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Anisotropic superconducting properties of aligned (Bi,Pb)2Ca„,SrzCu„o2„+4+5 powders
(n = 1,2, 3) with T, =32, 94, and 110 K
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The anisotropic superconducting properties of aligned powders embedded in epoxy for bismuth

copper oxides with the compositions (Bi, 6Pbo 4)(Sr&,Lao, )Cu06+z (n = 1, T, = 32 K),
Bi2Ca»Sr& llCu208+z (n =2, T, =94 K), and (Bil.8sPbo. ls)Ca2 2Sr& 8Cu30&o+q (n =3, T, = 110 K) are
reported. These e-axis-aligned samples were prepared in a 9.4-T applied magnetic field at room tem-

perature. The temperature dependence of the anisotropy ratio g, (T)/y, b(T) in the superconduct-

ing state is derived from both zero-field-cooled and field-cooled data using a small applied field H
(less than or equal to the lower critical field H„) parallel and perpendicular to the orthorhombic e

axis. A highly anisotropic y, /y, b ratio was observed for all three systems, the maximum value of
y, /g b =9.8 at 5 K and 10.8 at 85 K for the 2:2:2:3compound (Bi, ,~Pbo»)Ca& 2Sr& 8Cu30&o+z was

observed. The field dependence of the anisotropy ratio y, (H)/g, b(K) for the 2:1:2:2compound

Bi,Ca, ,Sr l 8Cu, O, + & up to 5 kG is discussed.

I. INTRODUCTION Bi~Ca, 2Sr, sCu20s+s (n=2, T, =94 K),
(Bi, »Pbp»)Ca, ,Sr, ,Cu, O,p+s (n=3, T, =110K).

and

High-temperature superconducting phases were re-
ported in the bismuth copper-oxide family of the
orthorhombic structure with the general formula
(Bi,Pb)2Ca„&Sr2Cu„02„+4+s (2,n —1,2, n). ' ' The
maximum superconducting transition temperature
T, (max) of 32 K was observed for the Bi2SrzCu06+s-type
2:0:2:1structure, ' ' ' a T, (max) of 95 K was observed
for the Bi2CaSr2CuzOs+s 2:1:2:2structure and a T, (max)
of 110 K was observed for the Bi2CazSr2Cu&O, p+g 2:2:2:3
structure. '" ' Excess oxygen atoms (5)0) were com-
monly observed with the appearance of superstructure
modulation along the orthorhombic b axis.

The superconductivity of this family is closely related
to the presence of hole carriers in the quasi-two-
dimensional Cu-0 planes. These phases have units of
CuO„clusters where 0 coordinates Cu in different
geometrical structures. For the 2:0:2:1 phase, Cu06
forms an octahedron cluster; for the 2:1:2:2phase, there
are two CuO& pyramidal clusters separated by Ca; for the
2:2:2:3phase, in addition to two CuO5 pyramids, there is
a Cu04 planar cluster which is separated from the CuO&

pyramids by Ca atoms. Anisotropies are expected for
these high-T, bismuth copper-oxide compounds which
can only be studied using samples of single-crystal, c-
axis-oriented thin film or c-axis-aligned powder. Howev-
er, not many reports were found on the anisotropic super-
conducting properties of this family due to the difficulty
of preparing a good single-phase sample. In this
paper, we report the anisotropic superconducting pro-
perties of the highly oriented powders embedded in epoxy
for the bismuth copper oxide with the compositions
(Bit 6Pbp 4)(Sr, ,Lap s)Cu06+s (n= 1, T, =32 K),

II. EXPERIMENTAL DETAILS

Superconducting samples were synthesized using the
solid-state reaction method. High-purity powders of
Bi20&, Pb&04, CaCO~, SrCO~, La&0&, and CuO were used
with the ratio

[Bi+Pb]:[Sr+La] [Cu]=(1.6+0.4) (1.5+0.5):1

for the 2:0:2:1sample,

[Bi]:[Ca+Sr]:[Cu]=2:(1.2+ l.8):2

for the 2:1:2:2sample, and

[Bi+Pb]:[Ca+Sr]:Cu =(1.85+0.15):(2.2+ 1.8):3

with excess PbO and Cu0 for the 2:2:2:3 sample. Well-
mixed powders were calcined at 800'C in air for 1 day
with several intermediate regrindings. These powders
were then pressed into pellets and sintered at 875 C in air
up to 3 days and then liquid-nitrogen quenched for the
2:0:2:1sample, 850'C up to 15 h and then liquid-nitrogen
quenched for the 2:1:2:2sample, and 859'C up to 3 days
and then furnace cooled for the 2:2:2:3sample. Sintering
conditions were determined from differential thermal
analysis (DTA) data using an ULVAC model 7000
symmetrical thermomicrobalance. For anisotropic mea-
surements, Farrel's method was employed. Sintered
single-phase superconducting pellets were grounded to
powers with average microcrystalline grain size 1 pm,
mixed with SPAR 5 minute epoxy and hardener in a
quartz holder of diameter 8 mm with typical powder-
epoxy ratio of 1:7, then aligned in a 9.4-tesla Bruker su-
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perconducting magnet at room temperature. The c axis
of the orthorhombic microcrystallines are parallel to the
applied magnetic field at room temperature which can be
checked from x-ray-diffraction measurements. Powder
x-ray-diffraction data for random oriented powders and
epoxy-embedded aligned powders were obtained using a
Rigaku D/MAX 8 diffractometer at a scanning rate of
0.25 in 20 per min with g Si standard to eliminate any
systematic errors. Structure identification, lattice param-
eters, and anisotropy were analyzed using the program
Lazy Pulverix-PC (version 1).

Superconducting data were obtained by using a Quan-
tum Design MPMS SQUID magnetometer from 2 to 300
K with applied magnetic field up to +5.5 T. For zero-
field-cooled measurements, the "magnetic reset" option
was used to quench the superconducting magnet and
reduce the residual or remnant field to less than 1 G.

III. RESULTS AND DISCUSSION
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For the single Cu-0 layer (n = 1) system with
the Bi2Sr2Cu06+ &-type 2:0:2:1 structure, the
(Bi, 6Pb0 4, )(Sr, 5Laa ~)CuO6+s compound was chosen for
its high T, of 32 K." The powder x-ray-diffraction pat-
terns of (Bi, 6Pb0 4)(Sr, ~La0 ~)Cu06+& for both randomly
oriented powders and c-axis-aligned powders embedded
in epoxy are shown in Fig. 1. All lines can be indexed
with the 2:0:2:1orthorhombic structure with a =5.372(5)
A, b=5.375(5) A, and c=24.59(2) A. The (001) peaks are
predominant in the aligned sample where the degree of
alignment is better than 90%%uo and confirms the anticipat-
ed c-axis orientation along the applied field at room tem-
perature. Excess oxygen (5)0) was observed from the
iodometric titration measurement and indicates that the
space group is probably the noncentric A 2aa with oxy-
gen displacements in the (Bi,Pb)O plane. '

The temperature dependence of magneti-
zation M ( T) for the aligned powder sample
(Bii 6Pb0~)(Sr, ~Laa ~)Cu06+& field cooled and zero-field
cooled with low applied field H —=8, =20 G parallel and
perpendicular to c axis are shown in Fig. 2. Supercon-
ducting transition temperature T, of 32 K was observed
for this sample. Fairly high ZFC diamagnetic field
shielding signal

4~y:— 4'(M—p)/(H —m) -=0.59

for applied field parallel to c axis (H ~~c) using the x-ray
density p=7.28 g/cm and power mass m. The effect of
very small epoxy diamagnetic signal with mass magnetic
susceptibility y =——6 X 10 cm /g can be neglected for
T (T, . This diamagnetic signal —4m', —=0.59 is the
highest value observed so far for the 2:0:2:1 struc-
ture. ' ' High value is fully expected when the surface
screening current of the microcrystalline grains is around
the Cu-0 superconducting a bplane. For th-e FC (field-
expulsion) data, a smaller value of —4m', —=0.37 is ob-
tained for H~~c due to the flux pinning inside the grain.
For an applied field perpendicular to the c axis, a low di-
amagnetic signal for both ZFC and FC are expected for

FIG. 1. Powder x-ray-diffraction patterns for the single Cu-0
layer (n=1) compound (Bi& 6Pb04)(Sr& 5La05)Cu06+q. (a) ran-
domly oriented, (b) c-axis aligned.
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FIG. 2. Temperature dependence of magnetization M(T) for
the aligned powder sample (Bi& 6Pb0 4)(Sr& 5Laa 5)Cu06+q (n=1)
field cooled (FC) and zero-field cooled (ZFC) with applied field
H=20 G parallel and perpendicular to the c axis. T, =32 K for
this sample.

this highly anisotropic system.
The temperature dependence of the anisotropy ratio

y, (T)/y, b(T) in 20 G, field cooled (open circles) and
zero-field cooled (solid circles) for the aligned powder
sample of (Bi, 6Pb04)(Sr, 5Laa ~)Cu06+s, are shown in
Fig. 3. The ZFC y, /y, &

ratio is slightly larger than the
FC ratio due to Aux-pinning effect. As temperature in-
creases, Aux depinning due to thermal activation push the
FC ratio up and close to the ZFC ratio. An anisotropic
g, /g, b ratio of 6.9 was observed at 5 K. This value is
much higher than the y, /g, b ratio of 2.5 observed for
aligned YBa2Cu307 „powders at low temperature
and indicates that the Bi copper-oxide family is a highly



43 ANISOTROPIC SUPERCONDUCTING PROPERTIES OF. . . 13 003

-~ 8

O

O

Q

CL
O
CL

0
Z.

ZFC

FC

(BI Pb „)(Sr, La )Cuo

n= I

O
O

M

C3

V) ~.l..d 2 L-I . 3
M

o

&o
CV O
E) cu

ol
00 col 0

0—
0

kkJMI . . . I

OJ

o (b)

0 I0 20
T(K)

30

FIG. 3. Temperature dependence of the anisotropy ratio
y, (T)/y, b(T) of 20 G field-cooled (FC, open circles) and zero-
field-cooled (ZFC, solid circles) (Bi& 6Pbpg)(Sri 5Lap5)Cu06+g
(n = 1).
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anisotropic superconductor. The g, /g, b ratio decreases
from 6.9 at 5 K to 5.8 at 25 K and then increases
sharply to a maximum value of 8.1 around 29 K before
it drops sharply as the temperature approaches a T, of 32
K. This anomaly was also observed for aligned
YBa2Cu307 „powders at 50 G where the X, /X, b ratio
increases from 2.5 at low temperature to a maximum
value of 5.2 for T near a T, of 91 K. The anomaly is
highly field sensitive and disappears using larger applied
field. A detailed study of this anomaly is in progress and
wi11 be published in the near future.

For T—=T„ the true powder sample g, /y, b ratio
should be expressed as

X, /X. b
= [X', +X(ePoxy)]/lX'. b+X(ePoxy)1.

As the temperature approaches T„aparamagnetic signal
starts to appear in g~b while g~ remains diamagnetic,
which gives an effective negative X, /X, b ratio. A
normal-state anisotropic y, /y, b ratio around 2.6 was ob-
served for (Bi, 6Pbp ~)(S1] 5Lap g)Cu06+s.

FIG. 4. Powder x-ray-diffraction patterns for the double
Cu-O layer (n=2) compound Bi2Ca~ 2Sri 8Cu208+q. (a) ran-
domly oriented, (b) c-axis aligned. Superstructure modulation
lines were not indexed (Ref. 19).

alignment is slightly worse compared with the 2:0:2:1
sample.

The temperature dependence of magnetization M(T)
for the aligned powder sample Bi&Ca, &Sr, ~Cu~08+z field
cooled and zero-Geld cooled with low applied field 8=30
G parallel and perpendicular to the c axis is shown in
Fig. 5. The super conducting transition temperature
T, =94 K is one of the highest observed in the 2:1:2:2
phase. The ZFC diamagnetic signal —4~y, =—0.68 for
H~~c using the x-ray density p=6.48 g/cm was observed
as compared with the FC value —4m', =—0.50.
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For the double Cu-O layer ( n =2) system with

the Bi2CaSrzCu208+-type 2:1:2:2 structure, the
Bi2Ca, 2Sr, 8Cuz08+& compound was chosen for the loca-
tion of the composition inside the single-phase line
Bt2Ca, +„Sr2 CuzOs+s (0 x 0.75). ' ' The powder
x-ray-difT'raction patterns of Bi2Ca& 2Sr, 8Cu208+ & for
both randomly oriented powders and c-axis-aligned
powders embedded in epoxy are shown in Fig. 4. All
lines can be indexed with the 2:1:2:2orthorhombic struc-
ture with a=5.403(5) A, b=5.414(5) A, and c=30.79(3)
A. Incommensurate modulated superstructures lines
were not indexed, which is due to extra oxygen (5)0)
with oxygen displacements in the BiO plane to accommo-
date excess oxygens. ' The (001) peaks are predominant
in the aligned samples; however, the degree of c-axis

FC
~ ~ 0

Hllc

ZFC

~ ~
0 0

Bi Ca, Sr ~Cu~08
fl =2

-2 — i

0 20 60
T{K)

I

80
I I

foo

FIG. 5. Temperature dependence of magnetization M {T) for
the aligned powder sample Bi2Cai, 2Sri. 8Cu208+g (n=2), field
cooled (FC) and zero-field cooled {ZFC) with applied field
H=30 G parallel and perpendicular to the c axis. T, =94 K for
this sample.
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The temperature dependence of the anisotropy ratio
y, ( T)/y, b ( T) of 30 G FC (open circles) and ZFC
(solid circles) for the aligned powder sample
Bi2Ca, 2Sr, 8Cu20s+& (n=2) are shown in Fig. 6. The
flux-pinning effect for the FC g, /g, b ratio was also ob-
served; depinning due to thermal activation was achieved
only for temperatures above 70 K for this 94-K supercon-
ductor. An anisotropic y, /y, b ratio of 5.9 was observed
at 5 K which decreases steadily to 3.9 at 89 K and then
drops sharply as the temperature approaches a T, of 94
K. No anomaly near T, was observed for this sample in
a 30-G applied fIeld. A negative normal-state anisotropic
y, /y, b ratio was observed for the 2:1:2:2 sample
Bi2Ca) 2Sr, 8Cu208+~, which was also reported in the sin-

FIG. 8. Temperature dependence of magnetization M( T) for
the aligned powder sample (Bi, »Pbp»)Ca2Sr, Cu, O&p+g (n=3),
field cooled (FC) and zero-field cooled (ZFC) with applied field
H=30 G parallel and perpendicular to the e axis. T, =110 K
for this sample.

gle crystal Bi2Ca)Sr2Cu208+g with a weak normal-state
diamagnetic signal y,& & 0.
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For the three Cu-0 layers (n= 3) system with the
Bi2Ca2Sr2Cu30, 0+&-type 2:2:2:3 structure, the compound
(Bi, s5Pb0»)Ca& 2Sr, sCu30&0+s is chosen to ensure the
single-phase property of the 2:2:2:3 structure. ' Excess
PbO and CuO are necessary in order to ensure the
prevention of the formation of 2:0:2:1 or 2:1:2:2
phases. The powder x-ray-diffraction patterns of
(Bi, s~Pb0 &5)Ca2 &Sr, sCu30&0+s for both randomly
oriented powders and c-axis-aligned powders embedded
in epoxy are shown in Fig. 7. A11 lines can be indexed
with the 2:2:2:3orthorhombic structure with a=5.409(5)
A b=5.411(5) A and c=37.09(3). No 2:0:2:1or 2:1:2:2
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FIG. 7. Powder x-ray-diffraction patterns for the three Cu-0
layer {n =3) compound (Bi1 85Pbp 1 g )Ca2Sr2Cu30&p+ &. {a) ran-
domly oriented, (b) c-axis aligned.

FIG. 9. Temperature dependence of the anisotropy ratio
y, (T)/g, b(T) of 30-G field-cooled (FC, open circles) and zero-
field cooled (ZFC, solid circles) (Bi& 85Pbp &5)Ca2SI2Cu30]p+. g

(n =3).
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FIG. 10. Initial magnetization curve M;(H) and magnetic
hysteresis loop M (H) for the aligned powder sample
Bi,Cal 2Srl 8Cu, O&+z (n=2) with applied field parallel and per-
pendicular to the c axis.

phase lines can be observed in the diffraction patterns.
The (001) peaks are the only lines observed in the aligned
samples, this indicates excellent c-axis alignment. The
orthorhombic c parameter is consistent with the approxi-
mately c-axis rule of c =18.4+6.2n A.

The temperature dependence of magneti-
zation M ( T) for the aligned powder sample
(Bi, s~Pbo, ~)Ca2 2Sr, sCu30io+s field cooled and zero-
field cooled with a low applied field H=30 G parallel and
perpendicular to c axis is shown in Fig. 8. The supercon-
ducting transition temperature of T, =110 K indicates
the formation of the 2:2:2:3phase while a smooth M ( T)
indicates the successful prevention of the 2:1:2:2phase.
The excellent ZFC diamagnetic signal —4~y, -=0.77 for
H~~c using the x-ray density p=6.20 g/cm was observed
as compared with the FC value —4vrg, —=0.55.

The temperature dependence of the anisotropy ratio
y, (T)/y, b(T) of 30 G FC (open circles) and ZFC
(solid circles) of the aligned powder sample
(Bi, s5Pbo»)Ca2 &Sr, sCu30, 0+s (n=3) is shown in Fig. 9.
The Aux-pinning effect for the FC y, /y, b ratio was also
observed; the depinning due to thermal activation was
achieved only for temperatures above 95 K for this 110-K
superconductor. A very high anisotropic g, /y, & ratio of
9.8 was observed at 5 K which increases steadily to a

H(RG)

FIG 11 Field dependence of anisotropy ratio y (H)lg b(H)
of Bi2Cal 2Srl 8Cu~O, +q (n=2) from initial magnetization curve
M;(H).

maximum value of 10.8 at 85 K and then drops sharply
as the temperature approaches a T, of 110 K. No anom-
aly was observed for this sample. A normal-state aniso-
tropic y, /y, b ratio around 0.7 was observed for
(Bii sqPbo iq)Ca2 2Sri sCu30io+s.

These low-field (H (H„) temperature-dependent an-
isotropic y, (T)/y, b(T) data for all three superconduct-
ing samples studied are listed together in Table I for com-
parison. The effect of a higher applied field can be seen
from the field dependence of the initial magnetization
curve M;(H) and the magnetic hysteresis loop M(H)
with a magnetic field up to +5 kG for the aligned powder
sample Bi2Cai 2Sr, sCu208+s (n=2) with an applied field
parallel and perpendicular to the c axis (Fig. 10). A lower
critical field H, &

was obtained from the breakaway from
the linearity of the initial magnetization curve M;(H)
with H,'& =42 G and H,'I"=30 G at 5 K. The field depen-
dence of the anisotropy ratio g, (H)/y, b(H) at 5 K ex-
tracted from the initial magnetization curve M;(H) is
shown in Fig. 11. The y, (H)/y, i, (H) ratio decreases
steadily from 5.9 in low field to 4.2 at 11 kG and 2.2 at 5
kG.

TABLE I. CrystallograPhic and suPerconducting data for (Bil 6Pbp4)(Srl 5Lap5)Cu06+q (n=1),
Bi2Ca&,Sr, ,Cu208+z (n=2), and (Bil „Pbp»)Ca2Sr, Cu30&p+z (n= 3). (ZFC is zero-Geld cooled and FC
is field cooled. )

T, (K)
Lattice parameter c (A)
X-ray density p (g/cm )

Susceptibility —4m', (5 K, ZFC)
Susceptibility —4m', (5 K, FC)
g, /g, b (5 K, ZFC)
X /Xb

n=1

32
24.59

7.28
0.59
0.37
6.9
8.1(29 K)

n=2

94
30.79
6.48
0.68
0.50
5.9
5.9(5 K)

n=3

110
37.07
6.20
0.77
0.55
9.8

10.8(85 K)



J. B. SHI, B. S. CHIOU, AND H. C. KU

IV. CONCLUSIONS

In conclusion, high- T, superconducting aligned
powders embedded in epoxy for the bismuth copper oxide
with the compositions (Bi] 6Pbo 4)(Sr, ~Lao g)CuO6+s
(n=1, T, =32 K), Bi2Ca] 2Sr] sCu20]]+& (n=2, T, =94
K), and (Bi] ]]5Pbp ]5)Ca2 2Sr] ]]Cu30]o+s (n=3, T, =110
K) are prepared in a 9.4-tesla applied field at room tem-
perature. The temperature dependence of anisotropy ra-
tio y, (T)/y, b(T) in the superconducting state were de-
rived from both zero-field-cooled and field-cooled data
using small applied field. A high anisotropy ratio of

X, /X, b=9.8 was observed for the 2:2:2:3 compound
(B]].]]sPbo, ]q)Ca2 2Sr] ]]Cu30]0+s at 5 K. The field depen-
dence of the anisotropy ratio g, (H)ly, b(H) for the
2:1:2:2compound BizCa, zSr, 8CuzO~+z at 5 K decreases
from 5.9 in low field to 2.2 at 5 kG.
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