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Unoccupied energy bands of iron are mapped by inverse photoemission from Fe(100), Fe(110),
and Fe(111). The ferromagnetic exchange splitting 6E,„ofthe uppermost d band is measured for
the H2& point, where the minority- and majority-spin subbands are both empty (5E,„=1.8 eV with

H2, ~ at 1.9 eV and H2, ~ at 0.12 eV above EF ). Several other critical points are determined, such as
the minority-spin I » and P3 points, the majority-spin N3 point, and the higher-lying H», H, points
of s,p character. Critical points and exchange splitting are compared with first-principles, local-
density calculations. The real part of the self-energy is obtained from this comparison, and the
imaginary part by measuring the lifetime broadening. In the d-band region, the self-energy causes a
10% compression of the bands and a linear broadening I (E)=0.6~E —E~ ~.

INTRODUCTION

Iron is the classic ferromagnet and one of the most
common materials. It has served as a model for itinerant,
i.e., bandlike ferromagnetism. The occupied bands of Fe
have been studied extensively with angle-resolved photo-
emission, but only little information is available about the
unoccupied bands. Photoemission data' " on the band
dispersions and the ferromagnetic exchange splitting
6E„ofFe are close to first-principles band calculations
using the local-density method. For Ni, by contrast, the
observed bandwidth is narrower than calculated and the
exchange splitting is much smaller. ' ' Cobalt lies in
between. ' The unoccupied bands of ferromagnets are of
particular interest, since they contain the unbalanced
minority-spin holes that make up the magnetic moment.
They are accessible through inverse photoemission (for
reviews, see Refs. 15—17). However, there has been rela-
tively little work on the unoccupied energy bands of fer-
romagnets. They have been seen in Ni, Co, and Fe, but
the information about band dispersions along symmetry
lines is very scarce and no critical points have been re-
ported (for Ni and Co, see reviews; ' ' for Fe see Refs.
18 and 19). Insufficient tunability of the photon energy
has made it difticult to reach high-symmetry points in k
space. We have used a tunable inverse photoemission
spectrograph to map energy bands of Fe. The ferromag-
netic exchange splitting is resolved exceptionally well

near the Hz5 point, better than in any photoemission or
inverse photoemission work on Fe, Co, and Ni to date.
The observed band dispersions and critical points are
compared with first-principles, local-density band calcu-
lations in order to show self-energy effects.

EXPERIMENT

Fe(100), Fe(110), and Fe(111) crystals were cleaned by
established procedures. ' ' An initial heat treatment in
1 atm of H2 for about a day (with the temperature varied
between 400 and 700 'C) was followed by sputter-
annealing cycles. The last anneal was kept short (flashing
to 700 C with about 1 min cooling time) in order to
prevent outdiffusion of residual impurities. Sharp 1X 1

low-energy electron diffraction (LEED) patterns were
seen at this point. The inverse photoemission spectra
were taken after transferring the sample in vacuum from
the preparation chamber to the spectrometer chamber,
with a pressure in the mid-10 "Torr range.

We used a high-resolution inverse photoemission spec-
trograph with an energy resolution of 0.27 eV at low en-
ergies. An accurate line shape was obtained by taking
the derivative of the Fermi edge for a material with
roughly constant density of states near the Fermi level,
such as oxidized tantalum (cf. Ref. 23). The spectrograph
detects a range of emitted photon energies, while the ini-
tial energy of the electron E, is fixed. Thereby, the initial
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INVERSE PHOTOEMISSION RESULTS
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change splittings are compiled in Table I. A particularly
clear-cut situation is encountered for Fe(110) at an initial
energy of E, =11.1 eV above the Fermi level EF (Fig. 2).
At this energy, the transitions take place close to the
high-symmetry point H, from an initial state near H» to
final states at the majority and minority spin Hz& points
(cf. Fig. 5 and the discussion below). Since there are no
other possible final states, the ferromagnetic exchange
splitting 6E„is resolved very well. The data were fitted
by Lorentzians, broadened by the experimental resolution
function, which has been determined by taking the
derivative of the Fermi edge of Ta (see Ref. 23). The
main uncertainty in this fit turned out to be the choice of
the secondary photon background. A splitting 6E„=1.8
eV is obtained with energies E& =1.9 eV and E& =0.12
eV and Lorentzian widths I &=0.9 eV and I &=0.09 eV
(full width at half-maximum). These widths reAect the
lifetime broadening (or imaginary part of the self-energy)
of the final state. Additional broadening mechanisms add
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FIG. 4. Inverse photoemission spectra from Fe(100) showing
the dispersion of a higher-lying 6, band of s,p character with its
minimum at H».
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FIG. 3. Inverse photoemission spectra from Fe(111) and
Fe(110) showing the minority spin band at P3 and I,2 and the
majority spin band at %3.

to the width at higher initial state energies, e.g. , the k
broadening of the evanescent initial state in the H» —H]p
band gap and the deteriorating energy and momentum
resolution of the spectrometer. At initial energies above
21 eV, one leaves the band gap and moves back to I
along the 6 line (see Fig. 1 and marks on top of Fig. 5).
A higher-lying 65 band of s,p character can be picked up,
which disperses upwards from the H, ~ point (Figs. 4 and
5). Its minimum at 10.2 eV defines the H» point. Here
it is seen as the final state, while it was the initial state for
the spectrum in Fig. 2. The initial energy of the H»
transition in Fig. 4 (about 21 eV) marks H i and the near-
by H, 2 point. Lifetime broadening at these energies is
too large to separate them. The position of H, z, H, is lo-
cated by observing the dispersion of the A~ band going to
zero at an initial energy of about 21 eV. Additional clues
for the edges of the H» —H, 2 band gap come from the
drop in intensity that interband transitions undergo when
the initial state moves into the gap. The 65 H» transi-
tion in Fig. 4 loses strength for E, smaller than 21 eV be-
cause the upper state moves into the gap. Likewise, the
H z5 transition in Fig. 2 decreases in intensity for E,
higher than 11 eV because the upper state lies in the gap.
By contrast, the transitions on the Fe(111) surface be-
come stronger with increasing E, due to the increasing
cross section of 3d states.
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For Fe(110), the band structure is rather complex due
to the low symmetry along the X line (see Ref. 28). Here
we concentrate on the critical points, where the situation
is relatively clearcut (Fig. 3). The I &2 point can be seen
at initial energies 30 eV, which are just barely reachable
with a normal incidence spectrograph. For improving
the resolution, we have taken the data in second
diA'raction order. At the other end of the spectrum is the
X point, which is reached at an initial energy of about 8
eV (see Table I). It exhibits two groups of empty bands
(see Table I). The upper group consists of the N3, N4,

and X& minority spin bands, which are seen as an un-
resolved structure between 1.5 and 2.0 eV above EF (not
shown). The lower group contains the N3 majority spin
band and the s,p-like X& minority and majority spin
bands. They appear at initial energies below 11 eV,
where they cross the Fermi level (compare the band
structure in Ref. 28 and Fermi surface data in Ref. 29).
Going towards the lower limit of our spectral range (Fig.
3), we see a peak dispersing upwards through the Fermi
level. The assignment of this feature to either the N31 or
N', 1' $ points is not easy. On one hand, the transition be-

TABLE I. Critical points and ferromagnetic exchange splitting 5E of Fe (energies in eg with
respect to the Fermi level). T =majority spin, $ =minority spin, T g =average.

Critical
point

r, Tl
res T

rz5~

I 15T l
r2gT l

E
experiment

—8.15b
—235 —26 —255
—0.27, —0.4, ' —0.41'
—078 b —1 2c—061e
+1.5'

calculation'

—8.12
—2.25
—0.43
—0.86
+ 1.32

+32.4
+32 ~ 7

5E,
„

experiment

2. 14g

2.14g

2.4'g
2.4'g

5E„
calculation'

0.17
1.82
1.82
2.18
2.18
0.75
0.87

BIZ ~

Iles T

H25 $

H15T$
II ip T l
~i T l

—3.8
—2. 5
+O. 12'
+ 1.9'
+1O.2'
+21'
+21'

—4.50
—2.99
+0.11
+2.22
+9.70

+ 18.9
+21.2

1.3
13
1.8'
1.8'

1.51
1.51
2.11
2. 1 1

0.28
1.16
0.79

P~T
p4$
P3T
P3$
P4TT
Pl T $

—3.20, —3.0
—1.85 b —1.S'
—0.60, —0.5
+ 1.6

—3.17
—1.83
—0.53
+ 1.57
+8.82

+ 11.0

135 15
1.3s,b1. 5'
2. 1 '
2.1"'

1.34
1.34
2.10
2.10
0.92
0.56

Nl T

Ni 5

N2T
N2$
NIT

N4T
N4$
NIT

N3T

—4.50, —4. 16'T $—3.60, —4. 16'T$
—3 ~ 00
—1.40
—0.70, —1.02'

—0.70

+0.4'

—4.75
—3.60
—3.27
—1.62
—0.86
+ 1.25
—0.69
+ 1.54
+0.40
+0.56
+0.38
+2.52
+7.88

0.90
090
1.6ob

1.6ob

1.65
1.65
1.65
1.65
2. 1 1

2. 1 1

2.23
2.23
0.16
0.16
2.14
2.14
1.26

'Local-density calculation with the von Barth Hedin potential from Callaway and Wang (Ref. 28).
Photoemission (Ref. 8) (see also Ref. 6).

'Photoemission (Ref. 10) (see also Ref. 9).
Photoemission (Ref. 4).

'Photoemission (Ref. 11).
Inverse photoemission (this work).
The average among b, c, and e.
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er with the available photoemission data to characterize
the band dispersion and the ferromagnetic exchange
splitting, thereby giving a complete picture of the elec-
tronic structure. Particularly striking is the well-resolved
ferromagnetic exchange splitting at the II z5 point. In or-
der to study higher order excited state eff'ects on the band
structure, we have also determined the lifetime broaden-
ing (corresponding to the imaginary part of the self-
energy) and the disrepancy between experimental and cal-
culated ground state band energies (corresponding to the
real part of the self-energy). It is interesting to note that
the lifetime broadening is linear in energy with a slope of
0.6, i.e., equal to that observed for the states near the Fer-
mi level in high temperature superconductors. The real
part of the self-energy corresponds to an average d-band

narrowing of 10%. Surface effects show up mainly via
the appearance of image states. It would be interesting to
further pursue the magnetic properties of the observed
image states, particularly a possible magnetic splitting.
This would be a first step for creating a spin-polarized,
two-dimensional electron gas.
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