited cases where the dynamics of the envi-
ronment are classical, i.e., when

[VI(x, t), VI(x', t')]=0 .

The case of a truly dynamic environment traversed by a
particle with an uncertain path does not lend itself to
such simplification. In general, it is not possible to write
down an expression similar to Eq. (2.5) to define a phase
shift.

However, that is not to say that the results we derive
for dephasing do not have general application. In partic-
ular, they do not depend upon our assumption that the
particle moves in a harmonic well. The dephasing time
does not change in the limit co—+0, so that Eq. (3.41) is
still valid. If we consider an electron moving in a square
potential that simply serves to confine it to an annulus,
then we expect our results to be qualitatively correct for
the diffusive paths that traverse the system. In two and
three dimensions, we simply obtain the square and cube
of our results, so that ~& will be given by the result above
[Eq. (3.40b)] multiplied by a factor that depends upon the
dimensionality of the system. More problematic might

be the controlled realization of having different discon-
nected environments on the two sides of the ring. One
method would be to heat one side relative to the other, ei-
ther by a laser pulse or by creating a heating element
lithographically on one side of the ring. At low tempera-
tures, we expect that the temperature difference between
the two sides would play the role of T in our results.
Then the dephasing time could be measured as a function
of the heat deposited. Alternatively, the ring could be fa-
bricated in such a fashion that the two "environments"
are different, say of different materials, impurity concen-
tration, or thicknesses. Again, the dephasing time could
be measured as the doping or thickness are varied.

The issue of dephasing can be quite subtle. For exam-
ple, consider the common assumption that the initial con-
ditions of the bath and electron are separable [Eq. (3.1)].
This in itself depends upon how fast the quantum correla-
tions between the two die out, which is the quantity we
wish to determine. The exponential decay found in our
calculations are consistent with this assumption; if they
were not, we could not have chosen factorized initial con-
ditions.

It is intriguing to compare our case to one where the
electron sees a single environment. First, note that it is
trivial to generalize our results to a model where the elec-
tron sees separate, disjoint environments on each side of
the ring. We would simply have a dephasing rate
I „,=I I+I „where we calculate a dephasing rate for
each side based upon Eq. (3.40a). However, this result
for two disjoint environments is quite different from the
CL result for a single environment: we find in the high-
temperature, strong damping limit, a dephasing time
w&

' ~ &T; whereas for the result for the single, uniform
environment, ~& ~ T. Furthermore, in our case, 0.'R
suppresses the interference while el has no effect, while
in the CL result, this is reversed. But when is an environ-
ment one large environment and when is it a conglomera-
tion of disjoint environments? The extremes are clear: in
weak localization, the electrons travel in a single medi-
um, while in recent neutron interferometry experiments
the split beams may travel through environments separat-
ed by meters. But how do we pass from one limit to the
other? As one considers longer and longer diffusive paths
in weak-localization calculations, ' '" such a single envi-
ronment approach must break down. In mesoscopic sys-
tems, we are precisely concerned with such a crossover;
how it is to be specified is still a matter for further inves-
tigation.
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