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Quasiparticle tunneling and quasiparticle-pair interference in granular superconductors
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We work out the phase diagram of an array of Josephson junctions with quasiparticle tunneling,
taking into account the quasiparticle-pair interference term (QPPI). Besides introducing interesting
renormalization eft'ects in the Josephson term, the QPPI shifts the critical resistance. At finite tem-
peratures a proper treatment of tunneling eftects leads to reentrant behavior.

I. INTRODUCTION

In the past few years, there has been a constant growth
of interest in the physics of quantum dissipative systems
at low temperature. ' With modern lithographic tech-
niques, it is possible to fabricate low-capacitance single
junctions, chains, and two-dimensional arrays with both
normal-metal and superconductor islands, in which quan-

I

turn eftects can be studied avoiding the complications due
to disorder.

It is well known that quantum Auctuations due to the
finite junction capacitances can suppress phase coherence
of a Josephson-junction array even at T=O, when the
electrostatic energy overcomes the energy gained in the
formation of the coherent state. In the path-integral for-
mulation, one studies the effective Euclidean action (units
such that fi= 1 will be used):

S, [tti(r)]+S~[P(r)]= f dr g C~tti;(r)P, (r) —g EJcosg, (r)
8e

where P, is the phase of the superconductive order pa-
rameter of the ith island, P,"=P; —P, and (ij ) means a
summation over the lattice bonds. The first term ac-
counts for the electrostatic interaction between the metal-
lic islands through the capacitance matrix C, . The
second is the Josephson interaction term, and EJ is the
related energy. In the self-charging model (C,~ =5,JC)
(see, however, Ref. 3) one finds that phase coherence is
suppressed at T=0 if' zEJ C ~ 1, z being the coordination
number of the array, this threshold increasing at finite
temperatures. '

The possibility of reentrant behavior has been en-
visaged by Simanek and Efetov and has raised an extend-
ed discussion in the literature. By considering a ca-
pacitance matrix in which only diagonal and nearest-
neighbor elements are nonvanishing, reentrant behavior
has been found in a mean-field (MF) study, whereas in
the self-consistent harmonic approximation (SCHA), no

reentrance was found.
It is worth mentioning that, even in the self-charging

limit, the physics described by Eq. (1) can be more com-
plex; indeed, Monte Carlo studies have revealed the pres-
ence of two distinct superconducting phases, and in-
teresting features emerge when the Auctuations of the
single-grain superconductive order-parameter modulus 6
are accounted for. '

Dissipation due to Ohmic shunts or quasiparticle tun-
neling is believed to be responsible for a phase transition,
at T=0, at a critical resistance of the order of
Ao=h/4e =6.5 kQ, and it has been accounted for in
various ways. " ' In the experimental range of the pa-
rameters, a SCHA yields an universal critical resistance
Ro/d (d is the dimensionality of the array) for dissipation
due to an Ohmic shunt, "whereas, for quasiparticle (QP)
dissipation, a MF approach indicates a weak dependence
on the Josephson energy EJ.'
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The effect of QP tunneling is studied starting from the
Ambegaokar-Eckern-Schon (AES) Euclidean effective ac-
tion, obtained from the microscopic model. ' lf the

I

subgap conductance is negligible, the AES action can be
studied in the adiabatic limit, which reads

S [P(~)]=Sc[P(r)]+SJ[P(r)]+f dr g 5C„Q; (~) $— 5C~Q; (r)cosP; (r)
8e 2 ~ 'J 24 2 x v (2)

In the calculation, we will consider the self-charging
model for the electrostatic part of the action. Here QP
tunneling is responsible for the last two terms; the third
one represents a renormalization to the mutual capaci-
tance that leads to the appearance of an effective long-
range electrostatic interaction which is temperature
dependent (5C derives from the electronic Green's func-
tions, see the Appendix). 5C reduces for T=O to
6C=3g/166, where g =Ra/R& and, in the samples real-
ized experimentally, is much larger than the nearest-
neighbor geometrical capacitance, so that the choice
C,"=C5; seems appropriate. The last term arising
refiects an interference between Cooper pair and QP
currents (hereafter, we will refer to it as QPPI). In the
classical theory, it is encountered as a phase-dependent
resistance. ' By an inspection of (2), it is clear that QPPI
could lead to an off-diagonal charging dependent
enhanced effective EJ or a phase-dependent depression of
QP dissipation. 5C is temperature dependent and
reduces to 6C for T=O. It contributes to the Euclidean
action as an effective long-range electrostatic interaction;
stability is not affected by the sign of QPPI because of the
presence of QP terms. The physics of QPPI is not well
understood: Its effects are not easily detectable in single-
junction devices, and even the sign of the coe%cient is a
subject of controversy for theoreticians and experimental-
ists. ' It is worth mentioning that very recently a Hamil-
tonian with the same structure of (2) has been construct-
ed, ' differing in the sign and the magnitude of the cou-
pling constants of the two terms, where QPPI is de-
scribed by a nonstandard combination of "coordinates"
(P) and "canonical momenta" (CP/4). However, we will
follow the formulation of the problem given in Ref. 16
because, according to this last work, the well-known clas-
sical limits are readily obtained.

A very natural procedure consists in performing a
Hubbard-Stratonovich transformation to (2), in order to
decouple the cosine and the derivative in the QPPI
term. This Auctuating field is sharp sufficiently far
from the transition line and then, by using a saddle-point
approximation, it is possible to show that if the system is
in the phase coherent state, QPPI results in a renormal-
ization of both the dissipative and the Josephson coupling
constants. However, this approach is not reliable in
working out the phase diagram due to the increasing Auc-
tuations of the renormalized coupling constants.

The purpose of this paper is to work out the phase dia-
gram arising from the effective action (2), as compared
with the case in which QPPI is neglected. What follows
is divided into four parts. First, we describe the SCHA,
adopted in order to simulate both the Josephson and the

QPPI terms by a quadratic trial potential. Then, we de-
scribe the resulting phase diagram for T=O: If QPPI is
neglected, a critical resistance, slowly verying in the in-
teresting range of the parameters, is obtained, whereas in-
cluding QPPI determines appreciable modifications on
the phase diagram. In the third part, the limiting case
C «5C is worked out for TWO, and we find that reen-
trant behavior occurs if the temperature dependence of
the QP strength (discussed in the Appendix) is accounted
for and that QPPI preserves this feature. The final sec-
tion is dedicated to the concluding remarks.

II. THE SELF-CONSISTENT HARMONIC
APPROXIMATION

The SCHA consists in simulating the action (2) by a
trial harmonic action,

(3)

using the Gibbs-Bogoliubov inequality to estimate the
best upper bound for the free energy '

F*=F +/3 '(S —S ) (4)

SH[WI,.]=XSk. Idk. I'
k, n

where

(5)

Sk„=(I/8Pe )(C+5C z„)(co~+II2k ),
4me zk

2

C +6C zk

which is the minimum with respect to the variational
stiffness m of (4). FH is the free energy, and ( )H means
the average value, both calculated with (3). When m&0,
(cosP,"(r))H is nonvanishing. Thus the assumption of
this quantity as the (short-range) order parameter reduces
the problem to determine the condition under which
minimization of (3) yields a nonvanishing solution for m.

The action (2) completely defines the problem only if
the allowed paths are prescribed, i.e., the set of the al-
lowed states is specified. We then assume that small
leakage currents through the substrate exist, so that the
states ~P) and ~/+2') are distinguishable. The bound-
ary condition for the allowed paths is P(0)=P(P). Then,
the trial action (3) reads
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Here, zk =g;,[I—cos(k.a, )] is the usual dispersion for
nearest-neighbor pairs, a; are vectors joining nearest-
neighbor pairs, and k is a vector of the first Brillouin
zone.

The quadratic action can be expressed in terms of coor-
dinates and momenta for the quantum harmonic oscilla-
tor in the following way:

and

Q„=(1/2e)(C+5C zk)'/ pk .

Then the standard harmonic oscillator results ' for
the correlators between the spatial Fourier transforms,

(QkQ k ) =(1/2) cotanh( —,'pQk),1

kH=
2 g (PkP k+AkQkQ k)

k

where

Pk = ( 1 /2e )( C +5C zk )
'

(6)
&P,P, & =~I', & Q, Q, &,

can be used in evaluating the averages involved in the
problem.

The trial free energy (4) is now readily computed:

XZ &Cr 2F*=FH — EJ(cosp)+ 2 ((t cosp)+ —,m(p )
2 24e

—(y')/2+ 1' (~2) —(1t1')/2+ 1m (y2)H 2 J
24 2

Here, we have dropped the subscript H in the averages. Moreover, these are not dependent on the bond (ij ) and on
the time, so we dropped the relative arguments of P. N is the number of sites of the array, and a generating functional
procedure was adopted to evaluate

&P cosP&=—
a2

( i (ap +p)

Ba a=0

—(y')/2

EJ6C
,
' 2, (y')

6e Bx

together to the known properties of the Gaussian averages.
By minimizing (8) with respect to m, the self-consistency equation for the stiffness is found:

—1

(j') —
& j') .-(~ '",

Bx
(9)

where x =I /EJ, and where the correlation functions are

2
2 2 —1/2~ e zk

Nz k EJ(C +5Czk )

2
2 2 1/2~ e zk

Nz k EJ(C+5Czk )

1/2 1/2
e zkx

EJ(C+5Czk )

1/2

cotanh PEJ

3/2
e zkx2

cotanh /3EJ

(10)

Here, the summations are performed over the first Bril-
louin zone, excluding k=O.

The right-hand side of Eq. (9) arises from QPPI and re-
sults in an enhancement of the Josephson contribution
[ ~exp( —((t )/2) in the left-hand side] favoring then
phase coherence. We will discuss first the T=O phase di-
agram, and then we will analyze the effect of the tempera-
ture to discuss the reentrant behavior of the phase dia-
gram. In the limit in which the QP tunneling is disre-
garded, Eq. (9) reduces to the limit studied in Ref. 6.

III. THE T=O PHASE DIAGRAM

If T=O, the correlation functions reduce to

( (j)2 ) x —1/2( CE /e2) —1/2f (g)

(((') =~' '(CE /e') ' 'f (&)

= 2 Xz/-"'=N & ~+Z
/ Zk

3/2

Since 5C and Ez are related (at T=O, we have
5C = 3g /166„and E~ =g b, /2), we obtain the phase dia-
gram by considering the values of g and of the reduced
inverse charging energy 5/U for which a nonvanishing x
first appears, and the results are shown in Fig. 1. When
QPPI is neglected, the SCHA yields a slowly varying crit-
ical g, of order 1 in the parameter range of interest
(b. /U=10 ' —:10 ). The including of QPPI appreci-
ably changes the phase diagram.

where A, =C/5C, and the lattice properties are carried by
1/2

= 2 AZkf '"=N & ~+Z k Z/
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nearest-neighbor pairs is approximated by its long-
wavelength limit zk=a k (for square or cubic lattices).
This is correct for k small, but can be less accurate for
C))6C: In the self-charging limit for cubic lattices, the
critical threshold ZEJC increases from the exact value
0.63 to 2.60.

For completeness, we show in Fig. 3 the variational
stiffness renormalization if QPPI is included, for square
and cubic lattices for different values of b, /U.

IV. THE T &0 PHASE DIAGRAM
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In the limit 5C))C the summations in (10) drop out
and the only relevant parameter is the coordination num-
ber . In Fig. 4, the phase diagrams zg versus T* are
shown for various cases. T is the ratio of T to the "clas-
sical" transition temperature zEJ /2k&. The adopted pro-
cedure is surely meaningful for d=3, where a ferromag-
netic order is expected to set up. For two-dimensional
arrays, the transition is of the Kosterlitz-Thouless-
Berezinskii (KTB) type, at least for high temperatures,
and the possible crossover at zero temperature to a d= 3
behavior is still an open question. ' In any case, in
principle the SCHA allows the exploration of tempera-
tures higher than reported here, but in the present case,
QP tunneling can be modeled by an effective capacitance
renormalization only for small enough temperatures; thus
the approach based on (2) is not reliable. We have es-
timated that this happens for T) Tc/~ and, correspond-
ingly, for T*)0.73/g.

The dashed curves are obtained by assuming that
6C =6C& =6C. The absence of reentrance found in Ref.
8 is here confirmed (curve 4), even allowing for a QPPI-
type term (curve 2). MF theory predicts in this limit

I
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FIG. 4. The phase diagram in the g-T plane is shown: (1) ac-
counting for the quasiparticle renormalization of the capaci-
tance and the pair-interference term taking into account their
temperature dependence (see the Appendix), (2) neglecting their
temperature dependence, (3) accounting only for temperature
dependent QP; and (4) neglecting in the latter case the depen-
dence on the temperature. 5C &)C.

reentrant behavior, but entirely neglects Auctuation
effects. The inclusion of QPPI seems to render more
stable the superconductive state when the temperature in-
creases.

The situation changes when we include the tempera-
ture dependence of 5C and 5C (see the Appendix for
the derivation), which in the low temperature limit reads

(12)

where the upper and lower line to QP and QPPI, respec-
tively. In this case, the transition is reentrant both
neglecting (curve 3) and including QPPI (curve 1), but the
phenomenon is somewhat suppressed in the latter case.
On the other hand, we verified that for MF treatment, ac-
counting for the temperature dependence of the QP
strength, slightly changes the situation, the main role be-
ing played by temperature-independent oA-diagonal
charging (see also Ref. 15). If a KTB point of view is fol-
lowed, ' the temperature dependence (12) determines
both reentrant and quasireentrant R ( T) curves. The
plotted curves, in the reentrant case, will eventually bend
again to approach the classical limit: We cannot extend
our calculation to this region because the Eqs. (12) for the
capacitance renormalizations are no longer valid.

Finally the temperature behavior of the capacitance re-
normalizations is shown in Fig. 5. The QP renormaliza-
tion increases with temperature when QPPI renormaliza-
tion has a rapid decrease.
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FIG. 5. The renormalization of the capacitance due to (1) QP
and (2) QPPI is plotted against the reduced temperature 1/PA.
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V. SUMMARY AND CONCLUSIONS

We have shown that QP tunneling tends to suppress
quantum fluctuations, and that when it is the only
relevant reactive response to voltage Auctuations, a resis-
tance threshold is obtained of -5.86 kQ. If QPPI is in-
cluded, the resistance threshold increases to -6.34 kO,
showing that the effect of QPPI is relavant. However, a
proper treatment of QPPI would require accounting for
both effective EJ enhancement and 6C depression and for
their Auctuational behavior. It should be very interesting
to study the electromagnetic response, especially to mi-
crowave fields, as in classical experiments on QPPI. At
finite temperature it is shown that reentrant behavior
occurs if the temperature dependence of tunneling is con-
sidered, and that QPPI preserves this feature, even if it
has the tendency to suppress the response against in-
crease of the temperature. Finally, improved calculations
seem to be in order to ascertain if the relative sign of QP
and QPPI strengths can change with temperature.
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APPENDIX

The QP particle tunneling across a junction is usually
described in terms of the normal Green's function,
whereas Josephson tunneling and interference terms in-
volve the anomalous Gor'kov propagators of the super-
conducting electrodes via the functions' ' '

a(r) =gG (r)G (
—r),

13(r)=gF (r)F ( —r),
where G(r) and F(r) are the momentum integrated
("quasiclassical") Green's functions of a superconductor.

The effective capacitances are defined in terms of the
Fourier transforms:

5C = — [a(co„)—a(co„=O)],2

~n

2 = 2
(A 1)

—,'5C = — [)33(co„)—P(co„=O)]—
2 y(~„),

COn COn

where

~m +~n ~m

( + )2+g2]l/2 (
2 +g2)1/2

~2 -1 1

[( + )2+g2]1/2 (
2 +g2)1/2

2
~m

v +5
1

v +6

(A2)

Here, v = [(2m —1)vr]/P are fermionic Matsubara frequencies, and m = —~ to + oo.
The validity of the effective capacitances approach (2) rests on the fact that a„—ao and y„are well approximated by

their second-order expansions.
By expanding (A2) in powers of co„, we have

a, —o;o

3'n

oo 3~2—1 2' ~ " &, 2.2 —lj(.2+1)3 (A3)

1

vm (v +1)2
rn —

—,'+ i5

where units of b, are now used. Then, expanding in partial fractions, the sums in Eq. (A4) can be calculated:

a a'
3 —36 +6

16 Pl ——+15
gg2

(A4)

where 5=P/2'. The summation yields

—'P( —,'+ i5)+4'( —,
' —i5) =

iver

tanhrr5, — (A5)

where q/(z) are digamma functions. Thus by inserting
(A5) into (A4) and (A3), and using the definition (Al), the

capacitances (12) are found, if we restore usual energetic
units.

This result is valid for small co„and, consequently,
small temperatures. We can estimate that when
I/Ph & I/1. 76rr, then T & Tc/vr, where Tc is the critical
temperature for single-grain superconductivity.
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