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We have investigated the possible role of two-dimensional vortex-lattice defects in thermally as-
sisted flux flow for the very anisotropic high-temperature superconductor Bi,Sr,CaCu,QOyg 5 (Bi-Sr-
Ca-Cu-O). At low current densities, this mechanism, which we shall refer to as plastic flux creep, is
expected to prevail over creep of elastically correlated flux bundles, or elastic creep. It is assumed
that vortices are pinned by oxygen vacancies, for which the elementary interaction is obtained.
Measurements of the ac susceptibility in an applied dc field, B.; <uoH <0.2B,,, carried out using a
sufficiently low driving-field amplitude, were performed on a Bi-Sr-Ca-Cu-O single-crystalline sam-
ple. It is shown that under the above assumptions the experimental data may be consistently inter-
preted. The field dependence of the activation barrier is explained. Furthermore, the irreversibility
line is reproduced, as well as the shape of the ac-susceptibility transition. Deviations from the
plastic-flux-creep model can be qualitatively understood using a criterion describing the crossover

to elastic flux creep.

I. INTRODUCTION

It is well established that thermal fluctuations and flux
creep play an important role in high-temperature super-
conductors (HTS’s), even at temperatures well below T.
These processes are reflected by such experimental results
as a strongly time-dependent value of the dc magnetiza-
tion,! an extreme broadening of the resistive transition,?>
and the strong frequency and field dependence of the ac-
susceptibility transition.*”® Different authors have inter-
preted these results in terms of melting of the Abrikosov
flux lattice,” !9 as a transition from vortex glass to vortex
liquid,'! or as a thermally assisted flux flow (TAFF).!? In
either case the interaction between vortices and pinning
centers is expected to play a role.”* Vortices experience a
certain pinning potential U that should be overcome on
the time scale set by experiment in order for flux motion
to be observed. In TAFF (Ref. 12) it was assumed that
this quantity is equal to the pinning energy U, as this fol-
lows from the theory of collective flux pinning,'* i.e., in-
dependent of driving force. Recently, however, it was
shown theoretically'® that when the vortex lattice (VL) is
pinned (vortex glass state), U should scale with the
current density j (proportional to the driving force) as
y

U=U,

c

_1;0_
J
The exponent y depends on the dimensionalities of the
flux bundle and of the translational vector describing its
position. U, is the potential barrier in collective pinning
theory and is attained when j equals the critical current
density j.. In the case of three-dimensional collective
pinning (3DCP), this U, depends on the pinning mecha-
nism, characterized by the pinning strength ¥ and range
rs (see below). The origin of the pinning in HTS’s is still
the subject of considerable discussion, the main candi-
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dates being intrinsic pinning,'® pinning by extended de-
fects such as intergrowths,” or second phases,” or by
point defects, such as oxygen vacancies.

The theory of collective flux creep as developed by
Feigel'man et al.'® only considers the elastic deformation
of the vortex lattice by defects in the crystal lattice.
Their main result [Eq. (1)] clearly imposes a limit on any
flux-transfer mechanism based on elastic flux creep. At
low current densities the activation barrier will grow to
such an extent that any observable flux motion on experi-
mental time scales is inhibited. Nevertheless, as will be
shown below, an ac-susceptibility experiment on Bi-Sr-
Ca-Cu-O carried out using a low driving field, i.e., at low
J> shows significant frequency dependence of the diamag-
netic transition (see also Ref. 6). This is indicative of flux
motion over macroscopic distances within the driving-
field cycle. Therefore, an alternative to elastic creep of
flux bundles needs to be considered.

Experiments on a-Nb,Ge and @-Mo,Si thin films'®
have shown that even in materials with weak pinning the
VL becomes unstable to the formation of plastic deforma-
tions when high stresses are applied. The positional or-
der of the vortices is reduced, resulting in the well-known
peak effect in the critical current. In three dimensions it
is energetically much more favorable for the VL to con-
tain numerous screw dislocations, resulting in a highly
disordered state, far from what might be expected from
three-dimensional collective pinning theory.!® Evidence
for the domination of flux flow in two dimensions (2D) by
the plastic deformation of the VL has been brought for-
ward in Ref. 20. In the present paper we shall therefore
compare results of magnetic measurements on a Bi-Sr-
Ca-Cu-O single crystal with a model based on the pres-
ence of dislocations in the VL.

The idea to be pursued is that when a static magnetic
field is applied to a type-II superconductor at a finite tem-
perature, the magnetization decays with time according
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to elastic creep theory, starting from the critical state.
As the magnetization and corresponding current density
in the sample decrease, the activation barrier U(j) for
elastic flux creep increases, following Eq. (1). Eventually,
the current density will become so small that U(j) will in-
crease above the relevant energy for motion of VL dislo-
cations.

We now summarize the contents of the paper. In Sec.
IT the model of plastic flux creep in a very anisotropic su-
perconductor is outlined. Because of the extreme anisot-
ropy of the material, it is more appropriate to treat the
mixed state in Bi-Sr-Ca-Cu-O as an array of superposed
2D vortex lattices, situated in the (superconducting)
CuO, double layers. Next, we consider the plastic defor-
mation of these 2D vortex lattices, i.e., the introduction
of edge-dislocation pairs. Associated are two characteris-
tic energies: the dislocation nucleation energy, which de-
pends on the VL shear modulus c44, and the pinning en-
ergy. In the following we will assume pinning to occur
by oxygen vacancies in the CuO, double layers, for which
the elementary pinning force will be derived. Once these
quantities are established, we recognize that motion of a
small dislocation pair, unlike that of a fluxon bundle, in-
volves only fixed length scales and may be thus described
as diffusion of a particle. For the associated flux trans-
port, TAFF theory'? is appropriate. This will be briefly
reviewed for the application to ac-susceptibility experi-
ments. In that case diffusion is driven by the periodic
variation in time of the applied field at the sample sur-
face. The resulting flux profile decays exponentially over
a characteristic length A,.. In Sec. III measurements on a
Bi-Sr-Ca-Cu-O single crystal are presented and compared
with theory. The results are discussed in Sec. IV.
Throughout the paper we will only consider the low-field
case b =B /B_, <0.2 of isolated vortices.

II. THEORY

A. Dimensionality of the Bi-Sr-Ca-Cu-O compound

A consequence of the crystal structure of the HTS’s,
which features weakly coupled parallel CuO, layers, is
the often huge anisotropy in the effective mass of the
charge carriers. For Bi-Sr-Ca-Cu-O this amounts to a
factor T'=m_/m ~3000.>! Here m and m, are the car-
rier effective masses parallel and perpendicular to the
CuO, planes, respectively. Since the anisotropy factor T"
enters in the expression for the tilt modulus of the VL,
€44 =~cy4 /T, this quantity is reduced, to a remarkable ex-
tent, well below the value of the shear modulus
ceo~(B2/4uy)b (B, is the thermodynamic critical field).
This reflects the instability of the vortices to segmenta-
tion along the ¢ direction. Indeed, the longitudinal
characteristic dimension L, of a correlated volume of the
VL, as this follows from the theory of collective flux pin-
ning,14 was calculated to be of the order of the thickness
d of a CuO, double layer.?> Below a crossover field
B, =®,/T'd?, magnetic coupling between vortices in
adjacent CuO, layers becomes important (®y=h /2e is
the flux quantum). For Bi-Sr-Ca-Cu-O this amounts to a
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field B, ~0.3 T demarcating a low-field regime where
the VL is expected to display a three-dimensional charac-
ter”? 2% and a high-field region where a description in
terms of weakly coupled two-dimensional superconduct-
ing layers seems justified.”’ Below, we will treat Bi-Sr-
Ca-Cu-O as a 2D layered superconductor, with a layer
thickness d =1.2—1.5 nm, corresponding to the spacing
between CuO, planes, or half the size of the unit cell.
The vortex structure in the mixed state then consists of
independent arrays of 2D vortices within the CuO, lay-
ers. Between these layers the order parameter is ex-
ponentially small.?®

B. Edge dislocations in the vortex lattice

Models for thermally activated motion of defects in the
VL were developed by Vinokur, Kes, and Koshelev?? and
by Feigel’'man, Geshkenbein, and Larkin.?? In a 2D vor-
tex lattice, the relevant defects are pairs of edge disloca-
tions, corresponding to extra or missing rows of vortices.
Once such a dislocation pair has been nucleated, a vortex
row constrained between these can move relatively easily
through the vortex lattice and transport flux through the
superconductor. Small pairs where the distance between
dislocations approximately equals the vortex spacing,
a, =~V (®y/B), are expected to be the main contributors
to flux creep, because their nucleation energy U, is
lowest. For such pairs, which can be seen as VL vacan-
cies or interstitials, this amounts to

1 ®ld

Uez;c%d(l%:W ) (2)
where A is the effective penetration depth. Here interac-
tions between pairs are neglected. If we take A=~290
nm,?”? this nucleation energy is approximately 100 K.
Note that U, is almost constant in the temperature re-
gion T <50 K, to be considered below. In the absence of
pinning, the diffusivity of the dislocations is determined
by their (thermally induced) concentration n,a3, which
will be proportional to exp(— U, /kzT).

C. Pinning of small edge-dislocation pairs

The second important energy relevant to the problem
is that associated with the pinning of a VL interstitial (or
vacancy). The presence of pinning not only results in a
small, approximately constant, residual concentration of
VL defects, i.e., disorder even at zero temperature, but
also constitutes an impedance to interstitial motion
through the VL. In order to estimate the associated ener-
gy barrier, the strength of the pinning potential must be
evaluated. The pinning potential experienced by an inter-
stitial is that of a single vortex. This is written as the
product of the pinning force per vortex and the pinning
range:

U,=F,r; . 3)

Since we are dealing with the low-field limit, the pinning
range 7, will be taken to be the Ginzburg-Landau coher-
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ence length £(7).%° Because of the perovskite-related na-
ture of the materials, important candidates for the pin-
ning mechanism in HTS’s in general are oxygen vacancies
in the CuO, layers. Oxygen vacancies can be described as
small voids with diameter D,, which interact with a vor-
tex core mainly through quasiparticle scattering. It was
shown by Thuneberg, Kurkijirvi, and Rainer,>° that the
effective defect volume is enhanced with respect to D by
a factor §,/D,. It therefore equals the product of the de-
fect scattering cross section o, =mDZ2/4 and the BCS
coherence length £,. The pinning potential as a function
of distance from defect to vortex core for the case of
weak scattering was calculated in Ref. 30. Taking the
derivative yields the elementary interaction

2
f(r)=2.3f,~ exp —’—2‘ (4a)
ro ry
12.0 B;
~— ) —— . (4b)
fp (1+t)4g(PD Hogatrgo

B?/2u, is the condensation energy, r is the distance from
the center of the oxygen vacancy, r,=0.81&(7), and
t=T/T,. The function g(pp) 1is given by
0.882x'(pp)/x(pp), where x(pp) is the Gor’kov function
and pp the dirt parameter £,//. In the pure limit (I > &),
g(pp)=0.85.  Substituting the parameter values
B.(0)=0.3 T, §,=1.35£(0), and D,~0.29 nm, the max-
imum strength of the elementary pinning force f, was
evaluated at 6.5X 107 !* N at low temperatures. It is in-
teresting to note that f, is not influenced by the small
coherence length: f), is larger than the same quantity in
conventional superconductors only because of the larger
condensation energy.

The validity of Eq. (4b) for the elementary interaction
is limited by the oxygen vacancy density ng. Note that
ng is the areal density of pinning centers per CuO, dou-
ble layer. When it increases it is expected that f, is re-
duced as a result of the effect of background scattering
from many other oxygen vacancies.*® The averaging
effect becomes unimportant when np&D, <1. We shall
see below that this condition is satisfied, allowing us to
neglect this effect.

From the elementary interaction the macroscopic pin-
ning force per vortex is evaluated using the collective pin-
ning concept Fv=\/nD7T§2<f2)E7/1/2. The averaging
(f?) should be taken over the vortex core. Inserting the
result 0.89f 13 in the expression for F,, the pinning energy
per vortex becomes

172
Uy~ [mmogf

21
= g0 8 Po)

Tr
2

[4

”og Utr§0 é‘z . (5)

The pinning strength can be characterized by the value of
a dimensionless parameter a=(u U, /B2£%d )22 A value
of a much less than 1 implies collective pinning of the
VL; a value a S 1 means that although the interaction of
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the pinning centers with a vortex is still collective, vor-
tices are now pinned independently. Note that U, is field
independent since it is a quantity associated with the
single-vortex regime.

D. Diffusion of defects in the vortex lattice

Because of the fixed size of a VL interstitial (vacancy)
and the fixed length scale for a thermally activated hop
(namely, the flux-lattice spacing a), the activation energy
for thermally activated motion is independent of driving
force. The problem of VL interstitial motion then
reduces to that of thermal diffusion of a “flux particle,”
such as described in Ref. 12. The diffusion coefficient
equals the product of the flux-flow resistivity p f,2 the in-
terstitial concentration n,a 3, and an activation term.

It is not clear a priori what form p, should have.
Namely, the viscosity associated with motion of a dislo-
cation pair need not be that of a single vortex. Neverthe-
less, in our assumption that small pairs are most impor-
tant, we shall use the expression for the flux-flow resistivi-
ty, py=1. 1p,B /B,,,>! for simplicity. The upper critical
field B., has been calculated by Werthamer, Helfland,
and Hohenberg.*?

In order to evaluate the activation barrier, we point
out that VL interstitial motion is hindered by the pinning
potential as well as the presence of the surrounding vor-
tices. In general, a thermally activated jump of the inter-
stitial means a redistribution of vortices in its vicinity, re-
sulting in a redefinition of the interstitial’s position a dis-
tance a, removed from its prior site. Modeling the defor-
mation field caused by the interstitial as a solitonlike
wave, the sum of displacements related with the redistri-
bution can be shown to be of order a,. We account for
this by taking the variance o (over a distance a,) of the
random pin potential U, (knowing that U, is the variance
associated with an interstitial displacement over a dis-
tance §&):

172
o

§

Note that the factor (a,/£)'/? also produces the only
field dependence in the activation energy o <B ™ !/4
Combining Egs. (5) and (6), we find the temperature
dependence to be

o=0(0)f (1)< B2 2(1+1)7*

o={(8U,)?= U, (6)

=g(0)(1+1)"2(1—1¢)7*. (7)

For the interstitial concentration we distinguish two
regimes. In the low-temperature regime, the residual,
pinning-induced VL dislocation pairs will be most impor-
tant. Their concentration has been estimated as
n,ad=~exp(—U2/20%) (Ref. 22) and as n,a}
~ exp(— U, /0).2> At higher temperatures thermally in-
duced  dislocation pairs will dominate, and
n,ad~exp(—U, /kpT).

Summarizing, we have, for the diffusion coefficient,
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p _Pr.
Dy="—=—n,a;exp
0 Bo Ho ' ¢

, (8)

o
kgT
where p is the resistivity caused by TAFF in a transport
measurement. Note that the only free parameter in this
expression is the oxygen vacancy concentration s, figur-
ing in Eq. (5).

A comparison of the barrier for elastic creep [Eq. (1)]
to U, yields a crossover current density j;,2* below which
dislocation-mediated (plastic) flux creep is important.
Comparing U (j) to o instead of U,, the crossover cri-
terion may be modified to describe the low-temperature
case, from which it becomes

2 18/9
Rcrf

ag

4/9
Tr
aag,

J3j3=le ©)

R, is the transverse characteristic dimension of a corre-
lated region in the 2D vortex lattice. From recent VL
decoration experiments by Murray et al.,* we have
R, =2—4a,.

E. TAFF model of flux diffusion

In this subsection the application of the thermally as-
sisted flux-flow (linear flux diffusion) model to ac-
susceptibility experiments is briefly reviewed. Because
vortices can only be created at the sample surface, the in-
duction in the bulk of the sample obeys the continuity
equation 0B /3t =(9/9dr)DydB /dr (for a cylindrical sam-
ple). ris a coordinate along the sample radius; D is the
same quantity as in Eq. (8). Solving this in the case of a
large constant field with a sinusoidal ripple of frequency v
at the sample boundary, B=puy(H,+h,, cos2mvt), yields
an exponential flux profile, with decay length
Ape=(Dy/mv)!/2, This length has been called the flux-
flow skin depth, in analogy to the normal-state skin
effect.*

At low temperatures the diffusion coefficient becomes
exponentially small. The main contribution to the per-
meability will then come from the ac response of the
pinned VL. The elastic displacement of the vortices
from their equilibrium positions in their pinning potential
wells results in a net ac-field penetration. This penetra-
tion, too, is exponential in the distance from the sample
surface. The corresponding characteristic decay length
A.=(B?/uga; )"/ was called the pinning penetration
depth,* where a; = B /r is the Labusch constant.

The two contributions to the permeability, elastic
response and thermal activation, may be combined by
adding the resulting vortex flow velocities: v =vy, +vg.
The continuity equation is modified to

5 03,,0B , 3 3B
B=—A—+—Dy—— .
" ar Cor
Solving this equation, the ac penetration depth is found
tobe A=k, +ik_| " '=(k% +k% )72 where
2 172 W2 172
k+ 1 [2] ] + c

= V2 | | D2+ oi? D2+w?A!

(10)

(11)
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Here w=2mv. Because of the exponential form (8) of D,
there is only a narrow temperature range where both
mechanisms contribute to the permeability to the same
extent.

The onset of irreversible behavior occurs when A,
equals a /M, where a is a characteristic sample dimen-
sion and M|, a constant determined by sample geometry.
For a cylinder this is the radius; for a slab it is half the
thickness. The infinite slab was treated in Ref. 12 and the
cylinder of infinite length in Ref. 34. There it was shown
that the permeability

2k, Tola /Ay,
g Iga/Ay)

u=l+y (12)
I,(x) is the zeroth-order modified Bessel function; the ac-
cent denotes the first derivative to the argument. The
complex susceptibility is written as y=x'+ix’’. The
constant M, is defined by plotting the solution for the
permeability'?3* versus a /A, (Fig. 1) and choosing a cri-
terion related to a well-defined experimental feature.
Two convenient choices are the a/A,. value, where a
linear extrapolation of the real component u’ intercepts
pn=1, and the a /A, value, where the imaginary com-
ponent p'' is maximum. Both features reveal the onset of
irreversibility.* The corresponding values of M|, are 0.56
or 1.13 for the slab geometry and 1.25 or 2.57 for the cy-
lindrical geometry.

At the irreversibility onset, we now have

_Ms _ M; )
v=—oDog=————pXpsn,apexp

Ta Uoma

. (13)

kT

Because D is a function of B and T, Eq. (13) determines
the irreversibility line of a HTS at the frequency v. Con-
sequently, the irreversibility line, denoted at T (B) or
B, (T), shifts with frequency.*>

0.0

FIG. 1. Solutions of the ac permeability of an infinite slab
(dotted lines) compared with that of a cylinder of infinite length
(solid lines), as a function of the variable a /A, (see text). The
procedures for obtaining M, are illustrated by the extrapolation
of the ' curves to 1 as indicated by the dashed lines; in the case
of u"', M, is the value of a /A,, that corresponds to the peak po-
sition.
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ac-susceptibility and resistivity experiments share the
condition that they are carried out at a low current densi-
ty and thus probe the same type of flux creep. According
to Eq. (8), the diffusion coefficient governing VL intersti-
tial motion is essentially equal to the resistivity. There-
fore, at a fixed applied dc field the frequency and temper-
ature at which Y’ (or u'’) is maximum are related to each
other in a manner analogous to the way the resistivity
transition and temperature are related, namely, according
to an Arrhenius expression.’ A plot of Inv versus T}
should thus yield the same information on the activation
barrier as a plot of Inp versus T~ !. The choice of a resis-
tance threshold defining the onset of irreversibility in a
resistance measurement corresponds to a choice of the
measurement frequency in an ac-susceptibility experi-
ment.

III. RESULTS

A. ac-susceptibility experiment

The measurements of the complex susceptibility on the
Bi-Sr-Ca-Cu-O single crystal (7,=83 K: dimensions,
1.0X0.8X0.2 mm?), presented in Ref. 5, were extended
to different applied dc fields. In all measurements the dc
field was applied perpendicular to the (a,b) plane of the
sample. The measurements were carried out using a stan-
dard mutual inductance technique. The primary coil was
compensated with a concentric coil so as to achieve zero
mutual inductance with the superconducting magnet. In
addition, the entire coil system was firmly clamped to the
superconducting magnet. The measurements were taken
over a frequency range 10.87 Hz <v <22 kHz, in dc fields
between 0.0075 and 6 T. The amplitude of the ripple field
Hohae Was 3X107° T. The measurements were started
from a high temperature where the induction completely
penetrates the sample, so that corrections to the applied-
field value due to demagnetizing effects are expected to be
negligible.

Results for v=21.75 Hz at selected field values are

3

Vv AA‘. ﬂ
—1.0 [ AuSRiancpfT]

0O _e®
P4

0 20 40 60 80

T (K)

FIG. 2. Field dependence of the ac-susceptibility transition
of the Bi-Sr-Ca-Cu-O single crystal for v=22 Hz. The symbols
represent the following applied dc-field values: solid triangles, 4
T; open triangles, 1T; solid diamonds, 0.4 T; solid squares, 30
mT; open squares, 15 mT; solid circles, 7.5 mT.
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shown in Fig. 2. The susceptibility transition is found to
be strongly field dependent. The downward shift of the
transition temperature with increasing fields is most pro-
nounced at the lowest fields. Also, the width of the tran-
sition is greater at lower field values. The magnitude of
both the inductive component )’ and the dissipative com-
ponent X'’ is field dependent. The magnitude of y’ de-
creases somewhat, while that of Y’ is enhanced as the
field is increased. The data were calibrated by dividing
the signal by the signal in zero applied field at low tem-
perature, T=4.2 K.

Direct measurements of the permeability can in princi-
ple be performed by balancing the Meissner signal of the
sample with a compensating coil. The signal observed in
an applied field is then directly proportional to the ac-
field penetration in the sample.*> Variation of the ripple-
field amplitude yields the flux profile. The magnitude of
the pinning penetration depth A, was estimated to be
about 5 um.

Values of the irreversibility temperature T, were
determined using the two criteria corresponding to the
above choices for M: the zero intercept T, of a linear
extrapolation of the Y’ transition and the peak in Y’/ at
T=Tj,.. Here the sample was approximated by a
cylinder of radius 0.51 mm, corresponding to V' A4 /m,
with A4 the sample cross section perpendicular to the
applied-field direction. A plot of B versus T, represents
the irreversibility line.* The results for v=287 and 696 Hz
are shown in Fig. 3.

Also in Fig. 3 are the temperatures where the dc mag-
netization of the same sample becomes unobservably
small (J =~10% A/m?). This “dc”-irreversibility line looks
very much like the lines obtained via ac susceptibility.
The measured irreversibility lines also closely resemble
ac-susceptibility and mechanical oscillator results ob-
tained by Gammel®® and results of ac- and dc-

8
-
6 ap I 1.00
- e d
0.10
- 4l ok @
~ 0.01
m 10 30 50 70 90
2 Tlrr ( K )
o =ik Ak
10 30 50 70 90

Tifl’ ( K )

FIG. 3. Irreversibility lines for the Bi-Sr-Ca-Cu-O sample,
with v=_87 Hz (triangles) and v=696 Hz (diamonds). Open cir-
cles represent the field values where irreversible dc magnetiza-
tion becomes unobservably small. Solid lines denote model fits,
with n5=7X10'7 m™?2 (see Sec. IIIB1). The inset shows the
figure on a logarithmic scale, data obtained from the dc mea-
surements having been omitted.
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susceptibility by Gupta et al.>37 and de Rango et al.3®

Decreasing the ripple-field amplitude by a small factor
had no influence on the susceptibility transition. It can
therefore be concluded that the measurements were
indeed carried out in the TAFF regime, where the activa-
tion barrier is independent of driving force. An increase
of the ripple-field amplitude by a factor of 10, however,
yields the result illustrated in Fig. 4. The depicted curves
were measured in a dc field of 1 T, at a frequency
v=21.75 Hz. A slight dependence of Tj, and Tj, on
driving-field amplitude is now observed. The low-
temperature onset of the y’’ peak is shifted to a distinc-
tively lower temperature. The broadness of the y’ transi-
tion is affected, the diamagnetic signal diminishing at a
lower temperature when a larger amplitude is used. De-
tails of the amplitude dependence will be presented else-
where.

In Fig. 5, Do=mva?/M} has been plotted logarithmic-
ally versus T;.!, as obtained both from the in- and out-
of-phase susceptibility. The values M;=1.13 and 4 have
been used for the two respective cases. The deviation
from the values stated in Sec. I E is due to the irregular
geometry of the sample. By plotting the irreversibility
temperatures in this way, the data range can be increased
from three to more than four decades. T, and T, scale
approximately as the logarithm of the frequency of the
ripple field. The plot of D, versus inverse temperature is
very much similar to the resistivity results of Palstra
et al.> Our data correspond to a resistivity range be-
tween 8 X 107> and 4X 10~ ! uQ cm. The linear scaling of
Inv with T;.! seems to break down at the lowest fields
and frequencies. Measurements carried out in fields
below 0.1 T show that below v~100 Hz the apparent
transition temperature is much less frequency dependent
than above this frequency.

Because the main contribution to the diffusion
coefficient D, comes from the exponential term, the slope
of a linear fit to the T, data for a given field yields an es-
timate of the activation barrier at that field. These slopes

are depicted in Fig. 6(a), along with data from Ref. 3.

0.5

T (K)

FIG. 4. Susceptibility transition of the Bi-Sr-Ca-Cu-O sample
in an applied field of 1 T, at driving field amplitudes poh,. of
0.03 (open triangles) and 0.3 mT (solid triangles), at a frequency
of 22 Hz.

13 037

107
107}
107

107

D, (m%™")

107}

1077
0.01

0.03

0.05 0.07

T, ( K")

FIG. 5. Measured values of the diffusion coefficient D, as
determined from linear extrapolation of the ¥’ transition to zero
and from the peak positions of xy”’. The field dependence of the
activation energy is derived indirectly from the straight lines
through the data. The symbols denote the following applied-
field values: solid triangles, 6 I; open diamonds, 5 T; solid in-
verted triangles, 4 T; open inverted triangles, 3 T; crosses, 2 T;
open triangles, 1 T; solid diamonds, 0.4 T; circles, 0.1 T; solid
squares, 30 mT; open squares, 15 mT.

The results are very similar to those obtained by Gam-
mel®® and also to recent results by Hsu and Kapitulnik on
very thin Nb films.>® Below a certain crossover field, here
approximately 1 T, the slopes follow a power law
~B 15 above this field a power of B 1”3 is observed.
The behavior observed in Ref. 36 is in fact a power
B %! pelow and B ~%2° above the crossover field.

In order to obtain the true field dependence of the ac-
tivation barrier, we should correct for the temperature
dependence f(¢) given in Eq. (7). A graph of f(z) versus
t is shown in Fig. 6(b). The correction procedure fol-
lowed was to plot —f(¢)/t as a function of ¢ !. The
slope of this curve was determined at the average reduced
irreversibility temperatures 7;,, for respective values of
the magnetic field. Subsequently, the measured slopes
were divided by these factors, which were from 1.37 at
field values above 2 T to 3.26 for 15 mT. The resulting
values U(0), which should be considered as the experi-
mentally determined zero-temperature magnitude of the
activation barrier at different fields, are shown in a
double-logarithmic plot in Fig. 6(c). The data obtained in
Ref. 3 have been elaborated in the same way and are add-
ed to the figure. The activation energy decreases from
approximately 500 K at B=15 mT to about 250 K at
B=7.5T. The data cannot be considered conclusive as
to the precise functional behavior, although at fields
above 1 T, it is close to a power law B —1/4 indicated by
the solid line. Below 1 T the field dependence is approxi-
mately B ~1/1°,

B. Comparison of data with theory

The exponential decay of the flux profile in the sample
at the lowest measuring temperatures allows us to esti-
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FIG. 6. (a) Field dependence of the slopes of the Arrhenius
plots in Fig. 5, compared to the B ~!"* dependence (solid line).
Solid squares are data obtained from Fig. 5; open squares are
data from a resistivity measurement by Palstra et al. (Ref. 3).
The inset shows the figure on a double logarithmic scale. Low-
field data (B <1 T) show a B!/ dependence; high-field data
(B>1T) show a B™!/* dependence. The line follows B ~'/%.
(b) Temperature dependence of the activation energy of a VL in-
terstitial (6), as described in the text. Reduced units for
t=T/T, and f(t)=0(T)/0(0) are used for the abscissa and or-
dinate, respectively. (c) U(0) vs B obtained following the
correction procedure outlined in Sec. IIIA. Symbols refer to
the same data as in (a). The drawn line is a fit of the high-field
data to U, +o0, as described in the text. Lines through the data
points reflect the inaccuracy in the determination of the activa-
tion energy.
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mate the maximum current density resulting from the
ripple field h,., j=0h, /or=h, /A,. Knowing the
ripple-field amplitude poh,, =3X 107> T and the pinning
penetration depth A, =~S5 pum, we arrive at a value of the
order 5X10° Am™2 This is more than three orders of
magnitude lower than the value of j, we shall obtain
below, so that a considerable enhancement of U (j) is ex-
pected, to such an extent that the condition (9) may be
satisfied. We thus expect the plastic-flux-creep model to
apply.

1. Irreversibility line

Using Eq. (8) for the diffusion coefficient, the flux-flow
penetration depth A,,=(k?% +k2% )~ !"2 may be calculated
by means of Eq. (11), with A, =5 pum and v=w /27 the
measuring frequency. The flux diffusion coefficient was
evaluated using the normal-state resistivity p,~S50
©€) cm, the expressions (5) and (6), and the various forms
for the VL interstitial concentration n,a3 mentioned in
Sec. IID. For £(0) and A(0O), the values 2.3 and 290 nm
were taken. The irreversibility line is now found by
equating A,. to a/M,. The theoretical values M,=1.25
and 2.57 have been used, corresponding to the infinite cir-
cular cylinder. A fit to the experimental data in Fig. 3
yields np, the areal density of oxygen vacancies per CuO,
double layer.

Satisfactory fits could be made only using the thermal-
ly activated form

U

e

 kyT

n,al =~ exp . (14)

The fits of the irreversibility lines obtained from Y’ for
v=87 and 696 Hz are shown in Fig. 3. The inset shows
the same figure on a semilogarithmic scale. The parame-
ter ng turned out to be 3.5X 10" m™2. Similar results
have been obtained for T/ .(B). The resulting value for
0(0) is 160 K at B=1 T. Surprisingly, the theory of 2D
plastic flux creep describes the irreversibility line reason-
ably well to low fields where the sample is expected to
show more 3D-like behavior.

We have also attempted to fit the data using the two
expressions estimating the disorder-induced VL disloca-
tion density. The form n,a3~ exp(—U?/20?) yielded a
decreasing diamagnetic onset temperature with increas-
ing pinning strength, an unphysical result. The expres-
sion n,ad~exp(—U, /o) results in a low-temperature
dislocation density of about 50%. This is in contradic-
tion with the observation in the flux decoration experi-
ment by Murray et al.®* that the total dislocation concen-
tration amounts to only a few percent.

The value np=3.5X 10" m ™2 means that 1 in every 80
oxygen atoms is missing in each CuQ, single layer, which
seems a reasonable fraction. Since the dimension of the
vortex core is typically 7£2=2.3X 107! m?, there are
about 8 active pinning centers interacting with each 2D
vortex. The interaction of the pins with the vortex core
is therefore collective. The parameter a is evaluated at
~0.5. This means that vortices are pinned almost in-
dependently and that R, is very small.



2. Activation barrier

When looking at the field dependence of the activation
barrier [Fig. 6(c)], it is clear that data sets obtained
through resistivity and ac susceptibility compare favor-
ably, indicating that the same mechanism determines the
resistive and ac-susceptibility transition. This conclusion
was drawn for YBa,Cu;0,_;5 in Ref. 40. The increase at
low fields is in qualitative agreement with theoretical ex-
pectation, but the B ~!/* dependence is only approached
at fields above B=1 T. The drawn line in Fig. 6(c)
represents a calculation of the VL interstitial energy
U,+0(T,B). Here the same values of £(0) and A(0) as
above have been used. Because the temperature depen-
dence of U, in the relevant temperature regime is weak,
we have ignored its effect on the correction procedure
outlined in Sec. IIT A. It is, however, necessary to invoke
the presence of U, in the activation term [Eq. (14)] in or-
der to explain the measured magnitude of the energy bar-
rier U(0). The exact magnitude of U(0) in Fig. 6(c) was
reproduced taking ng as 0.6 X 10'® m™2, slightly larger
than the value obtained from the fit of the irreversibility
line in Fig. 3. The difference is not too surprising in view
of the remaining uncertainty in the value of the penetra-
tion depth A: both U, and o depend inversely quadrati-
cally on this quantity.

3. Susceptibility curves

From A,. we may also calculate the actual shape of the
ac-susceptibility transition. From Eq. (12), with v=696
Hz and the same parameter values as in Sec. III B 1, the
curves in Fig. 7 are obtained. Here the y'’ data have been
multiplied by factors between 1.29 (for B =4 T) and 2 (for
B =0.1T) so as to scale them to the magnitude of the
calculated curves. The shapes of the x' curves and the
field dependence of the diamagnetic onset temperature
are well reproduced. When comparing the y'’ curves, we
find that the peak positions and low-temperature sides
are well reproduced, but the high-temperature sides devi-
ate significantly from the calculated curves. The data
points then lie systematically below the calculated curves.

IV. DISCUSSION

From the value n;=3.5X10'" m ™2 obtained by fitting
the experimental data, the pinning force density can be
evaluated. Substitution of np yields the net pinning force
per vortex, F,~2X10"'® N, and the pinning energy
U,=5X10"22 J=35 K. The critical current density at
zero temperature follows from j, =F,/®yd and is es-
timated to be 5X 10!° Am™2. This value is about an or-
der of magnitude larger than the current density as calcu-
lated from magnetization hysteresis loops, measured in
the same sample by van den Berg et al.’ An explanation
for the large difference is provided by the modest value of
the pinning energy, which allows very fast decay of the
flux profile after and during changes of the applied field.
The measured magnetization value does not correspond
to the critical current but to a much lower shielding
current. After long times, or at high temperatures and
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FIG. 7. Fit (solid lines) of the plastic-flux-creep model to the
susceptibility transition of the Bi-Sr-Ca-Cu-O single crystal at a
frequency of 696 Hz. Symbols denote the same field values as in
Fig. 2. The value of ny was the same as taken for the fit in Fig.
3.

fields, the current decreases below j;=~5X10% Am™2
below which plastic flux creep is expected to prevail. The
temperature where the irreversibility of the dc magneti-
zation becomes unobservably small should therefore be
described by plastic creep.

These irreversibility temperatures have been extracted
from the results in Ref. 5 and are included in Fig. 3. The
temperature values depend on such parameters as the
lowest observable current density J,;,, sweep rate of the
magnetic field H, and sample radius a. The value of J
was 1X10° Am ™2 From TAFF we can in principle pre-
dict the dc-irreversibility line for a cylinder using the cri-
terion given in Ref. 12:

_ 3Ha

Do 8J

(15)
min

The sweep rate of the dc field was uH =2.5X1073
T/s. The irreversibility lines obtained from dc magneti-
zation and ac susceptibility with v=87 Hz are almost
identical. Evaluating the “irreversibility condition” for
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the latter, we find Dy~4.4X 107> m?s ™! [using Eq. (13)].
By inserting J;, in Eq. (15), however, the condition
Dy~3.8X1077 m?s ! is obtained. The large difference
can be understood if one considers the crude determina-
tion of the irreversibility temperatures. An error of 20%
is sufficient to explain the discrepancy in the value of the
diffusion coefficient. Also, the irregular sample geometry
may account for part of the error. Multiplying the
right-hand side of Eq. (15) with an appropriate constant,
the same irreversibility line as for v=87 Hz may be
recovered (Fig. 3). This means that the onset of irreversi-
ble magnetic behavior can be at least qualitatively de-
scribed by plastic creep. It was shown in Ref. 1 that the
decay rates of magnetization and measured current densi-
ties in a field-sweep experiment are mutually consistent
within the TAFF model.

The importance of pinning in Bi-Sr-Ca-Cu-O was re-
cently illustrated in measurements of the dc magnetiza-
tion on Bi-Sr-Ca-Cu-O carried out by Kritschna et al.*!
The measurements were performed on a single-crystalline
Bi-Sr-Ca-Cu-O sample prior to and following exposure to
fast neutrons. The irreversibility line was found to shift
to higher temperatures following the irradiation. This
can be interpreted as a consequence of the enhanced pin-
ning caused by the introduction of crystal-lattice defects.
A model describing the onset of irreversibility should
therefore account for a dependence on the pinning
strength. It must be noted, however, that the pinning
structures resulting from neutron-irradiation damage are
typically extended defects, or clusters of defects, in con-
trast to the above description in terms of point defects.

The observed dependence of the susceptibility transi-
tion on driving-field amplitude 4,, can be explained by
the criterion [Eq. (9)] describing the crossover between
the regions of plastic versus elastic flux creep. The
driving-field amplitude enters this expression through the
current j. Substituting

J=0h, /or=(h, /A exp(—r/A,),

it can be readily seen that plastic creep will be important
when h, /A, <ji=j.(E/ay)®. Substitution of the pa-
rameters yields pgh,. /A, <250B (T/m). Thus, when the
driving-field amplitude is increased, the left-hand side be-
comes larger, indicating a more important contribution
of elastic creep to flux transfer. This is in agreement with
the experiment, where dissipation (x'') is enhanced and
the diamagnetic transition (') smeared out when A,  is
increased (Fig. 4). The deviation is more pronounced at
lower dc fields, in agreement with theory.

An alternative explanation of the h,. dependence of
the transition is provided by taking into account the
effect of the equilibrium (Abrikosov) flux density. For the
case of a field-cooled experiment on a high-x supercon-
ductor, it was shown very recently that this results in a
remanent flux profile, corresponding to a temperature-
dependent flux-trapping depth.*” Applying a larger
ripple-field amplitude can release the vortices from the
trapped configuration, thus bringing the sample into a
more homogeneous state. The nature of the A, depen-
dence is currently under study.
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Returning to the criterion [Eq. (9)], it can be seen that
since the ac penetration depth increases with temperature
(through its dependence on D), elastic creep should be
most relevant at low temperatures. In the low-
temperature regime plastic flux creep is negligible be-
cause the diffusion coefficient is exponentially small. The
low-energy barrier U, associated with elastic creep in the
critical state?? can then explain the rapid decay with time
of nonequilibrium magnetization. Furthermore, the de-
cay of low-temperature magnetization is nonexponen-
tial,* in contradiction to the prediction of TAFF.

Finally, elastic creep should become more important at
lower dc fields, where the activation barrier for plastic
flux creep increases rapidly. The low-field region is
indeed that where the '’ components deviate most from
plastic creep theory. However, it may also be that the
magnetic coupling between vortex disks in adjacent CuO,
double layers becomes important enough to yield a more
three-dimensional VL. The change in field dependence of
the activation energy may well be an indication of this. It
is noteworthy that the slopes of Arrhenius plots of the
resistivity of the ultra-thin Nb films presented in Ref. 39,
for which 2D behavior is clearly expected, only exhibited
a power-law dependence as B~ !/3. This corresponds to
the field region B>1 T in Fig. 6(a). Identifying the
change in field dependence with the expected dimensional
crossover in Bi-Sr-Ca-Cu-O (Sec. IT A), we have B,, =1
T. This agrees quite well with theoretical predictions of
0.3 T (Ref. 22) and 3 T.2

The fact that the VL dislocation density is well de-
scribed by the thermally activated form [Eq. (14)] over
the entire experimentally accessed temperature range in-
dicates that the greater part of the (7,B) phase diagram
of the VL in Bi-Sr-Ca-Cu-O, e.g., for T> 15 K, can be
considered a ‘“high-temperature” regime. This means
that above 15 K the vortex glass state is destroyed by VL
dislocations. Evaluating the temperature where n,a}
=0.5, a value of 70 K is found. The vortex lattice may
thus be expected to be melted over a broad temperature
range below T,.. The onset of such a dislocation-
mediated melting transition** is reflected in the renormal-
ization of the shear modulus. The core energy of disloca-
tions will then drop. This process may explain the devia-
tion from theory of the high-temperature side of the y'’
curves, a steeper descent, indicating a larger mobility of
vortices.

V. CONCLUSION

In summary, we have found that the ac-susceptibility
transition in Bi-Sr-Ca-Cu-O is well described by the
diffusion of interstitials and vacancies in the vortex lat-
tice. Diffusion of a VL dislocation is analogous to that of
a particle and is described by the TAFF model. The ac-
tivation barrier for thermally assisted flux flow is in-
dependent of driving force and consists of two parts: the
elastic energy U,~=~100 K, determined by the shear
modulus cg, and the variance over a distance a of the
pinning energy, 0 =160 K (at B =1 T). The latter energy
depends on the square root of the concentration of pin-
ning centers and scales approximately as B ~!/*. Consid-
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ering pinning to be caused by oxygen vacancies in the
CuO, double layers, we find an areal density of oxygen
vacancies of 3.5X 10! m ™2, one per eight formula units.
Deviations from the theory of plastic flux creep can be
explained by assuming a creep contribution from elasti-
cally correlated regions in the VL. This becomes particu-
larly manifest at fields B <B,,~=~1 T, when 2D vortex
disks couple to vortices in adjacent superconducting lay-
ers. Above this field the VL may be melted over a large
part of the (7, B) phase diagram.
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