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Theory of the magnetoresistance in magnetic multilayers: Analytical expressions
from a semiclassical approach
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We use the semiclassical approach of Camley and Barnas to derive analytical expressions for the
giant magnetoresistance of magnetic multilayers in several simple cases. We discuss the main
features of our results and apply our expressions of the magnetoresistance to the interpretation of
experimental data on Fe/Cr and Co/Ru multilayers. Finally we compare our results with those ob-
tained in quantum models.

Very large magnetoresistance (MR) effects have recent-
ly been observed in several multilayered structures,
Fe/Cr, ' Co/Ru, Au/Co, ' Ag/Co Cu/Co, '

NiFe/Cu, XiFe/Cu/Co. One finds that the resistivity is
high when the magnetizations of neighboring magnetic
layers are antiparallel, and drops when they are brought
into parallel alignment. For Fe(001)/Cr(001) superlat-
tices, the resistivity decrease can amount to about 50%,
i.e., AR /R, „-0.5, where hR is the maximum resistivi-
ty change and R „ is the maximum resistivity. In
Fe/Cr, ' Co/Ru, and probably Cu/Co, the antiparal-
lel alignment of the high resistivity state is due to antifer-
romagnetic exchange interactions through the Cr, Ru, or
Cu layers. In other systems, the antiparallel alignment is
obtained by introducing different pinning forces in the
odd and even magnetic layers.

The "giant magnetoresistance" of the magnetic multi-
layers is generally ascribed to an interplay between the
spin dependence of the scattering and the relative orien-
tation of the magnetization in neighbor layers. The first
theoretical model has been worked out by Camley and
co-workers' '" and uses a semiclassical approach of the
Fuchs-Sondheimer type. ' This model assumes that the
conduction electrons have spin dependent coefficients of
coherent transmission through the interfaces and also
spin dependent relaxation rates within the magnetic lay-
ers (spin dependent meaning dependent on the orienta-
tion of the electron spin relative to the magnetization of
the magnetic layer). Recently Levy and co-workers' ''
have developed a quantum model also based on the ex-
istence of spin dependent scattering. In this paper we
come back to the semiclassical approach. However, in-
stead of working out a numerical solution like in the
work of Camley et aI. ' *" or Trigui et al. ,

' we use ap-
propriate approximations for some practical cases and we
derive simple analytical expressions of the MR. These ex-
pressions are interesting to analyze the respective role of
the main parameters (thicknesses, mean free path, etc ), to.
deriue scaling laws and to present a physical picture of the
MR mechanism. We will consider the cases of the two
most investigated structures, the periodic multilayers and
the structures with only two magnetic 1ayers, respective-

ly. However, for simplicity, we consider systems with
spin dependent scattering only at the interfaces and we
do not treat cases with an additional spin dependence for
the scattering within the magnetic layers. After discuss-
ing the main features of our results, we apply our expres-
sions of the MR to the interpretation of experimental
data on Fe/Cr and Co/Ru multilayers. We also compare
our results with those obtained in the quantum model of
Levy and co-workers. ' '

CALCU LATIQIVS

g (v, z=O )=T g (v, z=O+) . (3)

The boundary conditions mean that, because a fraction of

First we consider the case of a periodic structure, for
example, a Fe/Cr multilayer with Fe layers of thickness
t„„Crlayers of thickness tc„and a very large number of
periods. The approach of Camley and Barnas" is based
on the Boltzmann equation. For layers perpendicular to
the z axis and an electric field E along the x axis, it can be
written as

Bg g~ eF. ~fo
Bz wv, vlU, BU

fo is the equilibrium distribution function, g (v, z) is the
correction to the distribution function induced by the
electric field for electrons with spin 0., and ~ is the relaxa-
tion time. The diffusion term Bg/dz cancels out in homo-
geneous conductors but, in rnultilayers, it drives the
dependence of g on z. The relaxation rate 1/~ appearing
in Eq. (1) expresses only the scattering by defects or im-
purities within the Fe layers, and for simplicity, is sup-
posed to be the same in Fe and Cr. In the semiclassical
models of the Fuchs-Sondheirner type, the scattering by
the interfaces is expressed by boundary conditions. For
electrons (+) with a positive U, and spin cr, the boundary
condition at the interface z =0 is written

g+(v, z=O+)=T g+(v, z=O ),
and, similarly for electrons with a negative v„
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the electrons T is coherently transmitted while a frac-
tion (1—T ) is diffusely scattered by the interface rough-
ness, the departure from the equilibrium distribution is
reduced by the factor T just after an interface crossing.
The dependence of T on the spin o. gives rise to the
magnetoresistance.

The general solution of Eq. (1) is of the form

~fo +
g

—(v, z) =erEv, G —(U„z ) (4)

with

6—(v„z)= 1 —A ' +—'exp -+

6 =1 at the right edge of the Fe layers:

6+(U„z=O )=1 .

Applying the boundary condition, Eq. (2), at the inter-
face z =0 and Eq. (5) for the variation in the Cr layer be-
tween z =0 and z =tc„ leads to

G+(U„z=O )=T

G+(U„O&z &tc, )=1—(1—T )exp
z

7U

Continuing in the same way we obtain

6+( „Uz=t c)=(1—T )exp
7U

where 3 is an integration constant.
In an infinite material without interface 6' —' =1 uni-

formly. For an infinite material with one interface at
z =0, the solution for 6+ is G+ = 1 for z (0, G+ = T
for z =0+ and, for z )0, 6+ returns exponentially to its
asymptotic value 1. The characteristic length of the re-
laxation to 1 is ~U, A, =~UF, where UF is the Fermi veloc-
ity and A, the mean free path (MFP).

Now, in the case of a multilayer with the magnetiza-
tions of all the Fe layers in the same direction, we have to
express 6' —'(z, u, ) in the unit cell of Fig. 1(a), with inter-
faces at z =0, z = tc„and z = tc, + t„,. First we suppose
that t„, is much larger than tc, and A, , which is a frequent
case in the experiments on Fe/Cr. ' Because t„, ))A, ,

6+(v„z=tc, )=T 1 —(1 —T )exp (10)

Ga (Uz~rcr &z & rcr+rFe )

=1— 1 —T 1 —(1—T )exp
tc.
7U

tc
X exp

VVz

6+(U„z=tc, +tF, )=1 . (12)

The variation of G+ (z, U, ) as a function of z for a fixed

+
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FIG. 1. (a) The function 6, that is the normalized departure from the equilibrium distribution function for electrons with spin cr

and U, positive, is plotted vs z (schematically) in a Fe/Cr unit cell corresponding to a ferromagnetic arrangement of the Fe layers (lim-
it t„,»A, ). (b) As in (a), but for the unit cell Cr/Fe~/Cr/Fe of an antiferromagnetic arrangement. (c) Scheme of a Fe/Cr multilayer
structure in the limit tc,~0. The transmission coefficient of a Cr layer is T~ or T~ for a F arrangement or T~ T~ for an AF one. (d)
Scheme for the five-layer structure Au/Co/Au/Co/Au studied by Dupas et al. (Ref. 6). When the scattering by the surfaces of the
film (dotted line) are specular, the resistivity is not changed if one considers a periodic structure built by adding adjacent five-layer
structures (with perfect transmission through the dotted lines).
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value of v, is shown in Fig. 1(a). The extension to G is
straightforward. The conductivity can be calculated by
introducing G'+—'(z) into g' —', Eqs. (2) and (3), integrat-
ing over v and z and adding the spin l' and spin 1 contri-
bution to derive the current for one unit cell

3 ooJ,=—f dv
2 1

1

V3

1
exp5

&ter

(21)

(22)

J= g f v g (v„z)d u dz . (13)

(14)

where n is the number of electrons per volume unit (both
spin directions), kF is the Fermi wave vector, and e is the
electron charge:

This calculation has already been performed by Carcia
and Suna' in the case without spin dependence. By us-
ing their Eq. (10) in Ref. 17 with p =Tt and p =Ti for
electrons with spin 1 and spin $, respectively, and adding
the spin l' and the spin J, contributions to the conductivi-
ty, we obtain for the conductivity of the ferromagnetic
configuration

pie
2

~F
gk jef &

F

or alternatively

=3 tcr tcrJ =—E2 2 3 g 5
—E (23)

Gt+(v„z=O )=1,
G t+ ( u„z =0+ ) = Tt,

(24)

(25)

Gt (u„O&z &tc„)=1—(1 —Tt )exp
7Uz

(26)

where E„ is the exponential integral function tabulated,
for example, by Abramowitz and Stegun. '

For the conductivity of the antiferromagnetic (AF)
configuration we have to consider the unit cell including
two bilayers and represented in Fig. 1(b). By the same
procedure as above we obtain

A,
2

XF =X—
eff tFe+ tCr

(1—TT )It+(1—Tt )Ii

, J„+J2,+(1—Tt )

, J„+J2,+(1—Tt ) (15)

G t+ (u„z =tc, ) = Ti 1 —(1—Tt )exp

G,+(u„tc, &z &tc, +t„,)

=1— 1 —Tt 1 —(1—Tt )exp

tc.
VUz

tcr
TU

(27)

with

I = —', f dpi'(1 —p )(1—e&)(1—e2)l(1 —T e&ez),

Z
X exp

VVz
(28)

Gt (v„z=tc, +t„,)=1 . (29)

J, = ', f dp p(1 —p2)(1 —e, )(ez)l(1 —T e, e2),

(17)
1

J2 =—' dip(1 —p, )(1—e2)(e&)l(1 —T eie2),
0

(18)

Cr
e& =exp

A,p
Fe

e2 =exp
A,p

J)g =Jig =0,
(19)

In the limit we are presently considering, i.e.,
t„,»A, , t«, we can use the following approximations:

k2
[(2—TT —Tt)I+(1—TENT))J2] .

Fe
(30)

For the second half of the period, the expressions ofG
&

are obtained from the preceding ones by inverting the or-
der of T

&
and T&. G

&
is easily obtained from G

&
. Corn-

pared to the previous expressions for the ferromagnetic
(F) configuration, the only difference is that Tt Ti re-
places TT (or Ti for the opposite spin direction). After
averaging the contributions from the spin& and spinl
electrons and the first and second halves of the unit cell
of Fig. 1(b), we finally find the effective mean free path of
the AF configuration by replacing (Tt +Ti ) in Eq. (20)
by T) Tg..

J~t=J2i=J2= —', f dpi'(1 —p )exp

so that Eq. (5) becomes

tcr
A,p

The resistivity change AR =R(AF) —R(F) is derived by
comparing Eqs. (20) and (30) and using Eq. (23) for J~:

A,
2 Tg+Tg

(2 —Tt —Tt )I+ 1— J2
tF. 2

(20)

hR 3 2 A, cr
R(AF) 4 " t„,

tcr—E5

(31)

I and J2 can be expressed as
In the limit tc, «X, by using approximate expressions

of E„(x) for x « 1,' we obtain from Eq. (31)
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AR 3(T T )~~ 1
8 cf

R (AF) 16 tF, 3
(32)

In the limit tc, ))A, , E„(x) for x )) 1 can be approximat-
ed by [1/x n /—x ]exp( —x ), ' so that Eq. (31) is written
as

hR 3

R (AF) 2

exp

tCr
(33)

o.=— (1+2T)t„,ln3 ne

4 A'kF tFe
(34)

By comparing the conductivity obtained for the F
(T= T

&
or Ti ) and AF (T= Tt Ti ) configurations, we

h, R
R(AF)

Curves 1, 2, and 3 in Fig. 2 represent the steep decrease
of hR/R as a function of tc, for different values of t„,
predicted by Eq. (31). The amplitude of the curves is in-
versely proportional to t„,.

Curve 5 shows the variation of AR /R as a function of
t„, in the limit tc, =0. This limit corresponds to the
scheme of Fig. 1(c) representing equal Fe layers separated
by Cr planes with, for transmission coefficient, either
T=Tt or Ti (for an F configuration) or T=T&T& (for
an AF configuration). The conductivity for both
configurations can be derived from the general expres-
sions of Carcia and Suna' for multilayers or, in an
equivalent way, by replacing the transmissions by
reflections and using the classical Fuchs-Sondheimer re-
sults for thin films. ' The variation as t„,' already ex-
pressed in Eq. (31) holds only for the range t„,))A, . For
t„, decreasing in the range t„,-A, , one obtains that the
MR continues to increase (but its analytical expression is
too heavy to be of interest here). The equations of the
conductivity in the model of Carcia and Suna' or Fuchs-
Sondheimer' become again simple in the limit t„,«A, :

obtain for the MR for tc, =0 and tF, « X:

AR
R (AF) 1+T +T (35)

We however point out that a semiclassical approach is
not really appropriate in the limit where the thicknesses
are much smaller than the mean free path, as this has
been emphasized by Tesanovic et al. Consequently the
predictions of Eq. (35) are more questionable than those
of Eqs. (31)—(33) obtained in the regime where our semi-
classical approach is appropriate. In the limit of Eq. (35),
a quantum model' is more relevant.

Finally curve 4 in Fig. 2 represents the MR as a func-
tion of tc, for t„,~0. We do not present its calculation
and simply mention that, like curves 1, 2, and 3, curve 4
goes to zero as exp( —tc, /A, ) for tc, ))A, .

The calculations above can be extended to structures
with only two magnetic layers, like the Au/Co systems
studied by Binash et al. or Dupas and co-workers. ' In
this paper we consider the typical structures by Dupas
et al. , with two very thin cobalt layers (6.5 A~tc,
~ 10 A) separated by a gold layer of thickness t~„and

0
sandwiched between thick (DA„-250 A) seed and pro-
tection layers of gold. We calculate the MR as a function
of tA„and D« in the limit tco A, and DA„)&A,. As the
analysis of Ref. 15 suggests that the specularity parame-
ter for the reflections by the surfaces is close to one, we
assume perfectly specular reflections. The resistivity of
this five-layer structure is not changed if one includes it
in a periodic multilayer built by stacking similar five-
layer structures and replacing the specular reflections at
the surfaces by a transmission without scattering to the
adjacent structure. Therefore we are led to consider the
multilayer of Fig. 1(d) composed by the succession of a
Au layer of thickness 2DA„, a Co layer of thickness tc„a
Au layer of thickness tA„, a second Co layer of thickness
tc„and again, a Au layer of thickness of 2DA„, etc.
With tc, «X, the effect of a Co layer is that of an inter-
face between Au layers with a transmission coefficient T

&

or T&. We are back to the above Fe/Cr case except that
T&, T~, tc„and t„, are replaced by T t, T &, tA„, and

2D~„, respectively. From Eq. (31) we derive the general
expression of the resistivity difference between the AF
and F arrangements of the Co magnetizations

r

3—ITS-
16

hR 3(
R (AF) 8 t DA„

E3
tA AU

(36)

3 2—(Tl. - Ty)2

'tc
exp—

In the same way approximate expressions for the limits
tA„((k and t&„))A, can be derived from Eqs. (32) and
(33).

tFe

FICx. 2. Summary of our results for the variation of the MR
of the Fe/Cr multilayers as a function of the thickness of Fe and
Cr.

DISCUSSION

The main features of our results for the magnetoresis-
tance of multilayers are summarized in Fig. 2 and can be
understood as follows.

(a) The MR decreases steeply as tc, increases, see
curves 1 —4 for which, when tc, is larger than the mean
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free path, the MR vanishes as exp( —tc, /A, ). This varia-
tion is easy to understand: the characteristic length for
the damping of the electron distribution function is A,.
Consequently an interface does not affect the electron dis-
tribution farther than A. and increasing tc, above
decouples the scattering effects of the two interfaces of a
Cr layer. This decoupling makes the resistivity indepen-
dent of the relative orientation of the magnetizations of
the Fe layers and cancels out the MR.

(b) The MR decreases as t„, increases but in a less pro-
nounced way than as a function of tc, . Its variation as

/t„, , for tF, ) A, means that there is only a depth k in a
Fe layer (along a Fe/Cr interface) in which the electron
distribution is affected by interface scattering. In our cal-
culation we have assumed that only the interface scatter-
ing is spin dependent, as this turns out to be approxi-
mately the case in Fe/Cr. From previous theoretical
works' ""' we know that introducing spin dependent
bulk scattering does not practically change the depen-
dence on tc, but makes a maximum appear in the depen-
dence on tF, .

(c) The MR depends on Tt and Tt via (T& —Tt ) in

agreement with the results of Refs. 10, 11, and 15.
The quantum model of Levy et al. ' ' also finds a rap-

id decrease of the MR for increasing tc, and a less pro-
nounced decrease for increasing t„„at least when only
the interface scattering is spin dependent. A comparison
between our results and those of Ref. 14 is not easy be-
cause the latter presents only results calculated with spin
dependence for both the interface and bulk scattering.
However, Ref. 14 presents results obtained with spin
dependence only for interface scattering and there is a
clear resemblance between the curves of Fig. 4(a) in Ref.
14 and curves 1, 2, and 3 of our Fig. 2.

The main features of the curves in Fig. 2 are also in
qualitative agreement with the experimental data on
Fe/Cr (or Co/Ru) superlattices. ' To test our expres-
sions more quantitatively we have fitted experimental
data on Fe/Cr and Co/Ru' with Eq. (31) written as

b,R
R

tNM E NM
(37)

The prefactor A depends on A, , Tt, Tt, tF, (or tc, ) but
not on the thickness of the nonmagnetic layers, tNM =tc,
or tR„. Figure 3 shows that series of experimental data
on Fe/Cr and Co/Ru at 4.2 K can be nicely put on the
same cu~~e E3( NM/") E5( NM/A, ) when the ~o~mal-
ized MR, hR /R divided by a normalization factor A, is
plotted versus ttvM/1, [t~M=tc, or tR„, X=A, (Fe/Cr) or

(Co/Ru)]. The fit of Fig. 3 is obtained with A,

(Fe/Cr) =20 A and A, (Co/Ru) = 15 A. The values of the
mean free path A, are in reasonable agreement with the
experimental values of the resistivity at 4.2 K. For
Fe/Cr with n =0.6 el/atom and A, =20 A, we obtain
p(bulk)=Akzlne k 36 pQcm-, and, when we use Eq.
(30) with Tt -0 and Tt —1 (Ref. 21) to calculate the
resistivity enhancement by interface scattering for a (Fe
30 A/Cr 9 A) multilayer, we obtain p-48 pQ cm for the
zero field resistivity. This is in the range 40—80 pQ cm of
the samples of Ref. 1. The major difhculty is encountered

0.30

0.25 i

0.20—

0.15

0.10

0.05

0.00
0.0 0.5 1.0 1.5 2.0

FIG. 3. The solid line represents the function
[E3(t A/M) ) E,(t~~/—A. )] plotted as a function of t~~/1, where

t~M is the thickness of the nonmagnetic layer (Cr or Ru). The
symbols correspond to normalized experimental values of the
MR for Fe/Cr or Co/Ru, that is hR/RA„divided by A, plot-
ted as a function of tc, /A, (Fe/Cr) (triangles) or t&„/k(Co/Ru)
(squares). For Fe/Cr, the fit is obtained with A, =20 A, 3 =4.5

for experimental values of AR /R from Ref. 1. For Co/Ru, the
0

fit is obtained with A, = 15 A, A =0.3 and we have taken in Fig.
3(a) of Ref. 3 the experimental data in the thickness ranges
where the interlayer coupling is antiferromagnetic (for multilay-
ers deposited at 125 'C).

CONCLUSION

We have used the semiclassical approach of Camley
and co-workers' '" to derive analytical expressions of the
magnetoresistance of magnetic multilayers in several sim-
ple cases. These expressions appear of great interest to

when one tries to account for the large absolute Ualues of
the MR in Fe/Cr. For the fit with Fe/Cr in Fig. 3, it is
necessary to assume a value of (Tt —Tt ) as large as
5.04, whereas Tt and T& cannot exceed 1. The only way
to account for the experimental values of the MR with
( Tt —T

&
) = 1, is to increase 1, by a factor of about 3. In

return this deteriorates this fit with the experimental
thickness dependence and lowers the zero field resistivity

p to about 28 pQ cm, that is definitely below the experi-
mental range. We believe that this diKculty arises from
the underestimate of the interface contribution to the
resistivity and the MR by the semiclassical approach
when the thickness is smaller than the mean free path. '

This underestimate of the interface contribution has al-
ready been emphasized by Tesanovic et al. In contrast,
in quantum models of the MR, ' ' the interface and bulk
scattering are treated in the same way, the proportion of
interface scattering can be tuned more freely, and a better
quantitative agreement with the experimental results of
the MR can be obtained.
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analyze the inAuence of the main parameters —thickness
of the magnetic and the nonmagnetic layers, mean free
path, etc.—and to discuss the physical mechanism of the
MR. The main features of our results are in agreement
with those obtained in quantum models. There are also
in qualitative agreement with series of experimental data
on Fe/Cr and Co/Ru multilayers. However, a complete
quantitative fit is impossible to obtain for multilayers
with very large MR, such as Fe/Cr. This is probably due

to the difficulty to balance the interface and bulk scatter-
ing in a semiclassical approach.
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