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Specific heat in some gadolinium compounds. II. Theoretical model
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A detailed thermodynamical analysis of commensurate and incommensurate magnetic phases in

localized magnetic systems within a mean-field theory is presented. Interesting results are obtained
concerning the specific heat of amplitude-modulated magnetic structures: In particular, the
specific-heat discontinuity at the ordering temperature T& is reduced by a factor of —, relative to
that expected in ferromagnetic or helimagnetic structures. In addition, the exact shape of the
specific-heat curves strongly depends on the relative magnitude of the successive exchange cou-

plings J(nQ). Under certain conditions, the maximum of specific heat at T~ is shifted to a tempera-
ture lower than T&. Recent experimental data on GdCu2Si2, GdNi2Si~, GdGa&, and GdCu5 com-
pounds support very well these peculiarities.

I. INTRODUCTION

In the preceding paper, ' a detailed experimental study
of the magnetic contribution to the specific heat in
several Gd intermetallic compounds led to the conclusion
that the exact shape of this thermodynamical property
over the whole ordered state closely reflects the type of
magnetic ordering involved. In particular a fundamental
distinction has to be made between equal-moment (EM)
and amplitude-modulated (AM) systems. The first
category includes ferromagnetic, simple antiferromagnet-
ic but also helical and cycloidal magnetic structures, al-
though these latter two are usually incommensurate with
the lattice periodicity. In the second category, the mag-
netic moment amplitude varies periodically from one site
to another, evolving from a sine-wave shape immediately
below the ordering temperature T& to an antiphase-type
one (with equal moments) at low temperature.

In many systems, both types of EM and AM arrange-
ments are successively observed according to the temper-
ature: indeed the AM arrangement is often stabilized im-
mediately below T~, due to a particular shape of the
Fourier transform J(q) of the exchange interactions.
However, at lower temperature due to entropy effects as-
sociated with the modulation of the magnetic moment
amplitude, the spin system may ' (i) suddenly jump
through a first-order transition to an EM structure often
having a different propagation vector or (ii) keep the
same propagation vector and evolve toward a full anti-
phase structure at 0 K, through the progressive squaring
up of the modulation; this is accompanied by the growth
of high-order harmonics of the propagation vector. Only
this latter case will be considered in the present paper,
and the assumption will be made that the conditions re-
quired to stabilize this AM state with regard to other in-
commensurate states with equal moments, e.g. , helical,
are satisfied by an appropriate additional term in the free
energy. For example, a weak crystal-field anisotropy or
an anisotropy in the exchange coupling can lead to the
existence of a preferential direction for the magnetic mo-

ments, preventing the system from ordering within a heli-
cal magnetic structure.

It has been shown' that the well-known A, anomaly ob-
served on the temperature dependence of the specific heat
in ferromagnets and more generally in EM compounds is
strongly reduced in magnitude and possibly smoothed off
in AM systems. It is the purpose of the present work to
extensively develop the theoretical model which is able to
account for these properties, within the frame of the
mean-field approximation. The main features of this
model have been published recently ' and will be widely
developed and extended below. Section II is devoted to
the description of the formalism used in our model. The
behavior of specific heat near the ordering temperature is
investigated in Sec. III. The next section shows the
theoretical specific-heat curves calculated for various sit-
uations. A discussion is made in the last section.

II. FORMALISM

The present model is based on the Heisenberg Hamil-
tonian describing the isotropic bilinear exchange interac-
tions between total angular momenta J of rare earth at
the sites i and j:

J(ij )J(i).J(j) .
i j (wi)

Here we will focus on the case of gadolinium, i.e., J=—',
and no crystal-field effects. Moreover, magnetic fluctua-
tions above the ordering temperature T& as well as col-
lective excitations below T& will not be considered.
Within the mean-field approximation, the interaction
produced on the ith site by all the others is replaced by
the following effective exchange field:

H,„( )=(g p ) g J( j)(M(j)), (2)
j (wi)

where (M) =gjp, ~(J) is the magnetic moment of the
rare earth calculated by thermal average on the 2J+1
quantum levels of the 4f ion.
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The main purpose of the present work is to consider
the case of an amplitude-modulated magnetic structure in
which the magnitude of the magnetic moments may be
expanded in a Fourier series as

(M(j)) = g Mge
n (%0)

(3)

where Q is the propagation vector of the incommensurate
structure and M „&=M„*&so that M(j) is real. In the

absence of external magnetic field, and due to the symme-
try, only the odd values of n have to be considered. For
the sake of simplicity, we will restrict ourselves to the
case of a collinear structure where all the moments and
accordingly the Fourier components M„Q are aligned
along the same direction, e.g., the z direction. It can be
noticed that the relative magnitude of the M 's is close-nQ

ly connected with the degree of squaring of the modulat-
ed structure, this latter evolving from a quasisinusoidal
structure just below Tz towards a full antiphase one at 0
K (see below).

Inserting (3) in (2) provides a new expression for the ex-
change field:

where J(q) is the Fourier transform of the exchange in-
teractions J(ij). Equation (4) shows that the exchange
field is also periodic with the same periodicity as the mag-
netic moment, its harmonics H„Q being related to the
corresponding ones M„Q through the relations

H„q=(gqp~) J(nQ)M„q . (&)

This equation shows that the periodic shape of the ex-
change field does not necessarily follow that of the mag-
netic moment, so that various behaviors should be ex-
pected according to the relative values of the couplings
J(n Q). For example, the exchange field remains
sinusoidal at any temperature if only the first coeKcient
J(Q) is taken into consideration, whatever the values of
the M„&'s. The J(nQ)'s appear therefore as a kind of
"filter" which can strengthen, weaken, or neutralize the
effect of the different magnetic harmonics on the ex-
change field (see Fig. I).

The effective Hamiltonian may now be written as

&=—QM(i) H,„(i)+—,
' g (M(i)) H,„(i),

H,„(i)=(gjpii) g J(nQ)M„&e
n (WO~

(4) where the second term is a corrective energy term due to
the mean-field treatment, because in the first summation

(c}.

0
0

0

0.01 0.01

-8
0 0 200 30

ATOM POSITION I

FIG. 1. Upper part: calculated variation of the FFourier harmomcs ~M„&~ of the magnetic moments (n =1,3, 5) vs the reduced
temperature TjT~ for various exchange coeflicients: (a) J(Q ) = 10. (b) J(Q ) = 10,

Q)= . 7, J(5Q)=8; the dashed line represents the variation of —'M M b
'

h
Q =, J(3Q)= —8; (c) J( )=10,
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over i, each pair is counted twice. For a long-period
commensurate structure, this Hamiltonian reduces to an
X-site Hamiltonian, X being the number of magnetic ions
over one or several periods, i.e., i runs from 1 to X. Obvi-
ously an AM structure strictly incommensurate with the
lattice cannot be exactly described by this model, howev-
er, it can always be approximated by a long-period com-
mensurate structure with a nearly identical propagation
vector. As X becomes large, there should not be funda-
mental differences between the results obtained with both
types of structure.

The ¹iteHamiltonian, Eq. (6), has to be diagonalized
in a self-consistent manner for the X ions, i.e., the
Fourier coefficients M„& calculated after diagonalization
must be reinjected into the Hamiltonian through Eq. (4)
until the self-consistency is achieved. This procedure has
to be carried out at each temperature below T&. That
leads to a different temperature dependence for the
different M„& s, giving rise to a thermal evolution of the
shape of the moment modulation (see Fig. 1). Just below
the ordering temperature T&, the leading term is the first
harmonic M& (see below), and the modulation is mainly
sinusoidal. As the temperature is lowered, the other har-
monics %=3,5, . . . must appear and ultimately, at 0 K,
the full antiphase-type structure is reached, i.e., all the
moments have equal magnitude MD; the successive har-
monics are then related to each other by

Mg =M g
=—M0,'=2

7T
M~g =M ~g

= —
—,'Mg, '

(7)
M5gM 5@5Mgy ~ ~ ~ ~

The way the whole squaring process takes place be-
tween T~ and 0 K is associated with the relative varia-
tion of the various M„&'s and depends on the relative
magnitude of J(Q),J(3Q),J(5Q), . . . through Eq. (5) and
the self-consistency (see Fig. 1).

In the last stage, the internal energy can be calculated
for each ion at any temperature as

U;= —
—,'(M(i))H, „(i) .

U(antiphase) = — (gjpz ) lMDl

X[J(Q)+—,'J(3Q)+ —,', J(5Q)+ . . ] .

The propagation vector being usually defined as that
where J(Q) is maximum, it follows that all the J(nQ)'s
(n%1) are smaller than J(Q), then a lower limit for
U(antiphase) is

U(antiphase) ~ — (gzp~ ) J(Q)lM0l2

X(1+—,'+ —,', + . )=U0, (12)

the equality occurring in the only case where
J(nQ)=J(Q) for all n, i.e., the simple commensurate
structure quoted above (Q=O or —,'K).

Finally, the specific heat C is easily obtained by per-
forming the thermal derivative of U at any temperature.
From the above considerations, various behaviors may be
expected for the temperature dependence of C, according
to the relative magnitude of the J(n Q)'s and through the
different thermal variations of the M„&'s. As well, the C
versus T variation in incommensurate AM systems will
be shown to strongly differ from that of simple commens-
urate structures. That will be the purpose of the next sec-
tions.

III. BEHAVIOR OF C(T)
NEAR THE CRITICAL TKNIPKRATURK

The critical behavior of the specific heat C(T) in the
vicinity of the ordering temperature T& can be analytical-
ly obtained by using an expansion of the magnetic mo-
ment at each site as a function of the corresponding ex-
change field:

(M(& ) ) =gqIJ~ JSq(gqp~H, „(t )/k~ T)
C(&) C(&)

H,„(i)+ [H,„(i )]T3
Averaging these values over one period provides the

mean internal energy U per magnetic ion, the expression
of which is written, using Eqs. (3) and (4), as

C(5)
+ [H,„(i)] +

Z
5 (13)

N
U= —y U, = —

—,'(g,p, )-' g J(nQ)l~. zl'.
i =1 n (WO)

(9)

It is worth noting that this general expression is no
more valid for a simple commensurate propagation vec-
tor, i.e. , Q=O or —,'K where K is a reciprocal lattice vec-
tor, because a complete Fourier expansion of the mo-
ments is no longer needed. In that case, the approximate
expression for one magnetic ion is

C'"=(gjp~ ) J(J+1)/(3k~ ),
C' '= —(gjp~) J(J+1)(2J +2J+1)/(90k~), (14)

where XJ(x ) is the Brillouin function giving the magnetic
response of the system to an external or an effective mag-
netic field. Note that the vectors are no longer used in
this equation, because here we restrict our analysis to a
collinear AM structure. The C'"'s are the Curie con-
stants of nth order:

UD= 2(gJpg) 'J(Q)lMDI', —— (1()) C =(gJP~) [(2J+1) —1]/(30240k~) .

the magnetic moment being +Ma. Note also that for the
incommensurate antiphase structure, at 0 K, the relations
(7) lead to the following expression for the internal ener-
gy:

Replacing (M(i ) ) and H,„(i ) by their Fourier expan-
sion [Eqs. (3) and (4)] in Eq. (13) and identifying the cor-
responding Fourier harmonics provides a nonlinear sys-
tem of coupled equations in M&, M&&, . . . . This system
can be solved by expanding the M„&'s in ascending (odd)
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powers of the reduced variable t =(1—T/Tz)'~ and by
identifying the corresponding terms in t, t, . . . . At the
first order, the ordering temperature TN is derived:

Tiv =(gyps ) C"'J(Q)=J(J+ 1)J(Q)/(3k~ ) .

with

1 (C'") 5J(J+1)
EM 2 C(3) 2J2+2J+1 B (25)

The next two orders in perturbation provide the tem-
perature dependence of the first two harmonics of the
magnetic moment Fourier expansion:

' 1/2
(( (ll)3

M
Q 3 C(3) t(l —A T+. ),Q (16)

1/2
1 (C'")'

M 3Q 3 3 C(3)
t3

1 —J(3Q)/J(Q)

(17)

with

1 ——', J(3Q)/J(g)
1 —J(3g)/J(g) 9 (C"')' (18)

More generally it could be shown that M„Q varies as t"
in the vicinity of TN. For completeness, the correspond-
ing relations for the initial temperature dependence of the
magnetic moment M0 in the simple commensurate case
are

(( (ll)3 1/2

t(1 —A t'+ )C(3) 0 (19)

with

C(1)( (5)
30=1——

(( (3))2

T—TNC(T)=b, CAM+CAM
TN

(21)

the ordering temperature T& (or T, for Q =0) being
given by the same expression as Eq. (15).

Inserting Eq. (16) in Eq. (9) provides the first two terms
in the t expansion of U, the thermal derivative of which
gives the following expression for C( T) near T~:

2
(C"') 20J(J+1)

(26)

The first consequence of these relations [Eqs. (22) and
(25)] is that thejump of spec.ific heat at T~ for AM systems
is —, of that expected in FM systems. This is an important
result of the present study because it should allow one to
distinguish, in principle, between helical and amplitude-
modulated magnetic structures. Indeed, these latter are
both incommensurate and there often subsists an ambi-
guity between both cases from experimental data. For
example, they may produce the same neutron diffraction
pattern. In such cases, the specific heat may appear as a
useful macroscopic probe in the determination of the ac-
tual magnetic structure. The strong reduction of the
specific-heat discontinuity at TN for AM systems can be
qualitatively explained by considering that only a part of
the magnetic ions have been ordered at TN, the others
remaining in a state close to the paramagnetic one so that
they contribute only a little to the variation of the inter-
nal energy.

The second important consequence of the above
analytical treatment is the dependence of the slope of C at
T~ on the ratio r =J(3Q)/J(Q) for AM systems [see Eqs.
(18) and (23)]. It follows that there exists a critical value
r, ( =0.567 for J=—', ) for which the slope CAM vanishes
at T& (see Fig. 2). Moreover, for r values ranging from r,
to 1, the slope of Cat TN is negatiue, leading to the origi-
nal feature that a maximum of specific heat must occur at
a temperature below Tlv (see below). This is a quite exot-
ic behavior since the mean-field theory always predicts a
maximum of specific heat at the critical temperature.
From these results, various behaviors are expected for the
temperature dependence of C in AM systems; these will

The first term

1 (C"') 10 J(J+1)
3 C' ' 3 2J +2J+1

I

EM
I
I

I

T TN +CEM ( T ) —DECEM + C
TN

(24)

is the amplitude of the specific-heat discontinuity at TN,
the value of C vanishing above TN in the mean-field ap-
proximation. The second (linear) term in Eq. (21) pro-
vides the slope of the C versus T variation immediately
below TN.'

4 (C"') 40 J(J+1)
C(') Q 3 2J2+2J+1

Equations (22) and (23) have to be compared with the
corresponding expressions for simple commensurate
structures or more generally EM systems:

0

1- -10

-20

FIG. 2. Calculated dependence of the slope of specific heat
immediately below T~ on the ratio r =J(3Q )/J(Q) for AM sys-
tems; for comparison, the slope for EM structures is also report-
ed: r, is the critical ratio for which the slope vanishes at Tz.
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be shown in the next section for several particular situa-
tions.

IV. THERMAL DEPENDENCE
OF THE SPECIFIC HEAT

In this section, several theoretical variations of the
specific heat calculated with the present formalism are
presented for some particular values of J(n Q). First, the
effect of the incommensurability is emphasized in Fig. 3,
where the calculated specific heat for an AM structure
with only one exchange coefficient J(Q) is shown togeth-
er with the ferromagnetic result for comparison. Here N
has been taken as 10, i.e., the propagation vector is
Q~ =0. 1 in reduced units, in order to be able to describe

one full period. The associated modulated structure then
is long-period commensurate, but we expect the same be-
havior for any other ~Q~ value strictly incommensurate.
The Fourier expansion has been limited up to the fifth
term as we11, i.e., at most three exchange coefficients
J(Q),J(3Q),J(5Q) are considered. Moreover, for the
sake of comparison, all the calculated curves are drawn
versus the reduced temperature T/T~.

For the ferromagnetic case, identical to any EM case
(simple antiferromagnetic or helical), the well-known A,

anomaly at Tz is calculated with the present formalism
by taking Q=O. The jump of C at T~ is in agreement
with the exact value DECEM=20. 15 J/Kmol. In addi-
tion, a hump arises around T/T~ =0.25: it corresponds
to a Schottky-like anomaly in the ordered state involving
quantum levels the energy position of which depends on
the temperature through the thermal variation of the ex-
change field. Although its origin has never been well ex-
plained in the literature, ' ' ' it arises naturally within
the mean-field theory for a (2J+1)-fold degenerate mul-
tiplet.

For the most simple AM case, namely, one single ex-
change coefficient J(Q), a A,-like anomaly is also calculat-
ed (see Fig. 3), but with a discontinuity at T~ strongly re-
duced with regard to the EM case, as predicted by the
above analytical treatment (see Sec. III). Consequently,
the low-temperature hump is noticeably strengthened in
order to compensate the loss of entropy just below T&.

In all the cases, the full entropy S=R ln(2J+1) is
reached at T&, as expected.

The dependence of specific heat on the ratio
r =J(3Q)/J(Q) for AM systems is shown in Fig. 4. The
change of the slope dC/d(T/Tz) just below Tz is par-
ticularly well emphasized as r increases from —0.8 to 0.8.
As a consequence, the low-temperature part adjusts itself
in order to recover the full entropy at T&. It is worth
noting that these changes of C at low temperature may be
weak compared to those in the vicinity of T& because
their weight is noticeably strengthened by the factor 1/T
in the expression of the entropy. The next exchange
coefficient J(5Q) influences the calculated variation in
the whole temperature range, reinforcing or weakening in
particular the low-temperature hump. When the slope
dC/d( T/T&) is negative at Tz, it becomes apparent that
a maximum of C occurs at a temperature lower than T&,
as expected from our analytical treatment (Sec. III).

In Fig. 5, some particular C versus T variations are
shown. First, two curves corresponding to the critical ra-
tio r, =0.567 are presented: they start horizontally just
below T~, as predicted in Sec. III for this peculiar ratio
r, . In the absence of other exchange coefficients, a nega-
tive curvature is calculated for C in the whole tempera-
ture range except at very low temperature. In the pres-
ence of a positive J(5Q) coefficient, the C(T) curve ex-
hibits a quite exotic shape with a maximum at
T/T&=0. 8. The case where the J(nQ)'s approach the
value of J(Q) is also shown in Fig. 5: the initial slope
dC/d(T/Tz) below Tz becomes nearly vertical, the
maximum value of C increases, and the whole curve pro-
gressively approaches the variation calculated for the fer-
romagnetic case. As already quoted above about Eq.
(12), this evolution is consistent with the fact that, for any
simple commensurate structure (ferromagnetic or simple
antiferromagnetic), the relations J(nQ) =J(Q) are
satisfied for all n values.

V. DISCUSSION

In this work, a theoretical model for describing the
specific-heat variation in incommensurate amplitude-
modulated systems has been extensively studied within

20 20

0

FIG. 3. Calculated magnetic part of the specific heat vs re-
duced temperature T/T& for (curve a) ferromagnetic and (curve
b) amplitude-modulated structures. The exchange coefficients
are (curve a) J(0)=10; (curve b) J(Q) =10 (arbitrary units, see
text).

FIG. 4. Calculated specific heat for various exchange
coeKcients: (curve a) J(Q)=10, j(3Q)= —8, J(5Q) =8; (curve
b) J(Q)=10, J(5Q)=8; (curve c) j(Q)=10, J(3Q)=8; (curve
d) J(Q) =10, J(3Q) =J(5Q) =8.
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20

FIG. 5. Calculated specific heat for various exchange
coefficients: (curve a) J( Q) = 10, J(3Q)=5.67; (curve b)
J(Q)=10, J(3Q)=5.67, J(5Q)=8; (curve c) J(Q)=10, J(3Q)
=9.5; curve (d) J(Q)=10, J(3Q)=J(5Q)=9.5; for curves a
and b, the slope dCld(T/T&) vanishes at T&.

20
GdCU&5i2

10 61Ni25~i j ~ ~

/g'
~ gJ ~

GdCU5
r' /

/~

~y

I

I I

Gd Ga2

FIG. 6. Magnetic part of the specific heat for the compounds
indicated ( T& is the ordering temperature).

the mean-field approximation. Two main results have
been proved. (i) First, the amplitude of the specific-heat
discontinuity at the ordering temperature has been shown
to be strongly reduced (by —,') with regard to that expected
in ferromagnetic and more generally EM systems. (ii)
Secondly, the exact shape of the specific-heat variation
within the ordered phase depends on the relative magni-
tude of the exchange coefficients J(nQ) under considera-
tion and may exhibit a maximum at a temperature lower
than T~.

These quite original results can throw a new light on
the experimental curves shown in the preceding paper' as
well as on other data found in the literature. Among the
four Gd compounds presented in Ref. 1, GdCu2Si2 is the
only one exhibiting a specific-heat shape very close to
that expected for an EM system (see Fig. 6), and this is
consistent with its simple antiferromagnetic structure. '

The difFerences between observed and calculated varia-
tions can be accounted for by the effects of inhomo-
geneities in the sample and the presence of noticeable

magnetic Auctuations persisting above T&. The experi-
mental specific heat of GdNi2Si2, in particular the wide
range where the curvature is negative, can be well de-
scribed in our model by considering one single exchange
coefficient J(Q) (see Fig. 3, curve b). Again the remain-
ing differences with the calculated curves may be as-
cribed, at least in part, to the magnetic fluctuations.
These conclusions are coherent with the AM magnetic
structure determined by neutron diffraction. '

For the GdGaz compound, among the two structures
proposed in Ref. 11, namely a collinear AM structure
and a cycloidal structure, the first one appears more con-
sistent with the experimental specific-heat variation.
Indeed this latter is very far from the A, anomaly expected
for a cycloidal structure. For the hexagonal GdCu~ com-
pound, the experimental incommensurate propagation
vector Q=( —,', —,', 0.223) found by neutron diffraction" led
us to consider only a helimagnetic structure. However,
the same neutron diffraction pattern is obtained in the
hypothesis of a collinear AM structure, the moments ly-
ing along one particular direction of the basal plane.
This last solution is more likely if the experimental shape
of the specific heat is taken into account, especially the
presence of the maximum of C(T) far below T& cannot
be explained in the case of a helimagnetic structure.

Concerning other Gd compounds investigated in the
literature, it turns out that some of them behave as ex-
pected in EM systems, like, e.g. , Gd metal' or G-dRh, '

both ferromagnets, as well as antiferromagnetic GdCu6. '"
The case of GdA12 is quite puzzling: this compound is
considered as being a ferromagnet, but its magnetic con-
tribution to the specific heat has been found extremely
broad, culminating at only 9 J/Kmol for T=153 K.'

Its general shape is very far from the A, anomaly expected
for a ferromagnet, and the assumption of a ferromagnetic
structure may be questioned in the light of the present
work: for instance, an AM structure with a relatively
small propagation vector could produce magnetization
processes very close to those of a ferromagnet, and a
specific-heat variation similar to that observed experi-
mentally. The question remains open.

The case of the orthorhombic Gd Y& Cuz com-
pounds is worth being considered. They have been re-
ported as antiferromagnets. ' However, their specific-
heat variation, although exhibiting a well-defined
anomaly at Tz, culminates at only —15 J/K mol Gd (for
x =1,0. 8, 0.6), i.e., 25%%uo less than the expected value for
a simplified antiferromagnet. From our model, it is then
likely that the actual structure of this system is AM type.
This hypothesis is strongly supported by the existence of
such modulated magnetic structures in all the neighbor-
ing compounds R Cu~ (R =Tb, Dy, Ho, Er, Tm). '

A last comment can be made concerning the magnetic
fluctuations which are systematically observed above T&
in all the compounds quoted above and are neglected in
our model. The existence of such fluctuations has been
theoretically predicted, ' ' their variation following a
T 2 law as observed in GdCu2Si2 (Ref. 1) and GdRh
(Ref. 13) compounds. In gadolinium compounds, an en-
suing decrease of the specific heat below T& may then be
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expected in order to compensate the gain of entropy
above T&. This loss of specific heat can obviously con-
tribute to a reduction of the jump at T&, but it can be no-
ticed that both commensurate and modulated systems
should be affected in the same way by this effect. As well,
the fraction of entropy measured above T~, i.e., —15%,'
remains weak compared to the 33% reduction of the
specific-heat jump calculated in our model for modulated
systems.

In conclusion, the specific heat of magnetic systems
may provide useful information about the type of mag-
netic structure involved, in particular the EM and AM
structures may be distinguished from each other, in prin-
ciple. The model developed here for Gd compounds with
no crystal-field effects can be extended without difhculty
to other rare-earth compounds with crystal-field effects,
where additional features are expected to arise according
to the nature of the ground state.
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