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Collective excitations in open-shell metal clusters: The time-dependent local-density
approximation applied to the self-consistent spheroidal jellium particle
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The self-consistent and microscopic time-dependent local-density-approximation (TDLDA) for-
malism for the calculation of the dynamical electronic response properties of open-shell, axially de-
formed small metal clusters is presented in detail. The model is based on the self-consistent
ground-state calculation of the spheroidal jellium model, giving the optimized cluster shape, driven

by its open-valence-shell electronic structure. First results on the static and dynamical electronic
polarizability of the strongly axially deformed Na&0 cluster are reported and compared with the ex-
perimental polarizability and photoabsorption cross-section results. The variety of the future appli-
cations of the model is outlined, as well as the possible improvement of the formalism.

I. INTRODUCTION II. THEORY

The self-consistent spherical jellium model' for the
description of the electronic properties mainly of the sp-
bonded metals such as Li,Na, K, and for the noble metals
Cu, Ag, Au was extended by us recently to improve the
jellium description of those clusters, whose electronic
shells are —within the spherical description —not com-
pletely filled. First results of this study were published in
Ref. 7 for some ground-state properties like abundances
and ionization potentials. In the present work we investi-
gate such dynamical properties as the excitation of
plasmons or single electron-hole pairs within a method
that was previously applied to spherical jellium clusters
by one of us. ' In the spherical case the problem is rela-
tively simple because the angular momentum of the
external field is preserved [that is, for a dipole perturba-
tion (l= 1) we obtain a dipole answer (l= 1)j. However,
in the spheroidal problem the only preserved quantum
numbers are the parity p and the azimuthal quantum
number m. Hence the problem is much more difficult
than in the spherical case (l =1 couples to e.g. , l= 1,
l =3, l = 5, etc. ) and the calculation is much more
demanding. Of course the result depends on the relative
orientation of the external field and the symmetry axis of
the spheroid, which results in the splitting of the spheri-
cal plasmon line. As one might expect, the present
TDLDA (Refs. 8 and 9) (time-dependent local-density ap-
proximation) calculation has the same intrinsic fiaws as
the corresponding spherical theory: ' The static polari-
zabilities are too low by about 20% and the dynamical
excitation frequencies too high by about 10—15 %, when
compared with experiment. Furthermore, the linewidth
as determined by the pure TDLDA does not agree with
the experimental data. As discussed recently by Pacheco
and Broglia, ' this width is to be calculated from the cou-
pling of shape fluctuations to the plasmon. " These
points will be further addressed in the text.

As the response formalism relies heavily on some prop-
erties of the Kohn-Sham equations ' in spheroidal coor-
dinates, ' we give in the following a few details with re-
gard to the solution of these equations. In our theory, we
model the positive ionic background by a rotational
spheroid. The rotational spheroid is formed by rotating
an ellipse around one of its principal axes. It possesses
rotational symmetry around the z axis and is symmetric
with respect to reflection in the midplane. ' Because of
the approximate spheroidal geometry of the ensuing
Kohn-Sham potential, we chose to determine the Kohn-
Sham orbitals f;(g, g, tb) and their corresponding energy
eigenvalues E; from the Kohn-Sham equations in
spheroidal coordinates' '
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Here, g' is the "radial" and g, P are the angular spheroidal
coordinates. ' Furthermore, one-half of the interfocal
distance is denoted by

2 21/2
0 PO

where zo and po are the principal axes of the ellipse, gen-
erating the jellium spheroid and the accompanying
spheroidal coordinate system.

In Eq. (1) V' is the Kohn-Sham potential to be deter-
mined self-consistently. " In accordance with the as-
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sumption of rotational invariance of the positive jellium
background around the z axis, the resulting electronic
particle density distribution, n (r), is rotationally aver-
aged around the same axis. This leads to the indepen-
dence of V' on the azimuthal coordinate P, and hence
only to its dependence of g, g, as denoted in Eq. (1).

In contrast to the much simpler case of spherically
symmetric potentials, ' the wave functions now contain
more than one angular component l,

Q;(g, g, P)= g&i ~(g;E, )YtP(g;P), i —= (m, p, n)

they are "natural coordinates" for our problem. Usually
just a few multipoles suKce to attain a very good numeri-
cal accuracy (e.g. , =3 multipoles for the accuracy of
= 10 Ry per electron in the total energy for the
ground-state calculation, in the size-range 3 (X(41).
For further results concerning the ground state the
reader is referred to Ref. 12.

Within the TDLDA the central quantity to be ob-
tained is the complex susceptibility y(r, r; co ). Generally,
within the TDLDA g obeys the following integral equa-
tion: '

where

lml+2i, p=+
lm I+2k+1, p= —; m =0, +, I, +2 . .

k =0, 1,2, . . . , n =1,2, 3, . . . . (4)

g(r, r ';co) =go(r, r ', co)

+ f d ri f d r~o(r, rz, co)IC(r~, r, )

Xy(ri, r ';cg)) .

In this equation the kernel IC(r~, r, ) is given by '

Here Yl (g;p) are ordinary spherical harmonics, p is the
parity (with respect to re(lection at the mid-plane of the
spheroid; p =+), and m is the projection of the angular
momentum on the z axis. Due to the assumed symmetry
of the problem, p and m are the only two conserved quan-
tum numbers, related to symmetry. The state
[i =(m, p, n )] in Eq. (3) is the state of symmetry (m, p )

with the nth lowest energy eigenvalue.
Making use of the expansion (3), after multiplying Eq.

(1) by Yl™(g,g) and integrating it over f 0 dP f '
Idg,

we obtain the system of coupled diff''erential equations for
the components Xl ~(g; E, ),

K(rz, r, ) =
r2 —r,

dV„(n )
+5(rl —r~)

dn n =n (r&)

yo(r, r';co)= g P,*(r)P;(r ')G(r, r ';E, +co+i 0+)

where n (r) is the ground-state electronic particle densi-
ty distribution and d V„/dn is the density derivative of
the local-density approximation (LDA) exchange-
correlation potential ' in the ground state. As explained
in detail in Refs. 8 and 9 the independent particle suscep-
tibility go is obtained from the occupied ground-state or-
bitals as follows:

(g —1) —l(l+ 1)—1 d 2 d Pl

2 dg dg g
—1

1

occ

+c.c.(co~ —co) . (10)

+ [ V' ]I I(a, g) E;Di. l(a, g) —xi ' (g;~, )=0 . (5)

Here we denoted

Di, i(a, g)= f d(h f dg Yl*, (g, p)

and

X [a (g —g )]Yi (q, P) (6)

[V"]P,(a, g)= f dP f '
dry Y,*, -(ri, g)[a'(g' —~')]

X V' (g, g) Yi (g, P) .

In this equation 6 is the retarded Green's function deter-
mined from the ground-state potential V' (r) from the
equation

[ —,'V —V'~(r)+E]G(r, r ', E)=5(r —r ') .

Due to the nonsphericity of V' (r), G is nondiagonal with
respect to the angular momentum L. Because of the as-
sumed axial rotational (around the z axis) and reAectional
(with respect to the midplane) symmetry of the problem,
we can write

G(r, r ';E)=—G(g, r), g, g', q', P';E)

The changes with respect to the case of the spherically
symmetric problem are now visible: Instead of separate
equations for each angular momentum component l we
have the matrix equations of the same form, coupling the
various angular-momentum components. This parallel-
ism with the spherical solutions will persist also for the
whole response formalism below. We solved the set of
coupled differential equations (5) numerically, i.e.,
without making use of any radial basis functions. There-
by, the expansion in multipolar components (3) was trun-
cated at some chosen, state-dependent l value. With
respect to this truncation, the choice of spheroidal coor-
dinates turns out to be particularly rewarding, because

M, PL, L'
YsM( y )GMP (g gi. E ) YM(

where

P=+, —, M=O, +1,+2, . . . ,

1~1+2k, P=+' ' — lMl+2i+I, p= —, k=0, 1,2, . . . .

With the Dirac 6 function in spheroidal coordinates'

5(r —r ') = 5lg —g')5(g —g')5($ —Q'),1

a 2($2 ~2)

(12)

(13)

(14)
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using expression (12) in Eq. (11) and performing an in-
tegration over angular coordinates as in obtaining Eq. (5),
the matrix Gl I (g, g', E ) is determined as follows:

(g —1) L(L—+ 1)— 5L. I
1 d d M
2 d. $2

—V, ,(a, g)+ED, ,(a, g) G, ,' (g, g', E)

=&(4—k'»L, L (15)

More details on obtaining the solutions for the Green's-
function matrix Gl I (g, g'; E ) are given in the Appendix.
Having obtained Gl I (g, g';E) and the ground-state
solutions for the occupied levels (3) we can determine the
independent-particle susceptibility g0. Once more, be-
cause the angular momentum is not conserved, we write

That means for small eccentricity (a ((zo) (Refs. 12 and
13) or for distances far away from the spheroid, for which
ag~r, ' where r is the radial distance from the center of
the spheroid we recover the usually encountered pertur-
bations (used for the definitions of multipolar polarizabil-
ities').

If the point r at which we observe the induced poten-
tial V'" (r;rv) is in the region outside the range of the in-
duced electronic charge density of the cluster (where the
induced charge density practically vanishes to zero for all
computational purposes), then the quantities in expres-
sion (18) can be integrated out over the coordinate r ' in a
closed form and we obtain

Vmd( .
) y YM( y) Q

M

LM a CL ~M~

Xo(r, r', ~)=- & g Yl*. (n 4)[XD]i,'I'. (k 0'~) x, , ( )E, ( ), (21)

M, PL, L'

X Yl (i)', p'), (16)

V'" (r;co) = f d r', p'" (r ', co) .

For reasons which become clear immediately, we consid-
er the response to a very special external field,

aL
V'"'(r;co) = El (co) —Pl (g) Yl (il y) (19)

where the coefficient CL ~~~ is the first coefficient in a
series expansion of the associated Legendre polynomial
P (g) (Ref. 15) (see the Appendix).

Here the special form of V'"' has been taken, because
we want to connect our formalism to the more conven-
tional definition

V'"'(r;cv) ~ = EL (ro)r YI (cos6, $) (ag—~r) .
ag)) a

(20)

where, due to the restricted symmetry of the problem
P, M, L,L' are allowed to take on values as in Eq. (13).

We can obtain the components [go]L 'I. (g g rv)

straightforwardly from Eq. (10). If we use a similar ex-
pansion as in Eq. (16) for y in the TDLDA response
equation (8), we arrive at an equation for the various
components of y. In practice, we solve Eq. (8) on a grid
in the g coordinate and truncate the angular-momentum
expansion in Eq. (16). This leads to a set of coupled
linear equations which can be solved straightforwardly.
More details on constructing [yo]L'1.(g, g', cv) and calcu-
lating g are given in the Appendix.

Anticipating the solution y of Eq. (8) we turn to the
solution of various polarizability tensor components: As
explained in detail in Refs. 8 and 9 a general external po-
tential V'"'(r; co ) sets up an induced charge density
p'" (r;cv), which is given by

p'" (r;co)= f d r'y(r, r', co)V'"'(r';co) . (17)

The induced charge density p'" (r;co) gives rise to the in-
duced electrostatic potential

where aL 1(cv) is the dynamical polarizability matrix.
Ql. '(g) and Cl ~~ in Eq. (21) are the associated Legen-
dre function of the second kind and the first coefficient of
its expansion in powers I/g for g) 1, respectively (see the
Appendix).

The identification of nl I (cv) as the polarizability ma-
trix could be made, because we have for ag ))a

M

Ql, (g') ~ ~, +, (r =a/),
a +'CL.

~Mi

(22)

and for the case of a spherical (a ~0), closed-shell clus-
ter, all the equations and expressions of Ref. 9 are
recovered. In this limit, the polarizability tensor
aL I (cv) becomes the usually encountered L-pole dynam-
ical polarizability al (cv) (Ref. 9)

&I. ,i«) &s. (&)ol. , l. .M

a -~0
(23)

This can be a useful check of the numerics: Calculate the
spherical result via spheroidal code. More details on the
derivation of Eqs. (17)—(23) are given in the Appendix.

The important and new feature for open-shell
clusters —in contrast to the closed-shell ones (for
N=2, 8, 20, 40, 85, 91)—is that the angular momentum of
the external field EL (ro) is not conserved The cha.rge
density and potential, induced by EL (cv) consist of many
multipolar components.

Surprisingly enough, this feature has been overlooked
in all recent work about this subject. Tacitly, this was
the reason why in Refs. 8 and 9, by one of us (W.E.), only
the closed-shell clusters were explicitly studied. Another
interesting feature is the M dependence of the polarizabil-
ity aL ~ L (co) which in effect leads to different polarizabili-
ties along different axes of the spheroid.

III. RESULTS AND DISCUSSION

The simplest case to study is the response to a homo-
geneous external field along the z axis, the axis of the ro-
tational symmetry of the spheroid, where the electrostatic
potential is
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V;"'(r;co) = E—,(co)z,

or, in (prolate) spheroidal coordinates

V;"'(r;co)= —E, (ra), P, (g')Y, (q, P)
1,0

with E, (ro)—:
4~

1/2

E,(~), (24)

V'"'(r;co)=EI(co) PI(g) —,'[YI(rj, g) —Y, '(rI, P)]
1, 1

' 1/2

with EI(co)= 8~ E (co) . (25)

With the help of these external fields the polarizability-
matrix components aL, (co) and al, (m) (p=+1, —1)
can be calculated, where for obvious reasons we write

a, (co) =a, , (co) (26)

and

a (co)= —,'[aI, (co) —a, ,'(co)] . (27)

Because of the restricted computer time, we give in what
follows just the result for one particle number, namely
X= 10. We chose this particle number because, for
X= 10, the ground-state calculations give us a pro-
nounced prolate spheroid with the major-to-minor axis
ratio zp/pp: 1.63, and furthermore, the experimental po-
larizability' ' and photoabsorption cross-section re-
sults' exist for this particle size.

The static results for %= 10 are

a, (0)/R =2. 15, a (0)/R =1.20,
and defining an average polarizability,

a„(0) = —,
' [a,(0)+2a (0) ] = 1.52R

This is to be compared with the experimental value'

a',"„'(0)=2.02R

As it was for the spherical case (the closed-shell cluster
case) the theoretical polarizability is too low by about
20% with respect to the experimental values. '' For
reasons discussed recently by Stampfli and Bennemann, '

the main reason for this deficiency of the TDLDA lies in
the following: Within the TDLDA each electron is sub-
ject to the action of the external field plus the mean field,
produced by the polarization of all the electrons, includ-
ing itself. This means that even a single electron under
the influence of an external field will feel an additional
field due to its own contribution to the induced charge.
This "self-interaction" is, of course, unphysical and is an
intrinsic flaw of the formalism, which should in principle

and to the homogeneous field, perpendicular to the z axis,
with the electrostatic potential

V'"'(r;co) = —E (co)p,

or, in (prolate) spheroidal coordinates

plasmon a'(0)
a(0)

1/2
cl

)

with the classical static polarizability a'(0) given by

a'(0) =R (29)

be corrected.
Too low static polarizability in the TDLDA will be in

turn related to too high frequencies for the dynamical
electronic excitations, of about 10—15 %, since dynamical
and static properties of the excitation spectrum are con-
nected by the sum rules. ' Aside from these changes, all
other spectral features (spectral structure and oscillator
strengths) are expected to be the same. Of course, the in-
trinsic flaws of the TDLDA have to be corrected also for
the dynamical case, as it was done for the static one. '

However, even for a static case the self-interaction
correction requires a great deal of numerical effort. This
would be even much more difficult for the dynamical
case. So, until this is done, the TDLDA remains the best
theory for investigating the dynamical electronic
response properties of systems, based on the ground-state
local-density approximation calculation.

As was the case for spherical clusters, we expect the
spectrum [for each polarizability a, (co) and a (co)] to
consist of single-pair lines and a surface-plasmon line,
where generally the lines are at different positions for u,
and a . Because the photoabsorption cross section o(ro)
is proportional to Ima(co), ' the imaginary part of the
dynamical polarizability is in the focus of interest. In
comparison to the spherical case, discussed in detail in
Refs. 8 and 9, the polarizability is directionally depen-
dent, with (of course) different screening properties along
the symmetry axis and perpendicular to it. Hence we
present in Figs. 1(a) and 1(b) the various components of
a(co) and in Fig. 1(c) the "equivalent" spherical a(co) for
N=10. Similar to Refs. 8 and 9, the small numerical
damping, 6=10 Ry=0.0136 ev was used, instead of
the positive infinitesimal 0+ in Eq. (10). This was done
for purely numerical reasons, in order to avoid divergen-
cies around the poles of the Green's function, defined in
Eq. (11). Such a small value of b, does not affect the cal-
culated spectral structure and spectral weights.

In all figures the dotted line gives the result for n using
a gp, which means "screening without electron-electron
interaction, " or more physically "screening without col-
lective effects;" and the solid line gives the full TDLDA
a(co). We want to stress once more that Fig. 1(c) is in-
trinsically wrong, because it ignores the coupling of vari-.
ous angular momenta discussed above. Both a, (co) and
az(co) show a considerable amount of fragmentation of
the total oscillator strength, as was the case for N=20 in
the spherical case (discussed in detail in Ref. 8). It seems
presently impossible to assign one line as being a collec-
tive one. This seems to indicate the microscopic break-
down of any plasmon-pole approximation. If we ignore
this for a moment, the application of the surface-
plasmon-pole approximation ' would give us the verti-
cal lines in Figs. 1(a)—1(c) for the corresponding surface-
plasmon frequencies, in agreement with
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and the classical Mie frequency given by

3 /2a. u
rs

(30)

compared to the experimental data, where one measures
the directional average of the photoabsorption cross sec-
tion o(cu). Therefore we present in Fig. 2(a) this direc-
tionally averaged quantity

where the Wigner-Seitz radius is

rg/ao =4
o (cu) = [Ima, (co)+2 Ima (cu) ],4776)

3c
(31)

for Na, with ao the Bohr radius.
None of the figures discussed so far can be directly

which looks rather diS'erent from Fig. 1(c). Hence we see
that it really does not make sense to describe open-shell
clusters by the spherical picture, as is very often done in
the literature (e.g. , Ref. 21).
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FIG. 1. Imaginary part of the various complex-dipole polari-
zabilities for the Na» cluster, in units of R', with R =X' 'rz,
with N =10 and r~ =4 Bohr for Na. (a) Shows the z component
e, (co) and (b) shows the p component for polarization perpen-
dicular to the symmetry axis. The frequency is in units of the
classical Mie frequency for Na, co„=0.250 Ry [Eq. (30)]. Solid
line, TDLDA; dashed line, independent-particle response,
sometimes called LDA polarizability. (c) gives Imcz(co) in the
spherical approximation, which is —for open-shell clusters—
clearly insufficient. In all figures the vertical line gives the posi-
tion of the dipolar surface-plasma frequency obtained from the
sum-rule equation (28) of the main text, using the correspond-
ing, microscopically calculated static polarizability for each
case. This sum-rule description fails to reproduce the micro-
scopic fragmentation of the plasmon line observed for both po-
larizabilities [see (a) and (b)]. This fragmentation is a particle-
hole pair eA'ect in the same way as discussed for the spherical
case for N=20 in Ref. 9. The collective nature of excitations
can be identified as described in detail in Ref. 9.
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FIG. 2. (a) Orientational average of the photoabsorption
cross section of the Na» cluster, following from Eq. (31) of the
main text, as a function of frequency &=co/co, ], with co, ] the
classical Mie frequency [Eq. (30)]. (b) Same as (a) as a function
of wavelength, shown in the energy window 0.59~co+0.95,
which is similar to that of the experimental spectrum (c). (c)
Photoabsorption cross section of the Na» cluster, as measured
by the Berkeley group (Ref. 17). The solid line is a so-called
theory curve of Ref. 17, obtained from the surface-plasmon-pole
approximation with an arbitrary damping I =0.15' ]„, For
more details see Ref. 17. On comparing theory (b) with experi-
ment (c) we see that the plasmon line positions are in fair agree-
ment (within the limits of accuracy of the TDLDA, as discussed
in the text). However, the theoretically determined linewidth is
seriously in error. The reason is that at the present level of
theory the coupling of the plasmon line to thermal cluster-shape
fluctuations is missing (Ref. 10). A calculation along this line
has been completed (Ref. 11).



43 COLLECTIVE EXCITATIONS IN OPEN-SHELL METAL. . . 1327

To facilitate comparison with experiment we present in
Fig. 2(b) the cross section as a function of wavelength (in
nm) in the range where experimental data are available. '

On looking at these figures, we think it is premature to
conclude that the plasmon-pole approximation is the
right way to interpret the experimental data. In contrast,
as was discussed in detail in Ref. 9 for %=20, at those
low particle numbers everything is coupled together and
only the microscopic response formalism is able to ac-
count for all the complexity of o (co).

If one artificially broadens the sum-rule vertical line
with a lifetime, the broadened line overlaps with the mi-
croscopically calculated lines [the solid line in Fig. 2(c)].
But this is not a valid procedure. This agreement is in
our view a brute-force fitting result. In order to accentu-
ate this we stress that no first-principle microscopic
theory can produce such a big damping of collective exci-
tations, as the one resulting from this fitting procedure
( =15% of the surface plasmon frequency). The full pos-
sibility of Landau damping within the TDLDA is given
in our calculation, which takes into account all one-
electron excitation channels. The probability for the
higher-order (two-electron two-hole) excitations, going
beyond the TDLDA, is negligible for so small particles,
as considered here.

In our view, the most reasonable explanation for the
origin of so broad experimental photoabsorption features
is therefore the one recently proposed by Pacheco and
Broglia The clusters in molecular-beam experiments
are not frozen, but they isomerize. The most important
vibrational mode influencing the dipole photoabsorption
cross-section frequencies are the quadrupolar ellipsoidal
shape fIuctuations. ' For every different shape of the
cluster the sharp absorption lines of Fig. 2(b) will lie in
slightly different positions. As the shape fluctuation fre-
quencies are approximately three orders of magnitude
larger than the frequencies of photoabsorption-induced
electronic transitions, one records in the photoabsorption
experiment the superposition of all the photoabsorption
spectra as in Fig. 2(b), corresponding to the average over
all the thermally excited cluster shapes. So, the overlap
of a multitude of sharp spectral lines as in Fig. 2(b) yields
the broad experimental photoabsorption structure of Fig.
2(c). We recently completed work along these lines in the
framework of our model, obtaining very good agreement
with experiment. "

um model. Also, it was discussed why the very popular
semiclassical approach' to the spectra can be misleading
in interpreting the experimental data, in view of the de-
tailed description given in this paper. Certainly, the
sum-rule description results in an artificially broad damp
ing to account for the line fragmentation found micro-
scopically [see especially Fig. 2(b)]. Also, it might well be
that the sum-rule description results in the wrong fre-
quencies for the plasmons. Missing in the present formal-
ism are the ionic structure effects. However, similar to
plasmons in real solids of Na, K, and Li, excepting
damping, those effects are expected to play a minor role.
We expect the ionic cores to introduce the additional
plasmon fragmentation channels, which will correspond
to an additional damping in the bulk solids. "

A definite answer concerning the problem of linewidths
of photoabsorption spectral structures can be given, in-
troducing in the present formalism the coupling to shape
fluctuations as proposed by Pacheco and Broglia, ' and
this was presented in Ref. 11. Furthermore, we would
like to mention that the breakdown of the sum-rule inter-
pretation for %=20 (Ref. 8) has also been pointed out by
Yannouleas et al.
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APPENDIX

In this appendix we shall give more details on the cal-
culation of the Green's function (12) and on the deriva-
tion of the dynamical polarizability tensors col. I (co) in

Eq. (21). Let us write once again the matrix differential
equation for the Green's-function matrix Gl I " ( g, g'; E )

[Eq. (15)]:

1 d 2 d M
(g —1) L(1.+ I)——

2 dg dg g2

—Vl ~ I ( a, g ) +EDI I ( a, g ) Gl I - ( g, g'; E )

IV. CONCLUSION

A fairly complete description of the dynamical polari-
zability of small open-shell clusters is given within the
frame of the time-dependent local-density approximation
(TDLDA) applied to the self-consistent spheroidal jelli-

From the textbook solutions ' we know how the
Green's-function matrix GL I (g', g';E ) can be construct-
ed from appropriate solutions of the Schrodinger-like
equation (5). Explicitly, we have 6

gl. L""(g;E)[W ' (E)]1..'I ".[h ' ((',E)]I" 1. ,
MP (g.E)[PrM, J'(E )] 1

[
M, J'(g&. E )]

(A2)

Let us assume that in the expansion of the wave function, Eq. (3), generally A, ,„different l values appear. In this case,
the matrices jL z. (g';E) and hL z ~ (g;E) in Eq. (A2) have a dimension A, ,„,„by A, „. Then, the k,„columns of
jl I "(g;E ) are given by the "radial" parts of the various linearly independent solutions of Eq. (5) with c.; ~E, regular at
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the origin of the radial coordinate g. The matrix hr 1., (g;E) is defined in exactly the same way, but the various solu-
tions now fuMll outgoing wave boundary conditions. '

Finally, the Wronskian matrix O'I I (E ) is defined as follows:

h M, P( g.~ ) A ', 1. (4 &)-M, P (A3)

The derivative operator d /dg in the second set of large parentheses on the right-hand side (rhs) of Eq. (A3) is active just
inside these parentheses. The Wronskian matrix is independent of g. In Eqs. (A2) and (A3) the tilde denotes the tran-
spose of a given matrix.

Having obtained the Green's-function matrix Gz I ~ (g, g'; E ) and the ground-state solutions for the occupied levels, we

can determine the independent-particle susceptibility Xo [Eq. (16)]

Xo(r r'~)= g»g (n 0)[XD)i;i(k 4' ~»i (n' 0') .
M, PL, L'

From Eqs. (10), (12), and (3) it straightforwardly follows that the angular-momentum matrix components

[Xo]I 'z ( g, g'; co ) are constructed as

L I L" L' I' L"'
(I

m, p, n 1, l' L",L"'

X [Xl ~(g;c. „)G~., ~-.' ~'(g, g';s, +ca+id, )XI '~(g', s „)+cc (co.~. —co)],

(A5)

where v, are occupation numbers of Kohn-Sham or-
bitals g z „ in the ground state. In (A5) we introduced
the notation

where

=min(g, g'), g =max(g, g'),

L l l'
, = f

deaf

driYI (r), $)&i™(rj,g)

X I;*. (i),P) . (A6)

and where Pz (g) and Q~ (g) are associated Legendre
functions of the first and second kind, respectively. '

Also, we can in principle introduce the multipolar ex-
pansion of the second term on the rhs of Eq. (9),

In a similar way, we may now construct explicit equa-
tions for the multipolar matrix components of the self-
consistently screened TDLDA susceptibility (8),

8 V„,[n ]

Bn
= X I'2i(n 0)[V.'. )~i(k) .

n —n (r)
(A 10)

X(r r';~)= & g I'i™(n4)[X]iÃ (k k' ~)IP(n' 0') .
M, PL, L'

We introduce the matrix Bl I (g), whose matrix elements
are

(A7)

The Coulomb interaction 1/lr& —rzl, appearing in the
kernel (9), can be written in spheroidal coordinates as

L' L 2l
B«'&)= & M M 0 [V' ) &(&)

I

(Al 1)

y.s M( y ) U M( g gi ) y M(

with

(A8)

UM(g gi) ( I)M 4~ & —IMI '
[P M (g )Q M~(g ))

~ (I.+ IMI)t

(A9)

with [ V,', ]~1(g) given in Eq. (A10). As the derivative of
the local-density exchange-correlation potential on the
left-hand side (lhs) of Eq. (A10) contains unphysical cusps
whose angular-momentum expansion converges very
slowly, we retained only the l =0 (spheroidally averaged)
term on the rhs of Eq. (A10) in the first practical calcula-
tions performed. Integration over angular coordinates in
Eq. (8) gives us a matrix integral equation, coupling mul-
tipolar components, similarly as in Eqs. (5) and (15):

[X)i;i (k k'~) = X a f, d&i &I., l. ,f(k ki) [&0)I..'I. , (k k»~»1. , I., (ki»1, 1., (ki)
17 2' 3

2 +0 LL 2 ~ DL, L 2 UL 2 1 DI,L 1 + I,L' 1

(A12)
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In practice, we solved Eq. (A12) as a set of linear equa-
tions, using the discrete number of mesh points g and
truncating the multipolar matrix expansions, as already
discussed. We may now do the final step, deriving the ex-
pressions for the dynamical polarizability tensor

i, (&).M

As explained in detail in Refs. 8 and 9 a general exter-
nal potential V'"'(r;co) sets up an induced charge density
p'" (r;co), which is given by

'" (r;co)= f d r'y(r, r', co)V'"'(r';co) . (A13)

This induced charge density gives rise to the induced
electrostatic potential

metry, the parity P and the azimuthal quantum number
M are being conserved.

We consider the response to a very special external
field,

V'"'(r;ai)= EP—(a)) P' '(g)&r (rj, P), (Al&)
L, IMI

where the coefficients CL ~~~ are the coefficients in a
series expansion of the associated Legendre polynomial
Pz~ ~(g) of the first kind, '

Pl~I(g )
—(g& 1)IMI&2 P (g )c

V'" (r;co) = fd r', p'" (r ', ai) .
1

lr —r'l (A14)
~ =

t &L+ ]M[)y2j
1) Ml ~&C2j r- —l~—

l g2j —r- —I~I
L, lMl

All of these quantities can be expanded in spherical har-
monics,

where [x ]=—smallest integer )x . (A19)

V'(r;co)= g [V']P(g;co)Yr (il, g), i =(ext, ind),

(A15)
d( .

) y [ &nd]M(g. ) yM(
L, M

So, Eqs. (A13) and (A14) give, after integration over an-
gular coordinates with the help of Eqs. (A15), (AS), (A9),
and (6),

The form and the normalization of the external potential
is taken, as given in Eq. (A13), because besides satisfying
the Laplace equation

V V'"'(r;co)=0, (A20)

in the limit ag))a (for small eccentricities or large dis-
tances from the spheroid, when ag~r) the external elec-
trostatic field (A18) becomes a (L,M ) multipolar external
field in spherical coordinates

V'"'(r;co) = —Er (co)r FP(cos&, P), (A21)

XDi, i„(g)[V'"']P,(g', co),

(A16)

[ V'" ]r. (g;co)= g a f dPUi~(g, g')Dz r. (g')
1

md]M(gi. ~ ) (A17)

Because of the open-shell structure, the response of the
system is nondiagonal with respect to the angular
momentum. However, due to the chosen restricted sym-

which is usually used as an external field in studying the
multipolar electronic response. r, 0, $ is the standard no-
tation for the radial and the two angular coordinates of
the polar spherical coordinate system, respectively.

If the point r at which we observe the induced poten-
tial V'" (r;ai) is in the region outside the range of the in-
duced electronic charge density of the cluster (where the
induced charge density practically vanishes to zero for all
computational purposes), then g) g' in Eq. (A17), and us-

ing Eqs. (A8) and (A9) we have

v,.d(r. ~) ~ (
1)M4~ &' —l~l '

g Ml(g)I ~(q p) pa f "gg'pl~I(g')D~ (g')[&& d]M„(g'.„)
L' M 1

where for the special external potential, Eq. (A18), and using Eq. (A16) the induced charge density is given by

(A22)

(A23)

Since by using expressions in Ref. 15, we can expand Qr ~ '(g) (for lgl ) 1)

oo
1

r. '+lM +2.+igL'+~M +2n+i (A24)

It is reasonable to rewrite Eq. (A22) as follows:

V d( .
) g yM( y) g IMI (g) M

( )EM( )
1)M

I.', M a L', (M(

(A25)

where we have defined the polarizability matrix ar, r (co) as follows:
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ctL, ', L(co) =(2L+1) '
CI' im~a dg'a PL ~ (g')ctL, I (g', co) .M {L —~M ~)!, IMI

(L'+ M )!

Here, the matrix of the polarization charge density is given as

(A26)

~L', L(k ~)
2L + 1

g DL, ', L" (g') y a j dC"XL",L"'(4 4 ~)DL'", L(k ) L M PL
L" L'" C

(A27)

The identification of ctL ~ t (co ) in Eq. (A26) could be
made, because for ag))a

[Xoli,'I'. (k 4'~) IXo]t.(r r' ~)oi, ia~0
(A29)

QL' (g) ~
L +, (r:ag)

L', IMI

(A28)
where [Xo]L (r, r', co) is the L-pole independent-particle
susceptibility for the spherically symmetric problem. In
this case it directly follows

and additionally, for the case of a spherical (a —+0),
closed-shell cluster, all the quantities in our spheroidal
response equations go over to the corresponding quanti-
ties for the spherically symmetric problem of Ref. 9. In
this limit, [V' ]t 1(a,g)~[ V' ]on(r)5, o5t. o in Eq. (6),
because of spherical symmetry. From this it follows that
Eq. (5) becomes decoupled for various l values. [The
wave-function expansion (3) contains just one angular-
momentum component. ] All of the m states belonging to
a given l value, m = —l, —(l —1), . . . , (l —l), l, are de-
generate and all v, are equal within this group. Also,
due to the same reasons GL t (g, g';E )

~GL(r, r';E)5L I . It is then straightforward to show,

by using the properties of the integrals of three spherical
harmonics (A6), that in this limit the expression (A5)
goes over to

xi,'i (4 4' ~) xi(r, r', ~)fL,L,a~0

and according to this

crt L (g;co) ctL(r;Co)5L L
M

a~0

(A30)

(A31)

and

a, (~)=j"dr r'a, (r;~) . (A33)

where Xt (r, r';co) and aL(r;co) are the L-pole TDLDA
susceptibility and the polarizability density of the rota-
tionally invariant electronic system, respectively,
fulfilling the relations

4~ 2 -
~ I +2at ( r, to) = — r dr '{r '

)
+

XL {r, r ', ro )
0
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