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The model that we study is a two-XY-quantum-spin-chain system with Ising interchain magnetic
interaction. This model, referred to as the spin-ladder model, is used as a first step to model the
thermodynamic properties of low-dimensional spin system. Similarities between the spin-ladder
model and the one-dimensional Hubbard model are used in our analysis. As a consequence we can
qualitatively understand the heat capacity and spin susceptibilty and show that both measurements
are necessary to analyze a spin-ladder system. We also show that the strong-interchain-coupling
limit of the spin-ladder model is equivalent to a one-chain spin Heisenberg Hamiltonian. Further-
more, the spin-Peierls transition is investigated for small (|I/2J| << 1) and large (|1/2J]| >>1) inter-
chain coupling, and we show its occurrence at relatively small spin-phonon coupling (A <0.6).
From the results obtained for the small- and large-interchain-interaction limits, we propose the con-
jecture that the in-phase dimerization persists for all values of the interaction parameter at zero

temperature.

I. INTRODUCTION

Materials—mainly organic compounds—which are
good candidates to show the spin-Peierls transition have
been available for two decades.!™ 1In spite of their ap-
parent overall similarity, some of these compounds show
the spin-Peierls transition characteristics, whereas others
do not. To understand the difference in behavior, previ-
ous works studied effects due to external magnetic
field,*”7 and distant-neighbor® !° elastic terms, anisotropy
in the magnetic coupling,'®”!3 magnetostriction,'"!? etc.,
of an independent (sole) magnetic chain. We consider, as
a further step in this spin-Peierls study, the introduction
of an interchain magnetic interaction I. We show that,
depending on their relative size, the magnetic interchain
interaction can compete against or enhance the nonlocal
intrachain magnetic interaction J and phonon interac-
tion.

Our interest in the interchain magnetic coupling is also
justified by the existence of real spin-ladder systems as
will be shown below. In the absence of a proper theoreti-
cal treatment of the spin ladder, the interpretation of the
experimental results of such a system is confined to two
extreme choices. One is to compare the magnetic suscep-
tibility for spin-ladder-like compounds with numerical
data derived for the Heisenberg dimerized spin chain and
then associate the magnetic gap of the former with the di-
merization gap of the later.'* The other choice is to con-
sider the spin ladder, even at low temperature, as com-
posed of two independent spin chains.!>!® In this paper
we show how the observed behavior can be derived from
a spin-ladder model and show the necessity of heat-
capacity measurements to verify or to improve the inter-
pretation of the susceptibility data.

The treatment of quantum spin-chain coupling is a

43

difficult task by itself. In fact, the numerical work of
Dagotto and Moreo,!” for the ground-state energy and
gap of an Heisenberg spin ladder with I /J =1, is one of
the very few!® attempts in that direction. To make pro-
gress we decided to treat the simplest interacting model
that we could envisage, i.e., the two spin-half XY chains
with an Ising interchain magnetic interaction as in Fig. 1.
This model, which can be seen as a crude approximation
for the more general problem of many spin chains in
magnetic interaction, is used to give preliminary results
and insights into the general case. Otherwise, it can be
applicable to actual systems of two-'47161819 or three?°-
spin-chain materials that can have effective Ising, XY
spin coupling (see, for example, Ref. 21) or a mix of both,
coming from spin-orbit coupling coupled with crystal-
field anisotropy. Far from being completely artificial, this
model may be viewed as combining both the XY and Is-
ing interactions, which are the archetype, respectively, of
all easy-plane and all easy-axis magnetizations. Using a
Jordan-Wigner-type transformation, the spin-ladder
model is mapped on a pseudofermion version of the gen-
eralized Hubbard model.?> A detailed study of the simi-
larities and differences of the two models allows us to use
the known results of the Hubbard model to predict the
behavior of the spin-ladder problem.

The paper is divided as follows. In Sec. II we present
the Hamiltonian of the spin-ladder model, its order-
parameter operators and its symmetries in terms of spin-
half operators and of pseudofermion operators. Thermo-
dynamic properties are presented and discussed in Sec.
IIT for some special cases of the nondimerized spin
ladder. In Sec. IV, we introduce elastic degrees of free-
dom in the system. The study of the effect of small (Sec.
IV A) and large (Sec. IV B) magnetic interchain couplings
on the dimerization capability of the system is carried
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FIG. 1. Schematic representation of a ladderlike two spin-

half chains with Heisenberg or XY intrachain spin coupling and
Ising interchain interaction. j is the rung index number and o
the chain index.

through comparing the energies of two different dimeri-
zation states (in phase and antiphase) and the uniform
state. Conclusions and final discussions end the paper in
Sec. V.

II. THE SPIN-LADDER MODEL AND ITS PROPERTIES

The physical properties of the model introduced above
are determined by the following Hamiltonian:

szz_Jj,o(Sﬁo f+1,a+S S+ltr)
[

_g.u'Bzzh o,j ja

+ 22 2.1)

j=12,...,N is the rung index and o =u,d (up, down)
is the chain index. The J io and I are, respectively, the
intrachain and Ising interchain first neighbor magnetic
exchange interactions. A term of interaction with an
external field h; , in the z direction is included where g
and pp have their usual meaning. The anisotropy of the
intrachain exchange is given by (1—y). For future use,
we define the following operators:

Sz jz+1,a+12 U jd ’

Opig)= 3 3 eHiS], | .20
o J

0,4q)= ZZe‘q"b Sio s (2.2b)

@s’rw q, U 2 e‘an(S S ji+1,0 +H.c. ) (2.2¢)

SZi., (22d)

9(0’)27@STw(7T/a,U)+'y 2 e””Sz
J

where S+ =S}, £iS},, a is the intrachain lattice param-
eter, s, =1, s,=—1, and H.c. means the Hermitian con-
jugate of the previous term. The order parameters asso-
ciated with the operators @p and @ , correspond, respec-
tively, to two spin-density waves of wave number ¢
(SDW) (one on each chain) mutually in phase (P) or in
antiphase ( 4). On the other hand, Ogrw(0) is associated
with a spin-transfer wave (STW) order parameter of wave
number g on the chain o. Finally, 6(c ), the operator as-
sociated with the total transfer fluctuations at g == /a,
drives the chain ¢ toward dimerization.

For h,=0, I =0, y=1 in (2.1), the total spin operator
of the chain o and the total spin operator of the spin
ladder, respectively, S, =3 ;S; , and S=S§, +S; produce
good quantum numbers But, for the general case, only
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S? and S% commute with the Hamiltonian (2.1). In order
to illustrate other transformation properties of this Ham-
iltonian, let us consider the unitary transformation T
which consists of a 180° rotation in the y-z plane of all the
spins belonging to the chain o =d

S —7-1
S;,=T"'S,;,T,
where

T=exp [in'ZS ,1] . (2.3)
J

Operators with a tilde are the transformed operators.
Under 7, the Hamiltonian (2.1) and the two order-
parameter operators @p and O 4, transform as

T_‘H(JN,I hyhg ) T=H(J,,,1,h,,hy)
=H(J,y,—IL,h,,—hy) ,
T '0p(g)T=0p(¢g)=0 ,(q) , 2.4
T'0,4(q)T=0 4(q)=0p(q) .
The two other operators Ogpw(o) and 6(o) are invariant

under the transformation 7. An interesting result, for
h; =0, follows directly. In that special case, the two
Hamiltonians H (I) and H (—1I) are the same operator ex-
pressed in two different bases linked by an unitary trans-
formation. They have identical eigenvalue spectra. Thus
for h; ,=0, thermodynamic properties such as the free
energy, the total energy, and the heat capacity are even
functions of I. This statement is valid for any modulation
of the exchange integral J; , including the case of dimer-
ization where it is easy to show that the dimerization gap
and amplitude are even functions of I.

The Hamiltonian (2.1) and the order-parameter opera-
tors (2.2) may be written in terms of pseudofermion (PF)
operators using a unitary (but noncanonical) transforma-
tion. The following Jordan-Wigner transformations are
used:

ji—1
a;,4=5S;4 [1 (=257
v=1
N (2.5)
@,y =Sju [T (=2544) H —28%.)
p=1
where #i=1. The a; , (5 and their Hermitian conjugates
obey the fermion anticommutation relations. Notice that

the index o acts as a spin-1 quantum number of the PF.
Using (2.5), Egs. (2.2) become

@p(q)**@{:l)w(q)= z eiq“jnj,a ,

oj

(q)—»@ DW(q)_ ze’qaj‘éanjo ’
oj

Osrw(q,0)—Ofrylq,0)

=3 e"q“j(a;,,ajﬂia—l—H.c. ),
J
0(0)—LO0Liw(m/a,0)+y > e""jnj,(,njﬂ,o
J

_‘K‘@an(’ﬁ/a,a) .
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In the fermion representation, indicated by the super-
script f; Ofpw is a charge-density wave operator, O{py a
spin-density wave operator, and Ofrw(o) a charge-
transfer wave operator for the pseudofermions of index
o. Note, at this point, the similarity of the order parame-
ter operators of the ladder system when expressed in
pseudofermions with those of the one-dimensional con-
ductor problem. The Hamiltonian (2.1) in term of pseu-
dofermions becomes

H=H,+H,+H,+C, (2.7)
where
Hy=13J, (a] ;4 ,+H.c.),
oj
_ I
HI_E_ Jj,UV”j,o”j+1,a+7”/',0”1',—0 ’
aj
I
H==3 |S+epshe+ 50, +75m10) ny,
aj

and
c=+Ngupn, +n)+ M1 L5y .
2 4 as

Here —o is the opposite value of o (i.e., if o =u then
—o=d). This Hamiltonian is a special case of the ex-
tended Hubbard model. Notice the absence of interac-
tion terms between first-neighbor pseudofermions of op-
posite index. An important aspect of this pseudofermion
description of the spin-ladder problem is that the number
of pseudofermions is subject to fluctuations contrary to
the electronic situation where their number is an external
constraint.

In order to establish the correspondence between the
different response functions of the ladder spin system and
the extended Hubbard model, the unitary transformation
(2.3) is applied to the pseudofermion operators to give

T_laj,dT=Zij,d=——agde""j , 08
T 'a;, T=a;,=a;,(—1",

with corresponding expressions for their Hermitian con-
jugates. From (2.2) we observe that the magnetic suscep-
tibility response X .(q,I) [X —(q,I)] for the spin
ladder to a magnetic field h,=h,; (h,=—h,) is the
response function of the order parameter associated with
Op(q) [0 4(g)]. On the other hand, the “magnetic sus-
ceptibility” of the spin-; pseudofermions, ¥or(q,I), is
the response of the order parameter associated with
L0{pw(q) or 1O 4(q).
These generalized susceptibilities are defined by

X +(g.Lo)= [ dt e T[O}(q,1,t)0,(q,1)]) ,

fL,_(q,I,m:f_”mdze"wt( TIOY(g,1,)0 4(g,1)]) ,
(2.9)

Yerla,L,0)=1 [ 7 di e T[O)(4,1,1)0 4(q,])]) .

T is the time-ordering operator, w is the frequency, and
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( ++-) is the thermodynamic average. Defining the sus-
ceptibility per spin and the susceptibility per pseudofer-
mion, respectively, by x, +(q,1,0)=(1/2N)x; +(q,1,0)
and Xpgp(q,I,0)=(1/N)Xpr(q,l,»), the properties of
transformation illustrated in (2.4) lead to the important
result

XL,i‘(q’Ifw)zszF(q’ :FI,CL)) . (2.10)

Thus, the magnetic sﬁsceptibility obtained for the pseu-
dofermion model can be used to evaluate the susceptibili-
ty of the spin ladder system.

III. THE XY-ISING LADDER AND ITS PROPERTIES

With ¥ =0 (XY intrachain) and s, =0, the Hamiltoni-
an (2.7) becomes

H=1/23J; (a] 0,1, ,+H.c)+I 3 n;,n;,
a,j j

—I/2) 3 (n; ,—3%) . (3.1)
0,j

This Hamiltonian is identical to the grand canonical
half-filled one-band Hubbard Hamiltonian,?> with the
chemical potential u equal to I /2. Under this condition,
(3.1) has quasiparticle-quasihole symmetry. This symme-
try is a necessary but not a sufficient condition to infer
that the band of PF is half-filled. However this con-
clusion is reached using an explicit calculation of the to-
tal energy as a function of band filling n =1/N3¥,; ( nj’o>
for some value of interchain interaction I. This calcula-
tion is done using the Lieb and Wu?* solution of the fol-
lowing Hamiltonian:

Hy=31ta] 0,4 ,+Hec)+I S n;n;, (32
0,j J
where o=1 or |, njyg=a;r’aaj’a, and a;f‘, (a;,) is a

creation (annihilation) operator for an electron of spin o
at site j. For an arbitrary filling level the solution of (3.2)
is given by coupled integral equations. We approximate
it by a set of 41 algebraic equations (see Ref. 24 for
a similar calculation). Using our unit of energy
(J;/2=J/2=t) and adding the contribution of the
third term of (3.1) (NI/2)(1/2—n), it is easily verified
that for all value of I considered (Fig. 2) the energy of the
fundamental of the spin ladder, E f(n ,I), is minimal for a
half-filled band (r =1). Thus the average z component of
the spins in the two-spin chain ladder is zero ({S?)=0).
The fundamental of (3.2) is known from Lieb and Wu to
be a singlet. For the spin ladder, this means that the
wave function of the fundamental is antisymmetric with
respect to the exchange of chains, and that (S7)=1(SZ).
Therefore, we conclude that for the uniform spin ladder
(ie., J; ,=J), (87)=(S{)=(S*)=0 in the fundamen-
tal. The energy of our system is written as

Jo(x ), (x) i
x(expx | I/ N+D* " 4
(3.3a)

E;=—2NJ [~

where J, and J; are Bessel functions of the first kind, re-
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FIG. 2. Energy per spin of the XY-Ising spin ladder with respect to the occupation level n for different values of interchain cou-
pling, |I/2J|=0.00, 0.25, 0.50, 1.00. The minimum appears for the half-filled band case (n =1).

spectively, of order zero and one. This result is obtained
by adding (NI/2)1/2—n)=—NI/4 to the Lieb-Wu
solution and by putting |1 | instead of I to ensure that
E;(—I)=E/(I) as was established in Sec. II [see discus-
sion following Eq. (2.3)]. For I =0 we recover (see Fig. 3)
the energy by site for isolated XY chains, —J /7. For
|[I/2J|>>1, the limit of independent rungs, E(I)
~ —N|I| /4 (dotted curve) is achieved.

Using a theorem due to Feynman,?> average intrarung
and interrrung spin-correlation functions (P, and K_) are
calculated with

aEf/BI= 2 (sz,u ]Z’d)f
J

=NP,
_ _IN pr= 2 | x|
"Tm‘fo Jo(x)J;(x)tanh?® | === |dx
(3.3b)
and
OE; /3] = 3 (S} ST 1,0 5008t +1,0 )
Jo
—2NK,
1 I d
=1p -1 | 3.3
JEf ; aIEf (3.3¢)
where ( - - ), means that only the fundamental state is
considered. ~We put d|I|/3I=|I|/I. At the

independent-chain limit, I =0, P, =0, and K,=1/#. For
large value of |I /2J|, P, saturates to *|I|/4 and K, goes
to zero. This shows that in the strongly interacting case,
there are only parallel spins (I <0) or antiparallel spins

(I >0) on each rung and the spin exchange along a chain
is frozen out as the interchain interaction increases (Fig.
3 for graphical result).

Along with the Hubbard model,?®?" the spin-ladder
system has gap and gapless excitations. For I >0 (I <0),
the gapless excitations regroup, at first order of perturba-
tion, configurations that have antiparallel (parallel) spins
on each rung, the corresponding order operators being
O 4(q) [Op(q)] and their energy spectrum is linear in g
for small gq. The gap excitations regroup those
configurations that have parallel (antiparallel) spins at
least on one rung, their operators being Op(q) [0 ,(q)]
and the gap in the energy spectrum is A; =~|I|/2 for

0.00 050 ¢
o K, R
e P_ %
e L
E 050 A
¥ :
g 000 N
G -1 F
¢ 1.00 i 4
N
— —0.25 ¢
‘ o

-1.50
L -0.50 X

-6.0 . : 4.0 6.0

1/2]

FIG. 3. The XY-Ising spin ladder energy E/, the interchain
correlation function P,, and the intrachain correlation function
K, as functions of the interchain coupling I /2J. All quantities
are evaluated in the fundamental of the uniform state.
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large |I|. The lowest energy state above the gap are
those that have (S?)=+1 (n=1%1/N). These excited
states have no equivalent in the Hubbard model (u=1/2,
Ay =I) where n is fixed by external constraint. As shown
in Sec. IV B, the large coupling limit of the spin ladder is
equivalent to the Heisenberg antiferromagnetic Hamil-
tonian (1d) with exchange constant J2/2|1].

These general characteristics of the energy spectrum
along with the Hubbard model results?® 3 lead to a sim-
ple qualitative understanding of the temperature depen-
dence of the heat capacity by spin C,(T) of the XY-Ising
ladder model. The main features in the strong coupling
limit (large |I/2J]) are the presence of two maxima
identified by T, and T, in Fig. 4 and produced, respec-
tively, by gap and gapless excitations. In the J—0 limit,
with the absence of the gapless excitations, the main
feature of the specific heat C,(T) of the spin ladder is
simply the Schottky anomaly for two sharp levels
separated by an energy 1 /2:

C,(J—0,T)=1kg(BI /4)*sech®(BI /4) ,

where =1/kyT. The maximum [C,(T;)=0.22ky] ap-
pears at kzT,=0.83|I|/4. The same expression is ob-
tained for the heat capacity of the half-filled one-band
Hubbard model with zero bandwidth (z—0). The effect
of J#0; which delocalizes the gap excitations, reduces
their minimum energy and increases quantum fluctuation
effects, is to enlarge the specific heat peak at T'; with ac-
companying reduction of both its height and its central
position (7). At low temperature, the gapless excita-
tions give rise to the linear behavior of C,(T) for T << T,
where kyT,~J?/2|I|. For T, <T <T,, there is a gra-

]
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FIG. 4. Specific heat of the spin ladder in arbitrary unit for
high interchain coupling |7 /2J|>>1. The behavior is indepen-
dent of the sign of the interaction I, only the source of this be-
havior as a sign dependency. For I >0 (I <0) the low tempera-
ture peak, T,, comes from gapless excitations of antiparallel
(parallel) pairs of spin and the high temperature peak, T,
comes from gap excitation from ‘“‘broken” pairs.

dual decrease =~(k BT)_2 until contributions from the
gap excitations appear and the Heisenberg chain
equivalence is lost. For small coupling, |1 /2J| <<1, both
maxima overlap and merge toward the position of the
maximum of the independent XY chain (7=0):
kg T=~0.65J /2.

Let us look at the general features of the magnetic sus-
ceptibility per spin. We limit ourselves to in-phase and
antiphase responses of the two magnetic chains. Consid-
er the following mean-field Hamiltonian, Hyg;

J X X : z V4 z z z z z
Hyg=3, E(Sj,o j+1,0 +Sjy,US]y+l,a )—gug 3, h,cos(gja )Sj,o +1 2 (Sj,u (Sj,d )+ (Sj,u >Sj,d—<sj,u ><Sj,d ),
J

o,j o,j

where random (S},) is determined self-consistently.
The random-phase approximation (RPA) susceptibility is
given by

<sz,a )= > Xrpa,+(J—i)h; o
=3 xolj —i)(gup)h; ,—I(SF_,)] (3.4)

and after taking the Fourier transform, (3.4) becomes

XO(Q:T)

— (3.5)
1tIxo(q,T)

XRPA,:t(‘I:T):(g.u‘B)Z

where
f(ak)_f(8k+q)

(gup)Xolg, T)=2(gup 3 _
k €r+q &k

is the susceptibility of the independent chains, f(g;) is
the Fermi distribution function, and &, = —|J|cos(ka).
Finally the + (—) in =+ is obtained if h,=h,
(h,=—hy). Note that for I <0 (I >0), Xgrpa,+(g5T) in-

creases (decreases) from the I =0 situation and that
Xrpa,—(q,T) has the opposite behavior. Stoner’s cri-
terion®! indicates, from (3.5), a “phase transition” when
1£Ixy(gq,T)=0. Even though the singular behavior is an
artifact of the use of a mean field theory for the low di-
mensional system, it signals the onset of increasing
short-range correlations of a particular type. Since
Xolg,T) has a finite value, it is needed to have
+I>1/max[x(q,T)] to be related to a highly correlated
thermodynamic state. Finally, it should be noted that
Xrpa, (g, T) is identical to the RPA susceptibility of the
Hubbard model.?>3* This should however correctly de-
scribe the high temperature dependence, especially for
small |I/2J|, and for the dependence on the sign of I.
Other informations, for the large interchain coupling lim-
it of a uniform spin ladder are obtainable from the
equivalent Heisenberg model treated in Sec. IV. In that
case, the low temperature dependence of Y _(q,I >0) and
X +(g,I <0) of our spin-ladder model are equivalent to
the magnetic susceptibility of a Heisenberg chain. In
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fact, numerical data?® show that this equivalence persists,
at least qualitatively, over a wide range of temperature
and of |I/2J]| ratio. As a result we have an alternative
way to obtain low temperature Heisenberg spin chain
magnetic behavior for a spin-ladder structure.!*”!¢ On
the other hand y_(q,I <0) and x,(gq,I >0) are reduced
by an order of magnitude mainly because all the excita-
tions involved are above the gap. Starting from zero at
T =0,** they increase exponentially with temperature un-
til kgT~1 and then decrease very slowly at higher tem-
perature.

This section shows clearly that great care should be
used in the interpretation of the susceptibility data of a
spin ladder. It shows also that heat capacity can be a
better tool to probe strong interchain interaction. In that
context, this measurement, made with the susceptibility,
can improve greatly the analysis of a spin ladder.

IV. THE DIMERIZED STATES AT T=0K

In this section the effect of interchain interaction on
the dimerization amplitude and gap of the XY-Ising
ladder is studied. We consider two types of dimerization
and show which is preferred over the other. The elastic
energy is introduced by adding an intrachain free phonon
part to Hamiltonian (3.1):

Hp=§ 2 (uj+1,¢:r_uj,o)2

a,j

> (4.1)

where 0 =u, d and u; , is the longitudinal displacement
of site (j,o) from its position in the uniform state. The
intrachain spin-phonon interaction is written using the
first-order expansion of J; , with respect to longitudinal
displacement:

Jio=I+j oy o—u;,), (4.2)

where J; , is the derivative of J; , with respect to the
length of the jth bond. From quantization of the phonon
field, bosons operators b i 09 with a two-value o index, is
introduced. Here, the spin-boson interaction comes only
when both have the same ¢ index. A perturbative expan-
sion of the spin-phonon interaction shows that this in-
teraction is like a retarded interaction between spins of

same index o. Mean-field spin-phonon interaction gives
J; ,=J[1—=(—1)8,], (4.3)

where 8,=(J'/J)(u; ,—u;4 ,)(—1) is the dimeriza-
tion parameter. The o index on 8§, permits us to intro-
duce a difference in the elastic modulation of the two
chains.

We consider the “in phase” (P) dimerization,
8,=8,=6, and the “antiphase” (A4) dimerization,
6, =—56,=29. Using (2.6), the associated order operators
for these two dimerizations are written as

Orp=0liy(q=m/a,0=u)
+ 0L (g=w/a,0=d),
o 4.4)
Or4=0lrw(qg=m/a,0=u)

—Olrwlg=7/a,0=d),
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FIG. 5. Schematic representation of the order parameter as-
sociated with (a) O%p and (b) ©4,. The dots are the spin posi-
tions. Regions of spin transfer densities are described by bub-
bles. Dark and light bubbles are, respectively, for high and
small transfer densities.

where T means transfer of pseudofermions and
Ofrw(q,0) is related to Ogpw(g,0) of Eq. (2.2¢) by
Jordan-Wigner transformation. Schematic representa-
tions of Opp and O, are given in Fig. 5. Note that if
one wants to talk about the dimerization of the
Heisenberg-Ising ladder, one needs to replace, in (4.4),
Oflrwlq=m/a,o) by the pseudofermion representation
of 6(o) [Eq. (2.2d)]. The problem, in this last case, is
similar to the introduction of a modulation of the inter-
site electron-electron interaction in the extended Hub-
bard model. Staying with the XY-Ising ladder, the fol-
lowing response functions for each kind of dimerization
are written

Nrp(g,0)= [ * dt e ( T(O1p ()01 (0)))

@ ot ) (@.5)
Nralg,0)= [ dt ™ (T(O,(1)07,,(0)) .

From (4.5 and (4.4) we see that cross terms
Oliwlg=7/a,0,t)0lrw(g=m/a,—0,(0)) and Ofiy(g
=1/a, —a,t)@éTw(q=1r/a,a,(O)) are multiplied by
—1in Ny, and by +1in Npp. Then, it is clear that Npp
and N, can have behaviors very different when correla-
tions between chains occur. This, with more details, is
studied in the following subsections.

A. Small interchain coupling case

Before using a variational method, more has to be said
about the fluctuations of (S?). In the case of indepen-
dent chains these fluctuations are produced by occupa-
tion fluctuations at the Fermi level and the energy varia-
tion of the system is of the order of Ag,,~J/N. A gap,
JI >>Ag,,, at the Fermi level, as it happens with dimeri-
zation, reduces extensively these fluctuations and the sys-
tem is pinned on a {(S*) =0 state. We make the working
hypothesis that a small interchain interaction will not
strongly reduce this effect. As a result we take (S?)=0
and n =1 and we will not consider fluctuations of these
quantities. Based on these assumptions we utilize the
Gutzwiller’s ansatz as used by Baeriswyl and Maki.®
The Hamiltonian H for XY-Ising ladder with mean-field
spin-phonon interaction is rewritten as
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H=1JF+IV, (4.6)
where

F=3 [1—(—1)8,])(a 0@j+1,0TH.c.)

0.J

and

V=NP.,= 3 n;,n;;—N/4,

j

where P, is given by (3.3b). A particular state |W¥),
defined by

|W)=exp(—nW/2)[0) , (4.7)

is written, where |0) is the fundamental state of the
mean-field Hamiltonian H:

'——2[1—(_1)‘]F ]( jo’ j+lU‘+HC)’

0,j

(4.8)

7 is a pseudoparticle-pseudoparticle correlation parame-
ter and W is given by
W=3n;,n;,. (4.9)

J
JTI', is a mean-field energy gap produced by the dimeriza-
tion. This gap is not necessarily proportional to &, as it
happens for XY independent chains. The variational

method is applied on the functional energy
e(n,6,,6,,;,,I"}) per site:

-_J 2, (YIH|Y)
€ 8vk§8°+

IN(U[W) (410

where A=J'%/27JK is the spin-phonon coupling con-
stant. Note that instead of (4.9) we can use
W=73(n,—3)n;;—3)=YV. (4.11)
J
It does not change (4.10) because I, ;n;, commutes
with H and H,.

From P, (Fig. 3) we know that the configuration that
has antiparallel (parallel) spins on each rung has, for posi-
tive (negative) I, larger weight in |W) than those with
parallel (antiparallel) spins on some rungs. Then from
(4.7) and (4.11) it is expected that n has the same sign as
1. Applying the transformation (2.8) on (4.6), (4.7), (4.8),
and (4.11) one verifies that

(W(|HI)|W(n)) _ (¥(—n)|H(—=I)|¥(—7))
(W(n)|W(n)) (Y(—n)|¥(—n)) ’

(4.12)

Expansion of the exponential of (4.11) in powers of 5
shows that only connected diagrams contribute to the en-

ergy:
(V|H|¥)

(wlwy ~CYIHIY.
=(0|H|0)—(5/2){0l{W,H}|0),

+(n?/8){0|{W,{W,H}}|0), . (4.13a)
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Applying this with (4.12) on (4.6) gives
(V|H|W), =(0|7&/2|0)
+(n*/8)0|{W,{W,JH#/2}}]0),
—(n/2)0|{W,I1V}|0), (4.13b)

All diagrams up to second order are presented in Fig. 6.
Nonzero contributions of first, second, and third terms of
(4.13b) come from diagrams a, e, and h, respectively.
Their contributions are written as

(YIH|W) =T 3 [1—=(=1V8,)(P{, 1 +497G 7,4 ))

a,j

—nIZ(P”P" N (4.14)
where
Gl =3P 1 +2P]; \P] ,+1
—82P$,nPZ,nP,§’,jPr‘Z,,-+1
mn
and

=(0la/,a; ,l0) .

Here, T takes the opposite value of o =(u,d). In case of
a uniform ladder (8,=T",=0) we can compute (4.14) ex-
actly. In this case, after minimization one obtains

e=E/2N=—J[1+¢&I/2T)*], (4.15)

where £=0.0621. Horsh®® presented £=0.0680, the
difference coming from the fact that |¥) is not actually
the real wave function of the system. This difference is
not important if |7 is small as it is needed to keep (4.13)

(a) (v) (c) (d) (e)
A=A

6] e) (n) o O O

oo QO ’

FIG. 6. Diagrams (a) to (e) and diagrams (f) to (1) are, respec-
tively, the intrachain and the interchain contributions diagrams
up to second order of Eq. (4.13a). In diagrams (a) to (e), all in-
teraction lines (dotted lines) have 7 strength where for diagrams
(f) to (1) one dotted line has I strength and the remaining have 7.
Nonnull contributions come only from diagrams (a), (e), and (h).
A way to verify this is to note that 7 appears in Eq. (4.13b) with
an even power in the kinetic part (J) and with an odd power in
the interacting part (I). This means that diagrams (b), (f), (i), (j),
(k), and (1) must be zero. As a consequence of being partly built
with (b), diagrams (c), (d), and (g) will also have a null contribu-
tion.
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valid.

In the dimerized state, the sum in (4.14) is computed
up to third neighbors and the energy functional € up to
order 82, I'?, and 8T is obtained:

2 2_p Bln
Zag A’ —by—L+C |, (4.16)

where

A=1+—-1[a,THA= 1 =a,THA—3)
0

+a;T8(A—1)],
B=1+(1/by)[b;THA—1)*—b,THA—3)],

2 2
20 _ 4| _I*

3 _
= 5 (A—H)+T8(A—1)

and 8=|8,|. For a “P” dimerization the a; and b;
(i=1,2,3), are given by

ag=1+6/7*, a,=28/7*,

a,=1%+15/7, ay=~1-2/7*,

bo=1+8/7% b, =48/7% b,=16/7".

For an *“A4” dimerization, only a,, a;, and b; need to be
changed:

a,=—12/7*, ay=1+6/m*, b =—16/7".

Minimization of €, (4.16), with respect of 7, 6, and I
gives

st

1B
A’ 2J’

n= 8=T(1—c,T)A/2% ,
A= %(1—c1f2)2+c2f2 /(1=2¢;,1%),

5 (4.17)
=4e A A=1+1/2%,

!

€ _ __1_ I
J 2NJ 7 2w s
where
T
Cozmbm c1=a3/2,

c,=agh,/by—a,/2, c3=a,/2—apb,/b, .

These expressions are very similar to those of Baeriswyl
and Maki. The differences come from the following: the
possibility in our case of two different types of dimeriza-
tion, the replacement of A by A/2 in A results from the
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presence of two chains, the bandwidth 2¢, for the tight
binding band is replaced by J and finally for the spin-
number normalization factor. We verify in (4.17) that ¢,
8, and T are even function of I and that 7 is an odd func-
tion of I. For §=0, I'=0 we get from (4.17) the same ex-
pression than (4.15) but with £=0.0580. It indicates the
effect of neglecting neighbors farther than the third one
in computing (4.14).

Figures 7, 8, and 9 show the |I/2J| dependence of T,
8, and Ae=g—¢g, for three spin-phonon coupling
(A=0.2, 0.4, and 0.6). Ac is the difference in energy be-
tween that of the dimerized state, €, computed with (4.16)
and that of the uniform state, €, computed using (3.3a).
All these results are presented for both types of dimeriza-
tion: P (dotted curves) and A (full curves). P’s data
reproduce the behavior noted in Ref. 35 for the Hubbard
model. However for the A type dimerization, 8 and '
decrease for increasing |I/2J|. From the energy curves
it is clear that the P dimerization is preferred over the 4
dimerization for 0.0<|I/2J|<1.0. For small spin-
phonon coupling A, the dimerized states are preferred
over the uniform states for small value of |7 /2J|. On the
other hand we found that 7, is only weakly affected by
the spin-phonon coupling A and by the type of dimeriza-
tion. In conclusion, our results show that at 7=0 K, for
|I/2J|<<1 and relatively small spin-phonon coupling A
(<0.6), the XY-Ising ladder is in a dimerized P state.
Now, we have to verify if this behavior persists at very
large interchain coupling.

0.6

0.5 -

0.4 .

0.0 0.2 0.4 0.6 0.8 1.0

|1/23]

FIG. 7. Dimerization gap, T, as a function of |I/2J]| for
some values of spin-phonon coupling A=0.2, 0.4, and 0.6. Dot-
ted curves are for “in phase” dimerization and continuous
curves for “antiphase’” dimerization.
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0.35
030 A= 0.8 .- -
0.25

0.20

0.05

0.00
0.0 0.2 0.4 0.6 0.8 1.0

[1/29]

FIG. 8. Relative amplitude of dimerization, 8, as a function
of |1/2J| for some values of spin-phonon coupling A=0.2, 0.4,
and 0.6. Dotted curves are for “in phase” dimerization and
continuous curves for “antiphase” dimerization.

0.010
0.008 -
0.006 L
0.004 -
0.002 - “/

AN o.ooo/ = -

~0.002+ A= 0.4

-0.004 //
—0.008 - .

A=02 T - .
—0.008 -
~0.010 : : L '
0.0 0.2 0.4 0.6 0.8 1.0

|1/23|

FIG. 9. Energy difference Ae =¢—¢, between the variational
result for finite dimerization amplitude and the exact result for
the uniform bond case. Dotted curves are for “in phase” dimer-
ization and continuous curves for “antiphase” dimerization.
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B. Large interchain coupling

For |I/2J|>>1 we use second-order perturbation
theory. The Hamiltonian is rewritten using H,; and H,:

_Iz nie—%),

‘22

(4.18)
a] odj+1,0TH.C.).

The perturbation term is H,. Its effect is computed by
taking the fundamental of H; for half-filled band and the
first excited state that can be reached via H,. The energy
of this excited state is |I| above the fundamental. Using
the same idea as Emery®’ and Cleveland and Medina,*®
for the dimerized system P or A, taking care of our o
dependence in J; , [see (4.3)], and using the following

definition:
=(n;,—n;4)/2, T ajua]d, Tj_Za;daj,u ,
for I >0 and
T?=(n;,+n,,—1/2, T} =a],ale™,
Tj"—’ajydaj,ue_"”f ,

for I <0, we obtain

H%=2J > [1—(—1V8]T; T, +H' (4.19)
J
and
2J652{Tz Pt (A=) TFTr  +TITY )
+H', (4.20)
where
=N s NJ? N|I|
4TA 4[1 4 7’
A=A/Q—aJA/I])
Jg=JX1+8%) /2|1, (4.21)

§=28/(1+8%), 1—a=(1—8%/(1+8%,

and A is the spin-phonon coupling constant which has
here the same definition as in Eq. (4.10). The component
of vector operators T; verify the spin-half commutation
rules. HZ%;is like the Hamlltoman of a dimerized Heisen-
berg cham HZ% is like an Heisenberg anisotropic Hamil-
tonian where «a is the anisotropy. The contribution of an
applied magnetic field on the original spin ladder [y =0
in Eq. (2.1)] is written here as —h 3, ;T; for I <0 and is O
for I>0. Then in the strong coupling limit and small A
(h <<|I|), the magnetic susceptibility of the dimerized
spin ladder will show, for I <0, exactly the same behavior
as the dimerized or as the anisotropic Heisenberg chain
depending on the type of dimerization (P or A) of the
spin ladder. For I >0 it will give a very small response.
It is worthwhile to note that a very small susceptibility is
also expected at low temperature in the strong interchain
coupling limit of the XY-XY ladder and the antiferromag-
netic Heisenberg-Heisenberg ladder, since there is an en-
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ergy gap proportional to this coupling between the funda-
mental and the first magnetic exited state of each quasi-
independent rung.

In Fig. 10 curves of Ep ,=({HH? )—(H'))/2N are
given as functions of 8. Ep is calculated from Cross and
Fisher relation:*

Ep=—L(1+82)(Ey— A54")
P 4|I| 0 ’
where E,= —0.886 and 4 =0.614 is fixed by the numeri-
cal work of Bonner and Blote.** To get E, we used
Orbach’s numerical data, E !

J2
41

with =V a/(2—a).

From Fig. 10 it is very clear that, excluding the free
phonon part, the P dimerization has the lowest energy
than the A dimerization or the uniform state (5=0).
Then, the P dimerization is preferred to the A one for all
dimerization amplitude. Coming back to the Cross and
Fisher relation, the energy and the energy gap become

EA= (1+82)E0rb(8)

J et = J = J?
E= (Ey— A8*3) + —=8§2——=— | (4.22)
2 0 8mA 87
A=JT~J 2 (J 8% . (4.23)

Minimizing E and neglecting terms smaller than
8%(82 << 1) we get the |I /2J| dependence of the dimeriza-

1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

S

FIG. 10. Energy as a function of dimerization amplitude § in
the strong interchain coupling limit. The dotted curve is for the
“antiphase” and the full curve is for “in phase” dimerization.
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tion amplitude and gap:

372
A

8=4(2/3)? | ——— L% —
Ey+|I|/20XJ

=|27AJ /1372 . (4.24)

And T'«(J /I)?. The same dependence was found for I’
by others*?* in the Hubbard model case with I /2J >>0.

V. CONCLUSION: THE FUNDAMENTAL STATE
AT T=0K

We have shown that the XY-Ising ladder with a small
mean-field spin-phonon interaction is, at 7=0 K, in a
dimerized state in which the dimers of the two chains are
in front of each others, i.e., the dimerization in phase (P)
state. We propose the conjecture that this state persists
for all finite value of |I /2J|. The I dependence of the di-
merization gap, Fig. 11, gives a summary of our results.
This result, as long as only the P dimerization is con-
cerned and in spite of the possibility of an A4 dimeriza-
tion, is the same qualitative behavior predicted for the
Hubbard model.**~*® It is an even function of I, increas-
ing with |I| for |I/2J|<<1, decreasing for |I/2J|>>1
with a maximum expected between these two regimes.

Our explanation of the |I| dependence of I' in the
ladder mode can be seen as following. For I =0, the spin
chains are two independent systems. For 750 and small,
correlations are produced between a pair of spins of the
same ladder rung (parallel spins for 7 <0 and antiparallel
spins for I >0). Single-spin exchange through J; , breaks
these correlations which can be restored, however, by the
correlated exchange of the companion spin of the other
chain. As a consequence, the two system of spins are

0.4

A=o0.6

0.3 I

Iﬂ A=0.4

0.2
A=o0.6
011 )= 0.2 3o
o
0 ) L P —— -
0 1 2 3 4 ) 6 7 8 9 10
| 1/21]

FIG. 11. Our results for the dimerization gap as a function of
|7/2J] in the small and large interchain coupling limit.
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now synchronized and the response function Npp is
enhanced above N, since each spin in a correlated pair
tries to follow the other. In the strong coupling limit,
however, the response function Npp decreases since the
pairs of spins are correlated (localized) on sites and the
exchange motion is frozen out.

In this study we neglected quantum fluctuations of
phonons. These may be very important if the energy of
free phonons is of the same order than the dimerization
gap, JI'. As a result, the quantum fluctuations of phonon
fluctuations, together with large |7/2J| and {(S?) fluc-
tuations, may destroy the dimerized state. Impurities
contributions can also be invoked to explain the great
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number of low-dimensional magnetic compounds that do
not show the expected spin-Peierls transition.

ACKNOWLEDGMENTS

We thank Dr. Pravbov Shukla, Dr. Laurent, G. Caron,
and Dr. Claude Bourbonnais for useful discussions. This
work was supported by the Natural Sciences and En-
gineering Research Council of Canada, by the Fonds
pour la formation de chercheurs et I'aide a la recherche
du Québec and by the Centre de Recherche en Physique
du Solide de I’Université de Sherbrooke.

3. w. Bray, H. R. Hart, Jr., L. V. Interrante, I. S. Jacobs, J. S.
Kasper, G. D. Watkin, S. H. Wee, and J. C. Bonner, Phys.
Rev. Lett. 35, 744 (1975).

2J. W. Bray, L. V. Interrante, I. S. Jacobs, and J. C. Bonner, in
Extended Linear Chain Compounds, edited by J. S. Miller
(Plenum, New York, 1982), and references therein.

3K. M. Diederix, H. W. J. Bl6te, J. P. Groen, T. O. Klassen, and
N. J. Poulis, Phys. Rev. B 19, 420 (1979).

4D. Block, J. Voiron, and L. J. de Jongh, in High Field Magne-
tism, edited by M. Date (North-Holland, Amsterdam, 1893).

SR. A. T. Lima and C. Tsallis, Phys. Rev. B 27, 6896 (1983).

6Y. Lépine, C. Tannous, and A. Caillé, Phys. Rev. B 20, 3753
(1979); C. Tannous and A. Caillé, Can. J. Phys. 57, 508 (1979).
E. Pytte, Phys. Rev. B 10, 4637 (1974).

7A. Kotani and 1. Harada, J. Phys. Soc. Jpn. 49, 535 (1980).

8Y. Lépine and A. Caillé, J. Chem. Phys. 67, 5598 (1977).

9P. D. Loly, Y. Lépine, and A. Caill¢, J. Phys. C 18, 3779 (1985).

103, Y. Dubois and J. P. Carton, J. Phys. (Paris) 35, 371 (1979).

IR, A. T. Lima and C. Tsallis, Solid State Commun. 40, 155
(1981).

12G. Beni and P. Pincus, J. Chem. Phys. 57, 3531 (1972).

133, C. Bonner and M. E. Fisher, Phys. Rev. 135, A640 (1964).

14B, R. Patyal, B. L. Scott, and R. D. Willett, Phys. Rev. B 15,
1657 (1990).

15D, C. Johnston, J. W. Johnson, D. P. Goshorn, and A. J.
Jacobson, Phys. Rev. B 35, 219 (1987).

16w, E. Hatfield, J. Appl. Phys. 52, 1985 (1981); W. E. March, J.
H. Helms, and W. E. Hatfield, Inorg. Chem. Acta 150, 35
(1988).

17E. Dagotto and A. Moreo, Phys. Rev. B 39, 5087 (1990).

18D, B. Brown, J. A. Donner, J. W. Hall, S. R. Wilson, S. B.
Wilson, D. J. Hodgson, and W. E. Hatfield, Inorg. Chem. 18,
2635 (1979).

19A. de Kozak, M. Samouél, M. Leblanc, G. Ferey, and J. Pan-
netier, Solid State Commun. 55, 887 (1985); M. Vlasse, J. P.
Chaminade, J. M. Dance, M. Saux, and P. Hazenmuller, J.
Solid State Chem. 41, 272 (1982).

20D, Babel and G. Z. Knobe, Anorg. Allg. Chem. 442, 333

(1978).

2IR. L. Carlin, J. Appl. Phys. 52, 1993 (1981).

223, V. Emery, in Highly Conducting One Dimensional Solids,
edited by J. T. Devreese, R. P. Evrard, and V. E. van Doren
(Plenum, New York, 1979) p. 274.

23E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

24, Shiba, Phys. Rev. B 6, 930 (1972).

25R. P. Feynman, Phys. Rev. 56, 340 (1939).

26A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 57, 2137 (1969) [Sov.
Phys. JETP 30, 1160 (1970)].

27F, Woynarovich, J. Phys. C 16, 6593 (1983).

28H. Shiba and P. Pincus, Phys. Rev. B 5, 1966 (1972).

29H. Shiba, H. Progr. Theor. Phys. 48, 2171 (1972).

30K. Subbarao and V. A. Singh, Phys. Rev. B 26, 3788 (1982).

31§, Doniach, Green’s Functions For Solid State Physicist (Benja-
min, Ontario, 1974).

32T, Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Jpn. 18,
1025 (1963).

333, Hubbard and K. P. Jain, J. Phys. C 1, 1650 (1968).

34M. Takahashi, Progr. Theor. Phys. 42, 1098 (1969); 43, 860
(1970); 43, 1619 (1970).

35D. Baeriswyl and K. Maki, Phys. Rev. B 31, 6633 (1985).

36p, Horsch, Phys. Rev. B 24, 7351 (1981).

37v. J. Emery, Phys. Rev. B 14, 2989 (1976).

38C. L. Cleveland and R. Medina, Am. J. Phys. 44, 44 (1976).

39M. C. Cross and D. S. Fischer, Phys. Rev. B 19, 402 (1979).

403, C. Bonner and H. W. J. BlGte, Phys. Rev. B 25, 6959 (1982).

4IR. Orbach, Phys. Rev. 112, 309 (1958).

423, E. Hirsh and D. J. Scalapino, Phys. Rev. B 29, 5554 (1984).

43H. J. Schulz, in Low-Dimensional Conductors and Semicon-
ductors, edited by D. Jérome and L. G. Caron (Plenum, New
York, 1986), p. 95.

443, E. Hirsh, Phys. Rev. Lett. 51, 296 (1983).

45S. N. Dixit and S. Mazumkar, Phys. Rev. B 29, 1824 (1984).

46L. G. Caron and C. Bourbonnais, Phys. Rev. B 29, 4230
(1984).

47G. W. Hayden and E. J. Mele, Phys. Rev. B 32, 6527 (1985).

48] Hubert, Phys. Rev. B 36, 6175 (1987).



