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A multimetrical space group G is the symmetry group of a pattern having lattice periodicity in an
aSne space made multimetrical by attaching to it a set of metrics of diFerent signature. The Eu-
clidean metric tensor is always supposed to be a member of the set. The point group K of G is gen-
erated by elements leaving the lattice invariant and transforming some of the metric tensors of the
set into another one of the same set. When the pattern describes a crystal structure in the point-
atom approximation, the Euclidean subgroup Go of G is the space group of the crystal. When the
pattern is defined in superspace, i.e., is obtained by the embedding of a quasicrystal structure (as in
the cut-projection method), the subgroup G&R of G leaving the (lower-dimensional) physical space
invariant is the scale-space group of the quasicrystal.

I. INTRODUCTION

The search for an appropriate characterization of the
possible symmetries of quasicrystals in terms of crystallo-
graphic groups leads to considering the embedding of the
structure in a higher-dimensional Euclidean space (the
superspace) according to the rule

FT3 FT„

p(r)~p(hi, . . . , h„):—p, (hi, . . . , h„)~p, (r, )

where FT„denotes the n-dimensional Fourier trans-
form. '

In that way the Z-module properties of the diAraction
pattern and the rotational symmetries, together with as-
sociated extinctions rules due to corresponding nonprimi-
tive translations, are properly taken into account by
means of a higher dimensional space group (the super-
space group). One misses, however, scaling symmetries
like those found in tiling models obeying so-called
inflation and deflation rules typical for a one-dimensional
Fibonacci sequence, or for a two-dimensional Penrose til-
ing.

Actually, the same superspace approach also allows the
description of these transformations in terms of invertible
matrices with integral entries mapping injectively the em-
bedded structure into itself. It is even possible, by adopt-
ing a direct space embed. ding in the superspace which
essentially corresponds to the so-called cut-projection
method, ' to describe the quasicrystal in terms of a
higher-dimensional structure which is invariant with
respect to those transformations. " It is then justified
to speak of crystallographic point-group symmetries
which induce in the quasicrystal structure scaling trans-
formations.

Looking for a crystallographic group allowing to take
into account both the rotational and the scaling sym-
metries, one then arrives at the scale-space group, which
contains as a Euclidean subgroup the superspace group of
the embedded structure. ' '

The author believes that beside lattice translational

symmetry, metrical invariance is an essential ingredient
of a crystallographic symmetry group. From this point
of view, there is a serious problem, because the scaling
transformations considered above do leave a (higher-
dimensional) lattice invariant but, being of infinite order,
are incompatible with a Euclidean metric g, in super-
space.

Exploring the well-known models for the observed
quasicrystal structures (in one, two and three dimensions)
one sees how an indefinite metric tensor g; can be at-
tached to a basis of the lattice of the embedded struc-
tures, in such a way that the scaling integral matrices
leave that metric tensor invariant (possibly up to a
sign). ' Scaling invariance is then associated to auto-
morphs (or to negautomorphs) of an indefinite integral
quadratic form. '

Two ways are then open for not giving up these metri-
cal invariances, i.e., that for the scaling and that for the
rotational symmetries. (i) Following the first way, one
simply increases the number of dimensions of the super-
space: In particular, a space of 2n-dimensions with a
metric tensor g, eg; will do the job. (ii) ln the second
way, the superspace dimension considered is a minimal
one (equal thus to the rank n of the Z-module), and one
attaches more than one metric tensor to the same super-
space that was at first considered an affine space in which
the lattice translational symmetries are well defined.

Here, the second approach will be followed and this
eventually leads to the concept of multimetrical space
group. One can then forget the quasicrystals, the super-
space and all that, and simply consider periodic patterns
of given dimension admitting a multimetrical space group
as symmetry. One then recognizes the potential applica-
bility of this concept to normal (i.e., commensurate)
three-dimensional crystals.

For a precise definition of the mathematical concepts
underlying n-dimensional crystallography and used here
without a particular explanation, the reader is referred to
the book by W. Opechowski on crystallographic and
metacrystallographic groups. '
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II. MULTIMETRICAL SPACE

Consider an n-dimensional affine space V and a basis
[e1, . . . , e„) orthonormal with respect to a set of metric
tensors (g j with v=1, . . . , 2":

ej j (g v )lJ v!J EJ
(2)

where the di6'erent scalar products are denoted by o, re-
spectively. Accordingly, the g tensors are diagonal with
+1 as diagonal elements and will be called admissible
metric tensors. The corresponding orthogonal groups are
denoted by O„(n) and the inhomogeneous ones by
IO„(n).

By convention, the v=0 case will be used for the Eu-
clidean metric, and in that case the scalar product symbol
is generally simply omitted. It is worth noting the simple
matrix relation:

one is led to consider only transformations leaving one
metric tensor of the set invariant. Say,

Ag„g =g„.
As one knows from the theory of integral binary quadra-
tic forms already, that is not enough for a proper charac-
terization of the invariant transformations. If g isP
indefinite there are cases where negautomorphs play an
important role. They are in fact negative units of a corre-
sponding quadratic field. ' ' For a negautomorph A of
g„one has

Ag„A = —g„.
For dimensions higher than two, direct sum operation
has also to be admitted. Suppose now that one has
g =g„ 1, then B= A @3. is neither an automorph, nor a
negautomorph of g and it requires a transformation law
like

(g
0 )2 g

0 (3)
Bg B =g, with g = —g„1L .

A. Multimetrical lattices

Consider in V a lattice A with basis a &, . . . , a„:

a;= e cz-;
j=l

(4)

In this case, the two relations of Eq. (8) are satisfied. In
general, Eq. (8) expresses the condition that the admitted
multimetrical transformations correspond to a direct sum
of automorphs and/or negautomorphs of the compatible
metrical tensors (including the lower dimensional ones).

having attached a set of metric tensors g (A) = (g, J.

(g, )j=a;&&a~ .

In matrix notation and denoting transposition by a
"tilde" one simply has

g.=(zg'. o. .

In particular for n =2, one gets a corresponding binary
quadratic form (a, b, c):

b
a

2
g =(a, b, c)=

C
2

The holohedry H of A for given g (A) is then the sub-
group of Gl(n, Z) generated by all g(A)-multimetrical
transformations. The product of two multimetrical
transformations need not to be multimetrical, but if two
multimetrical transformations leave a pattern invariant,
so does their product.

Before proceeding further and introducing concepts
like multimetrical point and space groups, it is appropri-
ate to give a concrete example in order to help achieve a
better understanding of the present approach.

C. A first example of multimetrical transformations

Considered is a two-dimensional affine space V with
basis vectors e„e2. The admitted metric tensors are

Then this set of metric tensors is said to be a compatible
set with respect to A. Let us remark that in many cases,
while considering the multimetrical symmetry of a
periodic pattern (a concept made more precise below) it is
not necessary to consider a complete set of compatible
metric tensors, a subset of these very often suffices. In
what follows, we will assume that such a subset always
includes the Euclidean metric tensor go.

B. Multimetrical transformations

For a given set of compatible metric tensors g (A) of a
lattice A, admitted multimetrical transformations A have
to satisfy the set of coupled conditions:

Ag A=g„, Ag„i=g

1 0 1 0
0 —1

—1 0
0

0

—1 0
0

cosh' —sinhy

sinhy cosh' with tanhy =&5—2,

A lattice A with basis vectors a &, az is defined

1 +11 1+ 21 2 (+11 21)

2 12el ++22 2 ( 12 22)

Parametrizing the entries of the matrix cz as

(12)

(13)

(14)

for some g„,g„&g(A ) and 2 E Gl (n, Z).
This definition deserves a comment. Quite naturally,

one gets a A-compatible metric set g(A)= (go, g, ,g2)
where
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1

go =ag&a =
system of nonprimitive translations v (K) satisfying the
Frobenius congruence relations

1

2

v ( AB):v—( A)+ Av (B)(modA) (for A, B HK ) (21)

g& =Qg&a= 1

2
(15)

g2=

We now consider the following multimetrical transforma-
tions:

for a normalized v: v (I„)=0. In this definition no dis-
tinction is made between the two different concepts of lat-
tice and of lattice group translations.

A general element of the multimetrical space group
G = [A,g (A), K, v (K)] can be written (in the Seitz nota-
tion) as

0 1—1 0
0 1, B

1 0

1 0 1 —1

—1 —1 ' 0 —1
D=

(16)

g =
I A~a+v(a)I (22)

gg'=IAA'~a+v(A)+A [a'+v(A')]I . (23)

with A EK,a&A, and v(a)&v(K), the product rule be-
ing that of the elements of A (n):

The corresponding invariance of the various metric ten-
sors is given by

In the same way as for space groups, the only translations
are lattice translations spanning the n-dimensional space
V

Ago A =go, BgoB =go, Cgi C=gi, Dg, D =g),
II„~a+v(3.„)I=a EA . (24)

(17)

K =I A, B,C,D] (18)

is then a multimetrical point group of the lattice A.
These generators are not the only multimetrical point

group transformations. Indeed, an additional improper
negautomorph, which is in fact the Fibonacci transfor-
mation matrix, can be expressed as product F = ABC, the
square of which F =DC is an hyperbolic rotation by
$=2lnr with r=(1+V'5)/2 the golden number. Furth-
ermore, the Euclidean rotation by ~/2 is expressible as
E = AB and appears to be at the same time an auto-
morph of the Euclidean binary form (1,0,1) and a negau-
tomorph of the indefinite quadratic form (1,—1, —1).
We thus have with

1 0
0E= 0 (19)

so that the multimetrical condition Eq. (8) is satisfied.
These are all improper automorphs of the quadratic
forms involved.

The subgroup K of Gl (2, Z) given in terms of the set of
generators

The group of lattice translations is, therefore, normal in
G. The factor group G/A is isomorphic to K, so that G
is a group extension of A by E. Inequivalent group ex-
tensions can be obtained from the elements of the second
cohomology group H2(K, Z").

Change in the choice of the origin of the space V trans-
forms a system of nonprimitive translations into an
equivalent one:

v'(A)=v(A)+(A —'l.„)f (for fH V) . (25)

Furthermore, as such systems obey the Frobenius
congruence relation (21) and are defined only as modulo
lattice translations, inequivalent systems of nonprimitive
translations appear as elements of the erst cohomology
group H, (K, IR"/Z"), the unit element of which yields the
semidirect product of A by K. The general situation is,
however, very much different from the corresponding one
for space groups, where these two cohomology groups
are isomorphic. Here, the point group K is not finite.
(This is the normal situation, the special case of K finite
not being considered here, because it is fairly trivial from
a multimetrical point of view. ) Therefore the two coho-
mology groups are, in general, not isomorphic:

the corresponding metrical relations: H ) (K, R"/Z" ) W Hq(K, Z" ) . (26)

EgoE =go~ Eg iE =g2, Eg2E g1

Fg P=g Pg F=g (20)

These two groups are, however, related by a connecting
homorphism appearing in a long exact sequence of coho-
mology groups.

which all are admitted multimetrical transformations of
the lattice A.

IV. EXAMPLES OF MULTIMETRICAL SPACE GROUPS

III. MULTIMETRICAL SPACE GROUPS A. A first example

A multimetrical space group G in n dimensions is a
subgroup of the affine group A (n) defined in terms of the
following: an n-dimensional lattice translation subgroup
A; a point group K, subgroup of the holohedry H of A
with respect to a set g (A) of compatible metric tensors; a

A first example rejects the properties of a quasiperiod-
ic chain that one gets from a strip-projection of an hexag-
onal lattice. The dimension of V is 2 and the set of ad-
mitted metric tensors is as in Eq. (12). The lattice A is
generated by the two basis vectors
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3
(27)

0 1 1 1 1 0
1 0 ' 0 —1 ' 2 —1

so that one gets the two quadratic forms: the Euclidean
one (1,1,1) of the hexagonal lattice, and the indefinite one
(2,2, —1) of the lattice denoted as M~ within the frame-
work of two-dimensional relativistic crystallography. '

The corresponding two metric tensors are

1 1 1

go= i 1 ~ g&
=

. 2 . 2 2.
The generators of the point group K are

form equal angles with respect to the light cone.
The point group 6m 4m is thus generated by reAections

and represents the multimetrical generalization of a Cox-
eter group.

B. A second example

One gets a second example by looking at a superspace
embedding on a square lattice of an octagonal chain, i.e.,
at the chain defined in terms of vertices of the two-
dimensional octagonal tiling aligned along a given direc-
tion (see Fig. 1). Again the dimension of V is two and
the set of admitted metric tensors is as in Eq. (12). The
basis of the given lattice A is parametrized as in Eq. (14)
but now with the y value given by

tanhy =V2 —1 .

and we can denote this point group by

K= I A, B,CI=6m4m . (30)

Accordingly, one finds for the A-compatible set of metric
tensors g (A)

(31)=6,E=AB =

and a hyperbolic rotation by p =ln(2+ &3 ) having a
trace equal to 2 cosh/ =4

(32)

The symbol m is used for indicating a hyperbolic mirror.
A pair of such mirrors generates a hyperbolic rotation, in
quite the same way as the product of two Euclidean mir-
rors conventionally denoted by the letter m generate a ro-
tation. Indeed, the group K contains a sixfold rotation by
an angle P=vr/3

r

0 —1

1 0
go =+2

() (36)

The holohedry of A with respect to the Euclidean go is
generated by

—1 0 0 1B= 10 (37)

01 1

—2 —1 ' 0
D= (38)

which are again hyperbolic mirrors. Indeed

yielding 4mm. The automorphs of g, and of g2, respec-
tively, are generated by

The Euclidean mirrors are given by the generators A and
B and the hyperbolic ones by B and by C. In the present
case we thus have:

CD=
1 —2

—2 5
=6 (39)

m =A, m=C, m'=m'=B . (33)

The compatibility between the sets of metric tensors
g (A) becomes visible, through the common generator B;

Ago A =go BgoB go~ Bg jB gi Cgi C g

(34)

rw ri
From a semidirect product of A by SC, one gets then the
symmorphic multimetrical space group:

G =p6m4m = Ia„a2, A, B,CI . (35)

In general and for a given metrical tensor g, an n-

dimensional mirror is an isometry characterized by an
eigenvector with eigenvalue A, = —1 perpendicular (ac-
cording to g ) to an invariant hyperplane of dimension
n —1 called the mirror plane. It is thus an orthogonal
refiection element of the group 0 (v).

In the present case, these reAections are determined by
two lines along the eigenvectors having eigenvalue 1 and
—1, respectively. For a Euclidean mirror, the two lines
intersect at 90, whereas for a hyperbolic mirror they

FICx. 1. A two-dimensional quasiperiodic tiling having octag-
onal point-group symmetry, which is also self-similar with

respect to inAation and deAation transformations by a factor
1+&2. Indicated in bold is a corresponding one-dimensional
quasiperiodic pattern. The points indicated at the vertices
define an octagonal chain.
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generates a hyperbolic rotation by an angle
P=ln(3+2&2) having a trace equal to 2cosh$=6, so
that adopting the same notation as in the first example,
the symbol of the multimetrical point group becomes

IC =
I A, B,C, D I =4m6m . (40)

Actually, the indefinite quadratic form (1,—2, —1) asso-
ciated to g, also admits negative units. A corresponding
negautomorph transforms the metrical tensor g, into g2,
generates the inflation and deAation of the octogonal
chain and can be expressed in terms of the generators al-
ready given:

2 1
F ABC

1 0
=2 so that Fg &F= —g &

=g2 . (41)

K =4m2m (42)

and denoting the corresponding symmorphic multimetri-
cal space group by

6 =p4m 2m . (43)

Of course, (40) and (42) indicate the same point group ex-
pressed in terms of a difI'erent set of generators.

It is interesting to note that the Euclidean fourfold ro-
tation is at the same time an automorph of the positive
definite quadratic form go =(1,0, 1) and a negautomorph
of the indefinite quadratic form g i

= ( 1, —2, —1 ):

By the symbol n we indicate a negautomorph having
determinant —1 and trace n.

It is convenient to make all of this explicit by using for
this multimetrical point group instead of (40) the symbol FIG. 2. A simple example of a crystallographic pattern hav-

ing two-dimensional space-group symmetry Go=p4m, which is
also invariant with respect to the multimetrical space group
G =@4m 2m. It consists of two types of atoms, one at position a
with coordinate 0,0 and another at position c with coordinates

2,0 and 0, 2
of the space group p4m, which is the Euclidean

subgroup of G.

same conventions, one now has the following multimetri-
cal point and space groups:

K =
I A, B,C,D I

=
I A, C, F.,F I =4m Im, G =p4m 1m

0 —11
E AB

1
with Eg &,

E= —g i . (44) with 4=E = AB, m = A, 1 =F= ABC, and m =C.

(46)

This expresses one of the hidden relations between posi-
tive definite and indefinite binary integral quadratic
forms.

In Fig. 2 one finds a simple point pattern having the
multimetrical space group (43) as symmetry. In Fig. 3 it
is shown how by strip-projection one gets from this pat-
tern a decorated one-dimensional octagonal tiling, which
admits an infiation/defiation rule (Fig. 4) with scaling
factors I+V2, which are the two eigenvalues of F. The
corresponding scale-space group

V. RECIPROCAL SPACE

A. Reciprocal bases

Let us first introduce a basis e*, , . . . , e„* in the recipro-
cal multimetrical space V' with compatible metric ten-
sors g, , dual with respect to the basis e&, . . ~, e„previ-
ously considered for the direct space V, so that in matrix
notation one has the relations:

Gq~ =p 1 2m g~, ' =1„ for v=1,2, . . . , 2" . (47)

is a subgroup of (43). In the example discussed in a previ-
ous paper, ' the scale-space group p1 2 was considered in-
stead, simply because non-Euclidean mirrors were disre-
garded.

C. A third example

A third example follows directly as a semidirect prod-
uct of the lattice translation group A and the point group
K considered in Sec. IIC. It was obtained from the
analysis of a two-dimensional superspace embedding on a
square lattice of a Fibonacci chain. "' Adopting the

e,*(v)=e „e,, i =1, . . . , n,
so that for the Euclidean case one has

(48)

Accordingly, the tensor components of the direct and of
the reciprocal bases are correspondingly the same. The
identification of V* with V is done by means of the Eu-
clidean scalar products (other choices being of course
also possible and equivalent to the present one, but never-
theless difierent). Therefore, while we could take one
direct basis e„.. . , e„we now have to consider v-

dependent reciprocal bases (all being defined in V). Using
the notation defined in Eq. (2) we have
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FIG. 3. The same pattern as in Fig. 2, if interpreted as being that of the two-dimensional superspace embedding of a one-
dimensional quasiperiodic crystal, yields by projection on the physical space V of the atomic points within a given strip-region in su-
perspace {one for each Wyckof set and containing the so-called occupied positions), a decorated one-dimensional octagonal tilting.
The squares indicated need not be part of the one-dimensional octagonal pattern. They are represented here for making the presence
of two types of tiles more explicit.

e;*=e;*(0)=e; . (49)

k = g k;e;*(v) and x = g x~ej . (50)

One then verifies the relation

Let us now consider the scalar product according to the
various metrics of a reciprocal vector k with components
k, and of a direct vector x with components x . We have

kox= gk, .x, .
i=1

(51)

It has been already said, but it is important not to forget
that after identification of V with V the components of k
with respect to the basis I e, I of V are e,, k, , and not k;.

For clarifying further the multimetrical concept, let us
take a concrete example: the one associated with the
hexagonal lattice as discussed above in the first example.
We have

1 &3
a =(1 0)=e a1 1 2

=—e1+ e22 2
(52)

yielding, as in (28), the two metric tensors:

1

2

(53)

The dual bases for the reciprocal lattices A* in V have
components

a] (v)=e*, (v}— —e2 (v), a2 (v)= ~—ep
3

' &3
(54)

FIG. 4. The decorated tiling derived in Fig. 3 satisfies the
same inflation and deflation rules as the original one based on
the vertices only. It is {injectively) invariant with respect to the
scale-space group p12 subgroup of the multimetrical group
p4m2m. Indicated are the deflations of the original pattern by
scaling factors 1+&2 and by (1+&2), respectively, and the
corresponding pre-images. Note that this scaling symmetry re-
quires a point-atom approximation of the structure.

a*, (0)=a] = 1, — —,a2(0)=az = 0,sfc

whereas for v = 1 it is given by

(55)

After Euclidean identification of V* with V, the dual
basis for v=O becomes
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a2 (1)= 0, — 2
v'3 (56)

ensuring duality a;oaj.'(v) =5;j..
The metric tensor elements of g*(A) are, however, cor-

respondingly the same for the two bases. Thus one can
take as the reciprocal lattice A* of the given A the one
generated by the vectors a*, and a& of the Euclidean dual
basis and consider A* generically as a lattice in the mul-
timetrical space V, attaching to A a corresponding set of
metric tensors g(A') = Ig* I.

In particular, for the example considered above, one
has

Let us denote by r0 a given atomic position and by

I rj,j =0, . . . , s —1I the corresponding set of equivalent
positions within a given unit cell of the lattice A. That
pattern admits a Euclidean description, which is at the
basis of a diffraction experiment. Accordingly, in what
follows the expressions involve Euclidean scalar products
only, and the reciprocal lattice vectors H involved are
elements of the Euclidean reciprocal lattice A*. The
non-Euclidean multimetric transformations acts as affine
transformations and the corresponding point-group ele-
ments leave A' invariant.

Putting the atomic scattering factor equal to 1, the
structure factor takes the familiar form:

4
g0

2

2 2

and g1 =—
. 2

gOg0 In a d g 1 g1

One then verifies the duahty condition in the form

(57)

(58)

2miHr. 2~iH[ Aro+U( A)]

j=0 AC[A. )

(61)

where the A are the coset representatives of the site
symmetry group of r0 in the point group K. Making use
of the Frobenius congruence relations (21) and of Eq.
(60), one verifies the invariance condition

leading to invariance of the reciprocal lattice A* for all
multimetrical point-group transformations that leave A
invariant. Indeed,

F(BH)e ' "' '=F(H), an yt B~a+ U(B)j EG,HHA*,

(62)

Ag 3 =g„ implies 2 *g*A*=g„*, (59) expression which simplifies in the symmorphic case to:

where, as usual A*= 3 '. Therefore, to a point-group
transformation A acting on a position vector x there cor-
responds one of 2 acting on a reciprocal vector k, as one
sees from Eq. (51). Indeed,

F(BH)=F(H), for G symmorphic and BEE .

VI. WYCKOFF POSITIONS

(63)

ko gx = g k,. g,j~j ——Jko~ (60)

B. Structure factors

The point group of a multimetrical space group being,
in general, infinite, one has to distinguish between two
types of sets of equivalent points: those of finite multipli-
city (within a lattice unit cell) and those of infinite multi-
plicity.

Typical for the situation is that a point in general posi-
tion (having thus the identity of site symmetry) is of the
second type, so that if the invariant pattern of a crystal
consists of point-atoms, then these atoms are necessarily
in special positions. The charge density (which does not
satisfy that condition) will, normally speaking, not have
equal value on equivalent points of infinite multiplicity.
Therefore, we expect that if multimetrical symmetry ap-
pears in crystals, it will only apply to a crystal in the
point-atom approximation and it will be broken by the
presence of a continuous charge distribution. This does
not mean that points of infinite multiplicity are necessari-
ly irrelevant in crystal physics. Here, however, only posi-
tions of finite multiplicity will be considered.

The aim of this section is to show that the structure
factor of a set of equivalent positions is invariant with
respect to the multimetrical space group transformations
so that such symmetries can in principle be detected from
systematic extinctions in a diffraction pattern, as is the
case for space and superspace groups.

The number of Wyckoff positions of finite multiplicity
is infinite, because there is an infinite number of different
site symmetries. General expressions can be derived, but
as that has not yet been done, it requires a fairly large
amount of work even in the two-dimensional symmorphic
cases. Therefore, only some few examples will be
presented here in order to illustrate the concepts.

Before doing so, it is important to be aware of some
basic properties characteristic for a multimetrical space
group G with respect to the Wyckoff positions of the
space group G0, which is the subgroup of the Eulidean
transformations belonging to G. As has already been
pointed out, G0, is, in general, of infinite index in G.

Two typical cases arise: (1) A set of equivalent posi-
tions with respect to G consists of whole sets of positions
equivalent with respect to Go. (2) A finite multiplicity set
of equivalent positions is always a set of special positions,
even if general with respect to the space group 60.

Accordingly, one can possibly recognize the presence
of multimetrical symmetries in a crystal seeking whether
space-group-inequivalent Wyckoff positions are occupied
by the same atomic species at a given %'yckoff position of
a multimetrical space group. Furthermore, one can also
look at atoms with coordinates not fixed by space-group
symmetries, but fixed for a multimetrical space group.
The corresponding coordinates then have to be stable
within the same crystallographic phase.

In looking for these peculiarities, one has to take into
account the fact that multimetrical symmetry may be
broken in actual crystals, because of the presence of the
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continuous charge distribution.
As an example of the first situation, consider the sym-

morphic multimetrical space group p4m lm given in (46)
as the third example of Sec. IV: then the set of fractional
coordinates

(64)

defines a Wyckoff position with site symmetry A, F,I,
where I is the total inversion. With respect to the Eu-
clidean subgroup Go =@4m this set splits into two
different Wyckoff positions: 2c and 1b, respectively, in
the notation of the International Tables.

The structure factor of the given set is

F(h k) e~ih+e~ik+e~i(h+k) (65)

The invariance with respect to p4m being evident, it is
sufficient to consider the expressions transformed by the
two generators C and D of the point group E as in (18).
For Cone has

F(h', k') =F(h —k, —k)
vari ( h —k) + —

haik+ vari (h —2k) (66)

and for D one has

F(h', k')=F(h, —h —k)
n.ih+ 7J.i ( —h —k) + —mig (67)

1 1 ~ 3 3 ~ 1 3 ~ 3 1

4 4' 4 4~ 4 4~ 4 4 (68)

with site symmetry C, F . It is a general position for the
subgroup p4m and a special position for the multimetri-
cal space group. One can again explicitly test the invari-
ance of the corresponding structure factor.

As a last example we take the case where the special
position with respect to G fixes the value of a free param-
eter appearing in a Wyckoff position of the Euclidean
subgroup Go. Consider the multimetrical space group
p6m 4m given in Sec. IV as a first example [see (35)]. The
set of equivalent positions

both expressions being indeed equal to F (h, k), as re-
quired by Eq. (63).

As an illustration of the second situation, consider the
set of equivalent positions for the multimetrical space
group p4m 2m of the second example of Sec. IV:

2 1 ~ 2 1 5 51 5 ~ 5 1 ~ 1 2. (69)6~ 6~ 3 6~ 6' 6~ 6 3 3' 6 3 6

has m4 m as the site symmetry group [see Eqs. (32) and
(33) for the meaning of the generators. ] This Wyckoff po-
sition is simply the 6e position of the space group @6m
for the value of the corresponding free parameter x =

—,'.
Note that here the setting ab has been used instead of the
ab-type adopted by the International Tables.

VII. CONCLUDING REMARKS
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Multimetrical point and space groups seem to be in-
teresting mathematical and geometrical objects. Whether
or not they can be of relevance for crystals is not yet
clear. One has typically a situation where concepts are
required before an answer to that question can be given
from an analysis of the large experimental data presently
available on crystal structures. Some general criteria
have been formulated for helping that investigation, but
it is evident that too little is known on such a rich field
for allowing, on the basis of what has been presented
here, more than a superficial and limited exploration of
the crystallographic data. Of course, the identification of
even a single crystal structure having nontrivial multime-
trical symmetry would be of great interest.

One expects that verifying the presence or absence of
these symmetries in superspace embedded quasicrystals,
giving rise in the physical space to space-scale transfor-
mations, should be easier than to do so for normal crys-
tals, at least in the very few cases in which the structure
of such quasicrystals have been determined, because then
the infiation and defiation rules already impose severe re-
strictions. That investigation will certainly also help to
clarify further what one can expect to find in crystals ad-
mitting multimetrical symmetries.

In any case, most relevant is the fact that crystallo-
graphic laws seem to apply in principle equally well in
space and in superspace, and for commensurate as well as
for incommensurate crystals. The field of crystallograph-
ic symmetries is currently wide open and promising.
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