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The e8'ects of thermal fluctuations, quenched disorder, and anisotropy on the phases and phase
transitions in type-II superconductors are examined, focusing on linear and nonlinear transport
properties. In zero magnetic Geld there are two crossovers upon approaching T„ first the
"Ginzburg" crossover from mean-field behavior to the universality class of an uncharged superAuid,
and then, much closer to T, for strongly type-II systems, a crossover to the universality class of a
charged superAuid. The primary focus of this paper is on the behavior in the presence of a penetrat-
ing magnetic field. In a clean system the vortex-lattice phase can melt due to thermal fluctuations;
we estimate the phase boundary in a variety of regimes. Pinning of vortices due to impurities or
other defects destroys the long-range correlations of the vortex lattice, probably replacing it with a
new vortex-glass phase that has spin-glasslike ofF-diagonal long-range order and is truly supercon-
ducting, in contrast to conventional theories of "Aux creep. " The properties of this vortex-glass
phase are examined, as well as the critical behavior near the transition from the vortex-glass to the
vortex-Quid phase. The crossover from lattice to vortex-glass behavior for weak pinning is also ex-
amined. Linear and nonlinear conductivity measurements and other experiments on the high-T, su-
perconductors Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-0 are discussed in light of the results. The latter is
found to exhibit strongly two-dimensional behavior over large portions of its phase diagram.

I. INTRODUCTION AND SUMMARY

In conventional ("low-T, ") bulk superconductors, Auc-

tuation effects are generally quite sma11. This is because
the length,

0o 2X10 A K
16~ T

set by the flux quantum, Pa=bc/2e, and the temperature,
T, is much larger than any other characteristic lengths,
except extremely close to T, . Because fluctuation effects
are weak, the behavior as a function of temperature, field,
current, etc. , is generally quite close to that found in
mean-field theory. ' In particular, the onset of dissipa-
tion with increasing current or temperature is rather
sharp, yielding fairly well-defined critical currents for
temperatures T less than T„and a sharp transition in the
linear resistivity as T passes through T, .

Nevertheless, there is an important question of princi-
ple: do fluctuations destroy the defining property of
superconductors —a vanishing linear resistivity? In the
Meissner phase, the answer is certainly no. However, in
a type-II superconductor at magnetic fields above H, &

where Aux penetrates, this question has never been satis-
factorily answered, although the standard Anderson-K. im
theory of "Aux creep" would answer the question in

the affirmative. For conventional superconductors (with
the exception of thin films, long wires, or granular ma-
terials) this is largely an academic question. In the high-
T, cuprate superconductors, on the other hand, a com-
bination of not completely unrelated factors —(i) higher
temperatures, (ii) shorter coherence length g, (iii) large
magnetic penetration length A, , and (iv) quasi-two-
dimensionality —conspire to drastically enhance the
effects of thermal fluctuations (see, for example, Refs. 6
and 7) and niake this question far more interesting. In
this paper we investigate various consequences of thermal
Auctuations and the crucial role played by quenched dis-
order. We will focus on the qualitative behavior of the
various phases of a type-II superconductor and the be-
havior near to the phase transitions between them. The
effects of quasi-two-dimensionality will often play a large
role and we examine various two- and three-dimensional
regimes.

The mean-field phase diagram' of a type-II supercon-
ductor is shown in Fig. 1. Of the two ordered phases, the
Meissner phase is, in all respects, the more stable against
thermal fluctuations and quenched disorder. Thus, most
of this paper focuses on the behavior in the presence of a
penetrating magnetic field, H & H, &. The Abrikosov vor-
tex lattice phase' which occurs in this regime has two
spontaneously broken symmetries: First, as in the Meiss-
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FIG. 1. Mean-field phase diagram of a type-II superconduc-
tor (schematic) as a function of applied magnetic field H and
temperature T.

ner phase, there is phase coherence (off'-diagonal, long-
range order) in the pairing field, albeit with a nontrivial
spatial structure reAecting the vortex lattice. Second,
there is crystalline long-range order of the vortex lattice
that breaks the translational symmetry. In the absence of
vortex pinning, this phase is not truly superconducting:
it will have a nonzero Ohmic resistivity due to vortex
(ffux) ffow, except possibly for currents strictly parallel
to the vortices.

In the presence of vortex pinning due to disorder or
other imperfections, vortex Aow is impeded. However,
Larkin and Ovchinikov have shown that, in equilibrium,
the crystalline long-range order of the vortex lattice
phase is unstable against the introduction of random pin-
ning for spatial dimensionality D less than four. Thus,
real two- or three-dimensional systems, provided they are
in equilibrium, cannot have a long-range-ordered vortex
lattice in the presence of quenched disorder. Existing
theories of vortex pinning appear to have generally
neglected the question of long-range phase coherence
beyond the length scale where the lattice correlations are
destroyed. We will argue that a vortex-glass phase may
occur with vanishing resistivity and long-range phase
coherence, again with a nontrivial spatial structure
reffecting the positions of the (now randomly pinned) vor-
tices. ' ' This ordering into a specific nontrivial ar-
rangement determined by the particular details of the
quenched disorder in the system is very analogous to the
magnetic order that occurs in a spin glass, ' ' thus, the
name vortex glass. For a three-dimensional type-II su-
perconductor it appears quite possible that such a
vortex-glass phase can be stable at nonzero temperature,
yielding a phase diagram like Fig. 2. For a two-
dimensional (2D) superconductor, on the other hand, we
expect, by analogy to two-dimensional spin glasses, ' '
the vortex-glass long-range order to be unstable against
thermal fluctuations at arbitrarily low temperatures—

FIG. 2. Schematic phase diagram of a three-dimensional
type-II superconductor with strong thermal Auctuations. The
crossover from the normal regime to the vortex-Auid regime is
not a sharp phase transition and occurs near the location of the
mean-field transition H, 2". Without random pinning, a vortex-
lattice phase is present and the vortex-Quid phase also intrudes
at H, &

between the Meissner and vortex-lattice phases. This in-
trusion is not shown here since, for parameters appropriate to
the cuprate superconductors, it occurs over too narrow an inter-
val of H to be seen in this figure (see Sec. V and Fig. 4). With
random pinning we expect the vortex-lattice phase to be re-
placed with a vortex-glass phase.

and the system thus not truly superconducting for any
T) 0. The properties of the vortex-glass phase have been
discussed briefly by one of us" and are discussed in more
detail below in Sec. VIII.

As the temperature is raised, increased thermal Auc-
tuations will cause the vortex lattice and vortex-glass
phases to disorder (melt) into a vortex fiuid
phase. ' ' ' In the cuprate superconductors this tran-
sition can occur at a temperature well below the mean-
field transition H, 2"', see Fig. 2. Much of the ordering en-
ergy still comes out at H, 2", however, so one expects the
specific heat to show a smooth maximum near there. For
zero or weak disorder, the melting transition may be of
first order, in which case there will be a small latent heat
of melting that would, at least in principle, be observable
in the specific heat. The vortex Quid phase is a fully
disordered phase and is thus not separated from the nor-
mal phase by a true phase transition —they really are the
same phase and should be connected by a smooth cross-.
over. In the normal phase there is essentially no local
pairing at all so one cannot usefully describe the system
in terms of vortex positions. Below H, 2", on the other
hand, there is a local tendency toward pairing, but in the
vortex Quid phase the pairing field is strongly fluctuating
with only a finite, although large, correlation length. In
this regime the system thus may be described in terms of
mobile, Auctuating vortices, as in the usual analysis of
superAuid or superconducting films just above the
Kosterlitz-Thouless transition. ' As the system is cooled
further the correlation length of the pairing field grows
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and diverges when the system orders into either a
vortex-glass or vortex-lattice phase, depending on wheth-
er or not random pinning is present. In bulk low-T, su-
perconductors, vortex-lattice or vortex-glass melting
essentially coincides with H, z", so that there is not an ap-
preciable temperature range where a description in terms
of a vortex Quid is appropriate.

For a two-dimensional superconductor in a magnetic
field, a long-range-ordered vortex-glass phase is not ex-
pected except at T=O. However, the correlation length
of the pairing field (i.e., the vortex-glass correlation
length) should grow upon cooling and diverge as T~O.
This is in contrast to the conventional "Aux-creep" mod-
els which assume that the longest relevant length scale
is that over which lattice correlations persist, a length
which remains Pnite as T~O. Although, in two dimen-
sions, there will be only minor differences in the tempera-
ture dependence of the linear resistivity between these
two models, the nonlinear I- V characteristics diff'er
markedly. The 2D vortex-glass scenario predicts a cross-
over current density scale Jz separating Ohmic from
non-Ohmic behavior, which varies as a power of temper-]+v2ature, J~ —T ', with an exponent v2) 0, or perhaps
even more rapidly with T, in contrast to the "Aux-creep"
models which predict a linear temperature dependence
for Jz. This should be relevant in highly anisotropic
high-T, superconductors which, as discussed below,
behave as quasi-two-dimensional systems over a wide
range of temperature and field.

With the exception of the direct imaging of Aux lines at
low magnetic fields, most experiments that study the
magnetic properties of superconductors and their possi-
ble phase transitions are, in essence, transport measure-
ments. ' Thus, in this paper we will emphasize results
for both linear and nonlinear electrical transport.

Although this paper may be rather long, it is by no
means intended to be complete —this problem has many
aspects and different regimes and here we just touch on a
few of them with the hope of raising more questions than
we answer. An outline of the paper and summary of our
results are as follows.

We begin in Sec. II with a review of the Ginzburg-
Landau model for a type-II superconductor and its
mean-field solution. ' This model is used throughout as
the basis for studying the eff'ects of fluctuations and disor-
der. This section also serves to establish much of the no-
tation and define many of the parameters used later on.

In Sec. III we briefly discuss the Meissner phase. We
examine the nonlinear resistivity due to thermally ac-
tivated nucleation and growth of vortex loops. This
leads to nonlinear dissipation and an electric field of the
form

E- p[ex—(JT /I)" ] (1.2)

for small current density J. Here p= 1 and the charac-
teristic current scale JT —j./T at low temperatures.
There is a second important characteristic current scale,
JF, above which the dissipation rapidly increases due to
nonacti Uated phase-slip processes. Deep within the
Meissner phase JT )&JF, so that there is a sharp onset of
dissipation at a "critical current" JF, as depicted in Fig.

3(a). In the critical regime near T, (see below), however,
JT ——J~ so that fluctuation effects should induce a
smoother current-voltage characteristic, as illustrated in
Fig. 3(b).

In Sec. IV we examine the normal-to-superconductor
phase transition in zero magnetic field. This transition,
at T, —:T, (H=O), is significantly changed by the thermal
fluctuations, which are relevant at the Gaussian fixed
point governing the mean-field transition. The lowest-
order fluctuation corrections to mean-field theory have
received much attention in the past. The so-called
"Ginzburg criterion" gives the point at which these fluc-
tuation correlations become large upon approaching T,
and for strongly type-II systems there is first a crossover
to behavior governed by the XY'model critical point of an
unchanged superAuid. The Ginzburg criterion for a lay-
ered superconductor in the regime where interplane
correlations are important takes the form

/
/

A~ exp —{JT/J)

JF

(b)

JF —JT

FIG. 3. Current-voltage characteristics in a superconducting
(vortex-glass or Meissner) phase with J the current density and
E the electric field in the sample. (a) In the mean-field regime
there is a fairly sharp onset of nonactivated vortex Aow and dis-
sipation at current density J+. The dissipation for J &(JF is due
to activated nucleation and growth of vortex-loop or bundle ex-
citations and vanishes as exp[ —(Jr/J)"] for J~O. In the
mean-field regime JT ))JF, so the dissipation is still very small
just below Jz. (b) In the thermal fluctuation-dominated critical
regime, J+ becomes of order JT so the onset of dissipation is
smoother.
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X /yg=CAr, (1.3)

o (c~) =@+ 4+(aiP),

while the nonlinear dc conductivity scales as

E(J)=Jg '6+(Jg 'Po/cT),

(1.4)

(1.5)

where Az. is the thermal length defined in (1.1); A. and g
are the in-plane penetration and coherence lengths, respec-
tively; C is a constant of order 1 and y =g, /gi is the an-
isotropy ratio between out-of-plane and in-plane coher-
ence lengths. The cuprate superconductors are typically
highly anisotropic ( y && 1), strongly type II
(ir=k/g))1), and have a high T, . All these features
conspire to increase the role of fiuctuations, making the
fluctuation-dominated XY critical regime potentially ac-
cessible.

In the XY critical regime, the charge of the carriers
and thus the coupling to the magnetic-field fluctuations is
relevant, so that Uery close to T, one finally crosses over
to the critical behavior of a charged superAuid thought to
be in the universality class of an "inverted XY model. "
This last regime is very close to T, even in the high-T,
systems, so we restrict our attention to the scaling in the
intermediate (XY model) regime. In this intermediate
critical regime, the frequency-dependent conductivity in
D dimensions is argued to scale as
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FIG. 4. Magnified view of the low-8 field, and thus H near
H, &, regime in Fig. 2 in the absence of quenched disorder or pin-
ning. Note 8 rather than H is plotted, as is appropriate for a
film geometry. The vortex-Quid phase actually intrudes between
the Meissner (8=0) and vortex-lattice phases down to arbitrari-
ly low temperature. The width of this Quid phase in 8 is of or-
der Po/1, '.

where g is the coherence length which diverges at T„z is
the usual dynamic critical exponent, E is the electric field
and J is the current density. The properties of the scaling
functions 4+ and 8+ are elaborated below. We em-
phasize these scaling forms here because they should ap-
ply rather generally at continuous finite-temperature
normal-to-superconductor phase transitions. Indeed (1.5)
has already been used to experimentally address the issue
of whether or not such a transition between a vortex-Auid
and a vortex-glass superconductor occurs in the presence
of quenched disorder and a penetrating magnetic field.

In Sec. V we investigate the vortex-lattice phase and
the melting of the lattice, all in the absence of random
pinning. In addition to existing below H, 2" as shown in
Fig. 2, the vortex-Quid phase intrudes, in a "reentrant"
fashion, between the Meissner and vortex-lattice phases
near H, &, as has been emphasized in recent work ' ' and
is depicted in Fig. 4, where we show the low-field phase
diagram in the B Tplane. (Note, -as H ~H,+, , B~0. ) It
was initially suggested that the width of this vortex-
liquid phase is enhanced in proportion to the anisotropy
of the hopping rate, which is quite large in some of the
highly layered high-T, materials. However, near H„ the
magnetic interlayer coupling between vortices keeps the
stiffness of an individual vortex-Aux line large even in in
the limit of no direct interlayer hopping (Josephson cou-
pling).

At much higher fields, thermal fluctuations may also
melt the lattice. The melting field BM(T), which may be
well below H, 2", can be estimated using the Lindemann
criterion. ' ' ' The wavelength of the dominant in-
plane vortex fiuctuations is of order a, =(Po/B)'~, the
vortex lattice constant, but a factor of the anisotropy ra-

H~:$0/(2vrg )— (1.6)

is a crossover field equal to the mean field H, 2" in the
Ginzburg-Landau regime, but varying as ( T, —T) in the
XY critical regime, with v= —,'. The phase diagram near
T, on a logH versus log( T, —T) scale is shown schemati-
cally in Fig. 6 for such a three-dimensional system, illus-
trating the crossovers between the various critical re-
gimes.

In Sec. VI we consider the effects of random vortex
pinning on the vortex-lattice phase. For simplicity, we
concentrate on the effects of microscopic pinning (e.g. ,
oxygen defects), although macroscopic defects may be
important for obtaining large critical currents. As shown
by Larkin and Ovchinikov, the vortex-lattice transla-
tional correlations are destroyed by pinning beyond a

tio, y, smaller in the out-of-plane or z direction. Thus, if
the layer spacing d exceeds ya„ the system's behavior is
quasi-two-dimensional. A highly layered material like
Bi2 2Sr2Cao sCuzOs (Bi-Sr-Ca-Cu-O), with y &

—,'„ is thus
quasi-two-dimensional over much of the phase diagram,
B + 3 kQ. In this regime, the melting temperature will be
given roughly by the 2D Kosterlitz-Thouless melting
temperature TM which is only weakly field dependent for
H,2))B))H„. The phase diagram for such a quasi-
two-dimensional system is shown schematically in Fig. 5.

By contrast, a less anisotropic material like YBa2Cu307
(Y-Ba-Cu-O), with y = —,', will behave three dimensional-
ly at accessible fields. At low temperatures the melting
boundary will approach H, 2 (T), but as T increases it
can drop considerably below this field. Indeed, in the XY
critical regime BM ——(0. 1)Hz, where
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FIG. 5. Schematic phase diagram for a highly layered strong-
ly type-II material like Bi-Sr-Ca-Cu-O. The crossover from the
high-field two-dimensional regime of single vortices (vortex
points) in each layer with weak interlayer interactions to the
three-dimensional vortex-line regime at low fields occurs at a
field scale given by the right-hand side of Eq. (5.6). At this
crossover the transition temperature is of order that of an indi-
vidual clean layer T~, except perhaps for Very strong disorder.
The field is oriented normal to the layers.

length scale I. . We estimate semiquantitative1y the
short-distance distortions in the lattice that are induced
by the pinning in various regimes. We find that, at fixed
temperature in both the two- and three-dimensional re-
gimes, the lattice correlations measured in units of the
lattice spacing L /a, decrease with increasing field for
8 ~2H, &. Thus, the direct observation of well-ordered
Aux lattices in Bitter decoration experiments at low fields,
B ~200 G, does not imply that these correlations persist
at high fields where transport measurements are typically
performed.

In Sec. VII we focus on the crossover from vortex-
lattice behavior to pinned behavior in the presence of
ureak pinning. If the melting transition in the absence of
disorder is first order, as expected, then above this tem-
perature there should be no large barriers, and the resis-
tance will not be thermally activated. Just below this
temperature the resistance will drop very rapidly and the
I-V characteristics become strongly nonlinear. In sum,
for weak pinning the resistive transition must remain
fairly sharp. The rather gradual (e.g., quasi-Arrhenius )

resistive transition that is generally seen in high-T, ma-
terials in large fields thus suggests that, for those samples,
one may be in a strong-pinning regime.

The properties of the proposed vortex-glass phase are
examined in Sec. VIII. We emphasize that, just like the
Meissner phase and the Abrikosov vortex-lattice phase,

the vortex-glass phase has ofF'-diagonal long-range order
in the pairing field g. However, the long-range order is
in an essentially random pattern determined by the
specific details of the pinning in the sample, just as occurs
for the long-range magnetic order in a spin-glass phase.

The off-diagonal long-range order in the vortex-glass
phase, although not directly observable, will manifest it-
self in transport properties. In this phase, in the presence
of a current density J, there will be barriers for vortex-
loop (or vortex-bundle) excitations which grow for J~O
as B(J)-J " with an exponent p~ 1. Thermally ac-
tivated vortex loops then lead to nonlinear dissipation
which vanishes exponentially with current, as in (1.2).
The current scale Jr varies as Jg —1/T at low tempera-
ture. As in the Meissner phase, there is a second current
scale Jz above which dissipation rapidly increases due to
nonactivated vortex motion, i.e., vortex How. At low
temperatures a sharp critical current may be seen since
JF &&Jz-, but near the glass transition temperature
J~-Jz and the I-V characteristics should be rounded, as
illustrated in Fig. 3.

In the vortex-glass phase a nonequilibrium current
should decay with time (roughly) as

J(t) =J~[1+(T/U)ln(t/to)]

with U an effective barrier height such that
T/U=(JF/Jz. )", and to —10 sec is a microscopic "at-
tempt" time. This form yields a BJ/Bint which is non-
monotonic in temperature at fixed time, in contrast to
standard "flux-creep" theory.

The vortex-glass phase is a true superconductor with
strictly zero linear resistivity, as is apparent from (1.2).
Moreover, we argue that the frequency-dependent con-
ductivity varies as cr(co)-p, /( ice), so t—hat the phase
exhibits a nonzero superAuid density, just as in the Meiss-
ner phase. However, the equilibrium dc susceptibility
BM/BH is not equal to —1/4~ in the vortex-glass phase,
since additional dc magnetic fields will fully penetrate the
sample. The penetration of an ac field becomes very in-
homogeneous at low frequency, leading to various
different measures of the penetration 1ength, one of which
diverges (logarithmically) for co~0, while another
remains finite.

The continuous phase transition from vortex glass to
vortex Quid is investigated in Sec. IX. In particular, we
focus on the dc nonlinear current-voltage response and
the ac linear conductivity near the transition, which are
argued to have scaling forms similar to the zero-field
transition, as in (1.4) and (1.5). The recent nonlinear IV-
data of Koch et al. and Gammel et al. have been fit
quite successfully to the proposed scaling form, providing
experimental evidence for the existence of the vortex-
glass phase. As also discussed in this section, the theoret-
ical evidence for the existence of this phase arises from
several related, but not fully reahstic, models that have
been studied both analytically" and numerically. '

Section X contains a brief discussion of quasi-two-
dimensional effects in the presence of disorder which may
be relevant for highly anisotropic materials like
Bi-Sr-Ca-Cu-O. In particular, the physics is conveniently
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described in terms of a 2D vortex-glass phase which ex-
ists only at T=O. As T~O, the 2D vortex-glass correla-
tion length is expected to diverge, which should have ob-
servable consequences in the current-voltage characteris-
tics.

Finally, in Sec. XI we present a discussion of some re-
cent experiments, conclusions, and some open questions.
Emphasis is placed on Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-O,
which are the most studied of all the copper-oxide super-
conductors. These two materials exhibit rather different
transport behavior in a magnetic field; the differences ap-
pear to be largely due to their different degrees of aniso-
tropy.

II. GINZBURG-LANDAU MODEL
AND MEAN-FIELD THEORY

In order to establish the important energy and length
scales, we brieAy review Ginzburg-Landau theory for a
uniaxially anisotropic superconductor. The Ginzburg-
Landau free-energy functional for a uniaxially anisotrop-
ic superconductor in applied magnetic field H is

2

netic penetration length for a field screened by currents in
the xy plane (such as a field along the z axis) is

Xi=A, =(mc P/16~la e )'

For fields in the z direction, the system is type II in
mean-field theory when the ratio

x.:—A, /g=(mc/2fie)(p/2vr)' )2

The penetration length for fields screened by currents
along the z axis is A,, =(m, /m)' A, . For convenience we
define an anisotropy parameter

1/2

(2.2)

Note that the anisotropies in g and A, are the reverse of
each other: for y & 1, gi )g, and A., & ki, so that one may
define a a., —:A,, /g, which diff'ers from s by a factor of
'V

In the limit of very weakly coupled layers, the inter-
layer coupling Ifirst term in (2.1)] must be replaced by a
gauge-invariant discrete derivative

F= J'd'r a
az

A, (r) f(r)
A'c a

az
l2e 1

Ac ' d
(2.3)

Vi — Ai(r) g(r)
Ac

+a(T) lp(r) I'+-,'pl@(r) I'

+ IH —VX A(r)l'
8m

(2.1)

where V~ and A~ represent the components of V and A
normal to the z axis. The complex scalar order-
parameter field g(r) represents the wave functions of
pairs of charge 2e. The final term couples the applied
field to the magnetic induction B(r)=VX A(r), where A
is the vector potential. For simplicity, we will generally
assume the temperature dependence enters only through
a(T) and that the applied field is parallel to the z axis.
We will always use z subscripts to denote lengths in the z
direction, but, for notational simplicity, often drop the l
subscript for lengths in the planes normal to the z axis.
For stability, p, m„and mi are all positive. The small-
scale quenched disorder we will consider is best modeled
in (2.1) as a spatially random component of a: 5a(r, T).

The mean-field minimization of (2.1) is well under-
stood. ' Its phase diagram is Fig. 1. For H=O and
a(T) &0, the system orders with 8=0 and uniform g in
the gauge where 2 =0. In this Meissner phase the sym-
metry of F under itj(r)~e'~g(r) is spontaneously broken,
resulting in off-diagonal long-range order. The mean-
field magnitude of itj is given by Ipl = Ial/p. The mean-
field coherence length for the decay of a perturbation of

in the xy plane is

g—:g= iri/(2m
I
a

I )

where m =mi; g, =(m/m, )' g is the mean-field coher-
ence length along the z direction. The mean-field mag-

with d the layer spacing and 6, the lattice derivative
operator that yields the gauge-invariant difference be-
tween adjacent layers.

A small applied field H & H, &
is unable to penetrate the

system so that the state is unchanged and 8 remains zero.
In this Meissner phase, the long-wavelength form of the
free energy can be written in terms of the phase P of the
order parameter

I
g= lglexp(ig)] as

F= J —VP — p, VP — + (VX A)
2 Po

'
$0 Svr

(2.4)

in terms of the normalized superfluid density tensor
which is diagona1 with components

No
( ) =

3/2
(2.5)

Above H, &
the field penetrates initially in isolated Aux

lines which contain vortices of the field g and magnetic
fiux $0. The mean-field free energy per unit length of
such a fiux line in the z direction is f =e, Hpo/4', wit—h

E,:—E„=(po/4~A, ) 1n~

for large ~. Thus, the magnetic field first penetrates at
H, i

=4vr E i /Po. For K of order unity, E i is roughly
(Po/4vrA, ) . (For simplicity, we generally analyze the 3D
bulk behavior for a "needle crystal" oriented parallel to
the applied field so demagnetization can be ignored. For
other sample geometries H, i is altered.)'

For H„&H & H, 2= $0/2m/~ the mean-field minimum
of (2.1) is an Abrikosov vortex lattice. The vortices are
a11 parallel to the applied field and frozen into a triangu-
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lar array. Thus, in this vortex-lattice phase the symmetry
under continuous translations in the xy plane is also
spontaneously broken. The applied field H frustrates the
system more and more as it is increased, and the order
parameters are driven to zero at H, 2.

In the absence of bulk vortex pinning, the vortex-
lattice phase is not a superconductor for currents running
normal to the field, but instead has a nonzero Ohmic
resistivity due to "fIux How. "

The characteristic frequency scale in the vortex-lattice
phase is determined by the forces between the vortex
lines and their mobility; the latter also determines the
Aux-Aow resistivity. A simple mean-field estimate of the
relaxational frequency of a (overdamped) zone-boundary
(ZB) fiux-lattice "phonon" for H„«H «H, z yields

2
pFC

16' A, (T)

H pxc 2

H„(T=o) 16''A, '(T =0)

6 X 1010 —1

H, 2(0) pQ cm

0 2
1000 A

A,(0)

(2.6)

in terms of the in-plane fiux-fiow resistivity pF(H, T)
which, in the second equality, we assume is roughly
given by p&H/H, 2(T) with pz the normal-state resistivi-
ty in the mean-field regime just above the zero-field tran-
sition temperature T, . Near H„or H, 2 this frequency
will be smaller than given by (2.6).

Mean-field theory exhibits two ordered phases, the
Meissner phase and the vortex-lattice phase, and three
distinct transitions which will be, to varying degrees, al-
tered by thermal fluctuations and quenched disorder.
These are (i) the transition at H=O as a(T) passes
through zero, (ii) the Meissner —to —vortex-lattice transi-
tion at H„, and (iii) the vortex-lattice —to —normal transi-
tion at H, 2.

III. THE MEISSNER PHASE

We first examine the simplest phase. In the Meissner
phase the system superconducts, with no dissipation
occurring which is linear in the current density J. In a
mean-field analysis there is no dissipation at all up to a
critical current density where the system goes normal.
Thermal Auctuations alter this, however, yielding dissipa-
tion due to thermally activated nucleation and subse-
quent growth of vortex loops at any nonzero current den-
sity. Let us examine these processes for a bulk super-
conductor, neglecting the processes that occur near the
surfaces that are actually more important in any finite-
sized sample at low enough currents. At low current
densities, the magnitude of the order parameter is not
significantly altered and the free energy of a circular vor-
tex loop lying in a plane normal to the current, of radius
R ) A, and having the appropriate sign of the circulation,
1S

F1, =2~RC1 —J mR
0

c (3.1)

where, again, c, i is the free energy per unit length of the
vortex line and we first consider the isotropic case (y = 1)
for simplicity. (Note we are assuming the current density
is uniform, which is not strictly true for very low current
densities where the current is concentrated near the other
moving vortices. ) The critical radius at which I'„, has
its maximum is R, =cE, /JPO and the resulting free-
energy barrier is ~ca, /J, go Th. us, the activated dissipa-
tion rate or resistivity is

Ep:——-eJ (3.2)

with the characteristic current scale set by these thermal
fIuctuations given by

is the free energy per unit length of a vortex line parallel
to the planes. The mean-field critical current is when the
critical loop has axes g, and gi. The critical region is
then when s&i(i-E&,g, —T which, due to the inverse
dependence of g and A, on anisotropy, will happen con-

(3.3)

For R in the range g«R &A, , (3.1) is not precisely
correct since E, varies as ln(R /g) in this range; however,
this does not alter the exponential dependence of p on J
in (3.2); it just changes the (unknown) prefactor.

When the current is large enough that the critical ra-
dius becomes of order g, the above picture breaks down:
this occurs for J near a current density JF which is when
the onset of strong nonlinear (and nonactivated) phase
slip occurs. This will be of order the mean-field (depair-
ing) critical current: Jz-J, "-(cEi)/Jog. The loop nu-
cleation barrier for currents just below this mean-field
critical current is of order E,g. Thus, the resistivity at
currents near but below the mean-field critical current is
of order exp( E,g/T) tim—es the normal resistivity. In
conventional materials this is very small except very close
to T, . This is a refIection of the occurrence of two very
different current scales: JT for the thermally activated
phase slip and JF for deterministic (nonactivated)
creation of vortex loops. In the limit JT))JF, there is a
sharp change in behavior and an apparent critical current
of order J~ as illustrated in Fig. 3(a). It is such a wide
separation of current scales which hides the effects of
thermal fIuctuations in conventional bulk superconduc-
tors. As T, is approached, however, JT decreases more
rapidly than JF. When they become comparable, thermal
fluctuations play an important role and I-V curves be-
come rounded and much smoother as in Fig. 3(b). We
will see below that this criterion ( JT of order JF ) is essen-
tially the same as the Ginzburg criterion.

In an anisotropic material, the critical vortex loop is el-
liptical rather than circular. The characteristic current
J7 7rc ( eii e i, ) /JOT for in-plane current where

1
~1X= 'V& iz

z
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currently.
In the presence of quenched disorder insufficient to

destroy superconductivity, the nonlinear current-voltage
behavior in the Meissner phase will not be significantly
changed. However, the existence of random regions in
which vortices have lower free energy will cause long-
time tails in equilibrium correlation functions due to
long-lived thermally excited vortex loops. These will
give rise to singular low-frequency corrections to the
mean-field ac linear conductivity, probably of the form of
nonuniversal powers of co. We also note in passing that,
even at zero temperature, there will be dissipation at any
nonzero J from quantum tunneling through the above
discussed barriers.

dependent Kosterlitz-Thouless transitions in the layers;
other criteria for the fluctuation regime are then more
useful.

We now examine the behavior in the Auctuation-
dominated critical regime. This serves two purposes, the
first being that this regime may actually be accessible at
H=O if sufficiently homogeneous samples are obtained,
and the second is that the scaling here is fairly similar to
that expected at a finite-temperature vortex-
Auid —to —vortex-glass transition which will be examined
in Sec. IX.

The effective dimensionless charge of a mean-field su-
perconductor which determines the strength of the
screening is

IV. THE NORMAL- TO-SUPERCONDUCTOR
TRANSITION AT H=O

2A 2~
e = I/v=e

mc P

1/2

(4.2)

We now consider the critical behavior in zero field. A
superconductor is type II when the Cooper pair field P is
"softer" than the vector potential field A. Thus, the g
field has stronger thermal fluctuations and it is these fluc-
tuations that first start to alter the critical behavior as T,
is approached. The point at which the system crosses
over from mean-field to Auctuation-dominated critical be-
havior has been called the "Ginzburg criterion. " For
T & T„one can use the simple criterion of when the or-
dering free energy in a coherence volume is equal to the
temperature: a g g, /2P=T. This translates to

)'0o

16c,m TK Cs 77K
(4.1)

with the constant c, =4. We will see later that there are
other sensible criteria for this crossover which yield a c,
smaller by an order of magnitude and more, and thus a
crossover much closer to T, . The criterion (4.1) is (up to
the constant) the same condition as Jr =J~ discussed in
the previous section. In the high-T, cuprate supercon-
ductors T, K, and y

' are all larger than in conventional
superconductors. This makes the regime of Auctuation-
dominated critical behavior potentially accessible.

In mean-field theory, the resistivity has a discontinuity
at T, . This jump is found experimentally to be rounded
on the scale of order a tenth of a degree K in, for exam-
ple, YBa2Cu~07 (Y-Ba-Cu-0). It is possible that some of
this rounding may actually be due to inhomogeneity of
the samples, but it may also indicate the Auctuation-
dominated critical regime. The mean-field discontinuity
of the specific heat, on the other hand, should be replaced
in the critical regime by a nearly logarithmic divergence,
since the specific-heat exponent is n= —0.016 for XY
critical behavior (see below). Thus, a cusped peak in
the specific heat is indicative of fluctuation effects, while
rounding of that peak is indicative of sample inhomo-
geneities. Note that the above discussion assumes three
dimensionality; that is, g, & d at the Ginzburg tempera-
ture with d the layer spacing. For the two-dimensional
regime (g', &d), the Ginzburg criterion is a g d/2P= T.
However, in this limit, the behavior can better be de-
scribed in terms of weakly coupled layers with almost in-

T —T.8=
C

(4.3)

In the XYcritical regime for T (T, we have

ki=kio~EI

arid

(4.4)

(4.5)

with

2
J0

bio 7TCq
(4.6)

The universal constant here is estimated to be c, =0.4.
In the Ginzburg-Landau (mean-field) regime, one has in-
stead

(4.7)

The crossover point c„can then be defined as the point
where the Ginzburg-Landau expression for A, /g coin-

In a strongly type-II system, this normalized charge is
small and the screening is weak, as refiected by A, »g.
The crossover upon approaching T, is thus initially to
the critical regime of a weakly charged superAuid where
the fiuctuations in g are essentially those of an uncharged
superfiuid or XY model. In this regime, g- ~T —T, ~

with v= —', in three dimensions (D=3). For T & T„ the
superfiuid density scales as p, —g . Thus, the
penetration length scales as A, —p, '~ —g' '~ in this
XY critical regime. This results in a renormalization of K

as a.-g' '~ . For D=3, the condition (4.1) will thus be
satisfied throughout this regime with c, a universal con-
stant.

In order to estimate c, we need to specify our conven-
tion for defining g for T & T, . For T & T„we define g as
the exponential decay length for the correlations in the
field i'. For T & T„ the decay is nowhere exponential so
we simply define g so it is symmetric about T„namely,
g(e) =g( —E) with
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cides with (4.6), yielding
'2

lo ~Cs
x= (4.8)

CJO ) +T

which is of order 10 to 10 ' for Y-Ba-Cu-0 if we esti-
mate k~o-—800 A, 30 a 120, and y=0.2, but may be
larger for Bi-Sr-Ca-Cu-0 due to the smaller y. A two-
dimensional criterion is likely to be more appropriate for
Bi-Sr-Ca-Cu-0 however.

We note that there is considerable ambiguity in
defining the width of the critical region. For example,
the standard Ginzburg criterion, that the leading fIuctua-
tion correction to the specific heat as T approaches T,
from above be equal to the mean-field specific-heat
discontinuity, gives an expression similar to Eq. (4.8) ex-
cept with a factor of —,

' instead of mc, yielding an c.„25
times smaller than (4.8). However, this standard
Cxinzburg criterion appears to be an underestimate of the
width of the critical regime, because the higher-order
Auctuation corrections are significantly larger than the
leading terms at this point. Thus, the crossover between
the mean-field and Auctuation critical regimes appears to
occur when the singular Auctuation corrections to the
specific heat are still significantly smaller than the mean-
Geld specific-heat jump. The situation for the conductivi-
ty appears to be similar, with the crossover occurring
where the Auctuation conductivity is a fairly small
correction. Detailed calculations of the mean-
field —to —XY crossover are needed for any real compar-
ison with experiments.

In the XF critical regime, since x.-g' ', the charge
is relevant for D & 4, and ~ decreases as one approaches
T, . When ~ becomes of order unity the system crosses
over into another critical regime, that of a charged
super Quid. For an isotropic material we expect
Tga. —(Po/4ir) in the intermediate critical regime, so
the final crossover occurs when Tg= 10 K A, which is a
Very large coherence length (=0.1 mm), even for the
high- T, materials.

In anisotropic materials, however, ac=~i (which we as-
sume is (~.) will become of order unity when

gi-ki-yA~. ,

and at this point the magnetic field fluctuations will start
to become important; however, the system is still aniso-
tropic. What the eventual critical behavior will be is un-
clear in this anisotropic case and we will primarily re-
strict consideration in this paper to the intermediate XY
critical regime. Note, however, that with small enough y
(high anisotropy), the magnetic-field fluctuation critical
regime may become accessible experimentally in extreme-
ly good samples. The various critical regimes are shown
on log scales in Fig. 6.

What dynamic universality class is the intermediate
(XY) critical regime7 In the absence of Coulomb interac-
tions, one would expect model-E dynamics to apply with
the conserved charge-density conjugate to the phase fIuc-
tuations. However, the plasma fluctuations (with a
plasmon gap) probably efFectively negate this effect and
the appropriate universality class appears to be that with

log H

GINZBURG-
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MAGNETIC

FLU CTUAT I ON
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FIG. 6. Schematic phase diagram in the region near 1, for a
system with no pinning showing the critical regimes and cross-
overs on log scales. The system is assumed to be behaving three
dimensionally throughout. The numbers I,'1,v, 2v) next to the
phase boundaries and crossover line denote their slopes on this
log-log plot. The crossover from the XY critical regime to the
magnetic fluctuation critical regime occurs near where the
vortex-lattice phase terminates.

the number of Cooper pairs not conserved. This suggests
that a fully relaxational dynamics (model A) should be
appropriate. However, most of the expressions we ob-
tain should be generally valid but with the value of the
dynamic scaling exponent z and the detailed forms of the
scaling functions determined by the appropriate dynamic
universality class.

Since the specific-heat exponent a is very close to zero
for the 3D XY model universality class that applies at
this H=O critical point, quenched disorder is effectively a
marginally irrelevant operator. Thus, weak disorder
should not change the critical behavior significantly, al-
though strong disorder will yield large corrections to
scaling from the slow transients in the renormalization-
group Bows near the critical fixed point. We now ex-
amine the critical scaling of those quantities that are
peculiar to the clean, weakly charged, rather than strictly
unchanged, superAuid.
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A. Fluctuation diamagnetism
{f (T,co)=P ((T—T, )c~

' ' ), (4.13)

The appropriate scaling of the magnetic field in the in-
termediate critical regime is in terms of the number of
flux quanta per coherence area. Thus, we expect the
singular part of the free energy per unit volume to scale
as

f, = Tg P(H g /Po),

where V is a scaling function. The resulting expression
for the divergent part of the diamagnetic susceptibility is
then

where P (x)~0 for x~oo and P (x)~vr/2 for
x ~—~. At T, the low-frequency phase angle is a con-
stant, P (0). Above the upper critical dimension (D=4),
P (0)=0 because the system behaves like a normal metal
even at T, . At the lower critical dimension (D=2), on
the other hand, P (0)=sr/2 because p, )0 at T, for a
Kosterlitz-Thouless transition. Thus, for D =3, we might
guess that P (0) is well away from both 0 and m/2 for this
zero-field transition. Causality of o(co) combined with
(4.12) indicates"' that, for 0 & (z +2 D) /—z ( 1,

a2 T g4 D—
aH' H=.

(4.10) ( )
~z+2 D—
2 z

(4.14)

(the final expression is for 3D), which applies both in the
mean-field regime and the intermediate critical regime.
[Note that the dependence of g on (T —T, ) will change
at the Cxinzburg crossover, as mill the proportionality
constants not shown in (4.10).] For y =1 (isotropic), we
see that y,

' is of order unity (full diamagnetism) only at
the final crossover to the magnetic-field fluctuation re-
gime where Tg-$0. For anisotropic layered materials,
y„will become of order unity at the point when ~~-1,
i.e., the same criterion for the crossover to the magnetic
fluctuation critical regime as given in (4.9).

B. Frequency-dependent conductivity

o (rD) =@+ S+(coP), (4.11)

where the complex scaling functions 4+ apply above (+)
and below ( —

) T, . The sealing functions behave as
eV+(x)~real constant and 4 (x)—1/( —ix) for x~0,
reAecting the low-frequency behavior above and below
T„while

4+(x)=g (x)=cx{'

with c a complex constant for x ~~, representing
T~T, . Thus, at T„both the real and imaginary parts
of a diverge for co~0 as

( )
—(z+2 —D)/z (4.12)

Note that, for T~ T,+, the dc conductivity cr(0) diverges
as g'+ . This yields the correct results for the upper
(D=4) and lower' (D=2) critical dimension since, for
both cases, relaxational dynamics gives z=2.

A useful dimensionless quantity that might be used to
locate the transition is the phase angle, P defined by

ipo =
~

o'
~
e . From (4.11) this should scale as

For T (T, and low frequency, the complex conduc-
tivity has the form

cr(ro) =p, /( iro+E),—

where c,—+0+, the real part thus having a 5 function at
zero frequency. Noting that, in the critical region,
p, —g and that the characteristic relaxation time
scales as r-P, this indicates that the low-frequency
linear conductivity should scale as

C. Nonlinear conductivity

In order to investigate the scaling of the nonlinear con-
ductivity in the zero-field (intermediate) critical region, it
is instructive to go back to Sec. III and examine the two
characteristic current densities which appear in the
Meissner phase: JT and JF. In the intermediate critical
region, both of these characteristic in-plane current den-
sities are of order

(4.15)

Thus, the characteristic current density is directly related
to the critical correlation lengths. An argument, analo-
gous to that of Josephson (see also, Sec. IX below) for the
scaling of the superAuid density shows that this is true
in general, and does not depend on the interpretation in
terms of vortex loops: The characteristic current density
will be that which is su%ciently large to appreciably
change the statistics of the phase and vortex-line Auctua-
tions. In a correlation volume of an isotropic system, the
typical variation in the phase will be —2~ so that
~V{f ~

—I/g (where g=—~g~e'~). The coupling of an exter-
nal current to a phase gradient is via

5I'J= —f J V$ (4.16)

(4.18)

for general D. The scaling functions should behave as

since the (mass) supercurrent is conjugate to the
superfluid velocity. In a correlation volume g, 5F~ will
be of order T, and thus of similar magnitude to the spon-
taneous fiuctuations when J-(cT)lgg '. For an an-
isotropic 3D system, the in-plane characteristic current
will, by the analogous argument, be given by Eq. (4.15).
In the z direction the characteristic current density is

cT 1
Xz

p 2 r

0 gi

which is smaller than J~~ for y ( 1.
For an isotropic system, we thus expect the dissipative

electric field with a dc current density J to scale as
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for x —+ ~. This results in

J(z + & )/(D —
& ) (4.19)

at T„which, again with z=2, agrees with the expected
Ohmic behavior at T, in a=4 and the' E-J behavior
at T, in D =2. Thus, for D =3 we expect the conductivi-
ty very near T, to obey (4.19) for currents much bigger
than Jz but not too large and to cross over to Ohmic be-
havior at low currents for T )T, and to exponentially
small dissipation at low currents for T (T, . For an an-
isotropic 3D system with current Ji in the planes, Jg
in (4.18) is replaced by Jigig, .

These scaling forms for the linear ac and nonlinear dc
conductivity should apply generally, although with possi-
bly different exponents and scaling functions, for any
second-order normal-to-superconductor transition when
the effects of screening can be ignored. Thus, they should
also apply for the vortex-glass —to —vortex-Auid transition
in a magnetic field with substitution of the appropriate
vortex-glass correlation length, critical exponents, and
scaling functions, as is discussed below in Sec. IX.

V. VQRTEX-LATTICE PHASE
AND MELTING TRANSITIONS

We now turn to the vortex-lattice phase and consider
the effects of thermal Auctuations. The Auctuations give
rise to overdamped phononlike excitations of the vortex
lattice. When these Auctuations get suf5ciently large, the
system is expected to melt into a vortex liquid, as dis-
cussed by several authors ' ' ' and outlined below.
There will also be Auctuations in the form of dislocation
loops somewhat analogous to the vortex loops discussed
in the previous section. Dislocation loops are necessary
for the melting of a vortex lattice into a Auid phase to
occur. These dislocation loops will also give rise to the
activated relaxation of shear stresses in the vortex-lattice
phase by nucleation and growth processes, in a similar
fashion as activated vortex loops relax the current in the
Meissner phase. Such processes could occur under condi-
tions of nonuniform current density and may be irnpor-
tant in determining the behavior in the presence of large
length scale disorder (e.g., widely spaced pinning states).

In the absence of pinning of vortex lines, a vortex lat-
tice will move with a nonzero linear mobility in response
to any uniform applied current which has a component
normal to the vortex lines. This motion produces slip in
the phase of the field 1t), dissipation, and, hence, a nonzero
electrical resistance. Thus, this phase is not really super-
conducting. (The question of what happens in the pres-
ence of thermal Auctuations when a very small current is
precisely parallel to the vortex lines appears not to have
been addressed. ) In any real material, however, there will
be defects which give rise to energetically preferred posi-

8+(x)—constant as x~0 above T„corresponding to
finite resistivity; and (for D=3) 6' (x)-e ' " for x~O
below T, due to vortex-loop nucleation as in (3.2), with
an a constant. At T„

( )
(z+2 D)l(D —()

tions for the vortex lines and thus inhibit their motion.
The long-range crystalline order of the vortices in the

vortex-lattice phase is unstable against the introduction
of quenched disorder or random pinning as discussed in
more detail in the next section. Thus, the correlation
length for the crystalline positional order of the vortices
will be finite when there is quenched disorder present in
the system. The vortex-lattice phase may then be re-
placed by a vortex-glass phase' '" which still has long-
range spin-glasslike order in the pairing field P. Some
properties of this vortex-glass phase are discussed in Sec.
VIII below. The possible phase transition between the
vortex-glass phase and a vortex fluid will be discussed in
Sec. IX. An alternative scenario is that the correlation
length for the spin-glasslike order could remain finite all
the way to zero temperature (diverging at T=O, see
below), and the system remain a fiuid, albeit a glassy one,
as in the traditional Anderson-Kim '" theory of Aux
creep.

It is important to distinguish two main types of pin-
ning: small-scale disorder from impurities, vacancies,
etc. , and large-scale disorder from well-spaced grain or
twin boundaries, cracks, macroscopic inhomogeneities,
etc. The relevant length scale with which to compare the
pinning correlations is the spacing between vortices: thus,
a high density of randomly placed twin or grain boun-
daries may result in effectively small-scale disorder if the
density of such defects is homogeneous on larger scales.
Small-scale disorder, which we discuss in detail in the fol-
lowing section, destroys the long-range positional correla-
tions of the vortex lattice and, as we will argue, may give
rise to a superconducting vortex-glass phase. Large-scale
disorder, on the other hand, can leave the lattice struc-
ture intact out to long distances but can nevertheless
drastically hinder macroscopic Aux Aow. In this case,
which we will not discuss further, the melting of the vor-
tex lattice in regions between defects may have large
consequences for the resistance, since a vortex Auid will
not be impeded from Aowing nearly as much as a lattice
would. In principle, with controlled, wideLy spaced,
strong-pinning regions with very clean material in be-
tween, it should be possible to directly measure proper-
ties of a vortex lattice such as elastic moduli and also
plastic Aow under large current-induced stresses.

Before considering the effects of pinning in more detail
(in the next section), we first discuss the transition, in a
clean system, from the vortex lattice to a vortex-Auid
phase as the thermal Auctuations increase. We do this
for two reasons, first to point out some aspects of this
transition that appear to have been missed in recent stud-
ies, and secondly because, in the presence of weak disor-
der, we expect the resistance to show marked changes
near the pure system Aux-lattice melting boundaries, as is
discussed in Sec. VII below. For the remainder of this
section we consider the system without pinning.

In mean-field theory (Fig. 1), there are two different
types of second-order phase boundaries at which the
vortex-lattice disappears: as the field is decreased at H, &

with a transition directly to the Meissner phase and as
the field is increased through H, z with a transition to the
normal phase. We examine these in this order.
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A. Melting near H, &

H, i

T2

X c)E)
(5.1)

as obtained by Nelson and Seung. For an isotropic su-
perconductor, Z, =c, , and thus bH&/H„-A, /AT (up to
logarithmic factors). Even in the XY model fluctuation
critical regime where Ei —T/g, b,HI /H,

&
is only of order

1/x . Thus, the width of this Auid phase in a strongly
type-II isotropic system is quite small in units of H, &

ex-
cept extremely near T, where ~ becomes temperature
dependent. Now one might have thought that the tilt
stiffness c, can be made arbitrarily small relative to c, by
taking a highly anisotropic system with small y, thereby
increasing AH&. However, the electromagnetic coupling
[the ~H —VX A~ term in the free energy (2.1)] is intrinsi-
cally isotropic, so this is not, in fact, correct.

To see this, it is instructive to consider a highly aniso-
tropic, quasi-two-dimensional layered superconductor,
like Bi-Sr-Ca-Cu-G. Near H„ the intruding magnetic
field is confined to the vicinity of the vortex. The vortex
line free energy in mean-field theory is E&=(go/4m'. ) in'
for large sc of which E,M-($0/4vrA)is magneti, c energy,
the remainder being due to the "strain" in the 1t field in
each plane which thus dominates for an isotropic system.
On the other hand, if the Josephson coupling between
planes is very weak (small y), then, when we tilt a vortex,
the g fields in each plane can remain almost unchanged
relative to the position where the point vortex passes
through the plane. In the limit of small y, the increase in
free energy per plane is just clue to the tilting of the mag-
netic field and the coupling of the magnetic field of a vor-
tex in one plane to the phase gradients (thus currents) in
other planes. This magnetic energy per unit length yields
Ei= —,'(Po/47rk, ) so we have s&

—c,~ in this highly layered
limit. Thus, even if one totally eliminates hopping be-
tween layers, the long-length scale stiffness of an isolated
vortex line is only reduced by a factor of lnKy and
EHf /H i remains of order ( A, /A T )

The above analysis is made ignoring demagnetization
effects. Although hH&/H„ is so small, the actual spac-

In mean-field theory the transition at H, i is continu.
ous, with the lattice constant of the Abrikosov vortex lat-
tice going to infinity for H ~H„. However, the interac-
tion between parallel vortices falls off as exp( —r/A, ) for
vortex separation r ))A. and the lattice will thus be high-
ly unstable to thermal Auctuations very close to H, &.

Thus, in a superconductor free from random pinning, a
region of vortex-Auid phase introduces at H, i for all
T) 0, as has been recently emphasized ' ' and is illus-
trated in Fig. 4. (Note, this region of "reentrant" vortex
fluid will be very unstable to pinning, as discussed below. )

In order to estimate the width of this Auid phase we need
to know the stiffness of a single vortex line to tilting. If
the free energy per unit length projected on the z axis of a
vortex line running at angle 0 to the z axis is

f =E,+ —,'E, H +O(8 ),
then the width in applied field AH& of the Auid phase is

ing between vortices at the melting point is roughly
a, =A, ~ln(b, H//H„) ~, so it may only be, say, ten times k.
Thus, this reentrant vortex Auid phase near H, &

might be
accessible in a highly planar sample since, in this case,
B=H even at very small fields and one can readily con-
trol the vortex spacing ( ~ B '

) with the applied field.
The low-field melting transition will occur at

0
BM 2 2Kiln (AT/Ai)

which reaches a maximum at = —,'T, . This is shown

schematically in Fig. 4.

B. Vortex-lattice melting at higher fields

As discussed in the previous subsection, in a disorder-
free superconductor, a vortex-Auid phase will intrude be-
tween the Meissner phase and the vortex-lattice phase '
as the field is increased from H, &. For a strongly type-II
material with ~))1, there is a wide range of fields be-
tween the point at which a vortex lattice will form
(B-Po/Ai) and Hz=go/(2irg ) where the vortex cores
strongly overlap. However, as the field is increased to-
wards H~, the lattice becomes soft due to the depression
of the order parameters and can melt well before H~.
This transition has been examined in Refs. 6, 7, 16, and
17.

The true phase boundary from vortex lattice to Auid
will occur at some melting temperature T~(H), whereas
only a smooth crossover from a vortex Auid to completely
normal-state behavior will occur in the vicinity of the
mean-field transition temperature T,2". We consider H
parallel to the z axis in the range Hz ))H ))H, i, so that
the finite size of the vortex lines can be ignored.
Houghton et al. ' and Brandt' have also obtained some
of the results in this region and further results for H near
H, 2" in the Ginzburg-Landau regime where Hz-—H, 2".
There are two sources of anisotropy which both play im-
portant roles in this intermediate field regime: the intrin-
sic anisotropy @=A,~/A, , & 1 and the anisotropy imposed
by the magnetic field.

Following other authors, ' ' ' we estimate the
mean-square displacement of a single vortex line
W—= (u ) due to thermal fluctuations. A perfect static
lattice is, as usual, used as the reference state from which
u is the displacement. A simple crude estimate of the

melting temperature is given by a Lindemann-like cri-
terion that the root-mean-square (rms) displacement be
some fraction cL = 15% of the lattice constant
a„—= ($0/B)'~, i.e. , W=(cl a, ) . Since, in two-
dimensional or quasi-two-dimensional regimes, ( u )
diverges logarithmically with system size or other cutoff,
a better Lindemann criterion for these regimes is that the
rms Auctuation in the nearest-neighbor separation be
some fraction of the lattice constant.

The elastic properties of an anisotropic Aux lattice with
magnetic and Josephson coupling between the layers are
somewhat complicated and we will not discuss them in
detail here. The important rnoduli are the in-plane shear
modulus, which in mean-field theory is



142 FISHER, FISHER, AND HUSE 43

64 2/2 (5.2)

and the tilt modulus Kr(q). The bulk modulus for
H ))H„ is much larger due to the long-range (logarith-
mic) interaction between the vortices. At long wave-
lengths the tilt modulus of the vortex lines is dominated
by the magnetic energy and equal to Bi/4vr for q~O.
The wave-vector dependence of the tilt modulus ECz (q), is
crucial, however, ' ' since the dominant thermal Auctua-
tions are generally of short wavelength compared to the
penetration length: These short-wavelength Auctuations
do not alter the magnetic fields by as much as long-
wavelength Auctuations and are hence much softer.

The integral over q which yields the mean-square
vortex-line displacement 8' is generally dominated by q~
near the in-plane boundary, but there are several different
regimes for q, . For A,, /Ai ~ a, /d, i.e., very strong anisot-
ropy, the z component of the wavelength of the dominant
fIuctuations is of order the interplanar separation d so
that the system has essentially two-dimensional Auctua-
tions. In this limit, the system is best thought of as con-
sisting of interacting point vortices in each layer, rather
than vortex lines. Here we straightforwardly obtain

this 2D regime. A gradual drop of TM in proportion to
the suppression of the mean-square local order parameter
( ~f~ ) is to be expected for increasing field. The condi-
tion for validity of this 2D regime is that

00 ~l 40
H~ »B»max .

k J

(5.6)

so that the "effective lattice constant" in the z direction is
a factor of y smaller than the in-plane lattice constant a, .
In this 3D regime we find for B»H, &,

16' AiT
(5.7)4Ai B

The Kosterlitz- Thouless melting condition is roughly
equivalent to a mean-square nearest-neighbor displace-
ment of 0.03a, .

For less anisotropic materials or for lower fields, the
dominant fluctuations in the vortex lattice have wave vec-
tors

' 1/2
z

T Bii
ln

4vrpd
(5.3)

The prefactor may actually be somewhat less due to non-
linear effects. Using this result and the Lindemann cri-
terion yields

dV(T~) 4o

2~V3
(5.4)

Interplanar coupling, present in the layered system, will
tend to increase the melting temperature from (5.4)
slightly (the transition will occur, roughly speaking, when
the interplanar coupling over the 2D correlation area be-
comes of order T), but softening of the in-plane longitudi-
nal phonon modes due to bulk screening which causes a
finite compressibility of the vortex lattice will tend to
lower TM. Ignoring these offsetting and, in this 2D re-
gime with large v, small effects, (5.4) gives an estimate of
the melting transition for the stacked system. Putting in
the mean-field shear modulus and estimating the renor-
malizations due to nonlinear phonon and vortex interac-
tions to reduce p by a factor between 0.4 and 0.8 yields

od
T =(1—2) X 10

16~ A~

0 2

=(20—40 K)
(TM) 10 A

(5.5)

Note the leading field dependence of the shear modulus is
p-B, so TM will be only weakly dependent on field in

which is just the 2D result for uncoupled layers of
thickness d with the large-length scale fluctuations cut off
by the range of the magnetic interactions A, z.

In this regime, the melting temperature should be only
slightly higher than the melting temperature of a 2D sys-
tem of logarithmically interacting point vortices which
has been studied earlier by one of us. For this 2D
Kosterlitz-Thouless-type melting transition,

TM =4c 2 (5.8)

similar to Brandt' and Houghton et al. ' With
A,, /A, i=50, d = 15 A, and ki(0) = 1500 A appropriate for
Bi-Sr-Ca-cu-O, the crossover between the two regimes
will occur for B of order 3 X 10 G. For an even more an-
isotropic material, the crossover from 2D to 3D may
occur so close to H„ that (5.8) would have no regime of
validity.

As the field is decreased towards H, &
below this cross-

over, the interplanar magnetic coupling makes the system
more three dimensional and the melting temperature thus
increases towards T, . However, when B drops below
Po/A, , the in-plane interaction between vortices falls off
and TM presumably starts decreasing, eventually match-
ing onto (5.1), as is illustrated in Figs. 4 and 6. Thus, the
maximum in TM occurs for B =(t)o/A, i where T~ is
roughly given by

A,i(T~)=0. 1 =O. lyAr
)'4o

16m T ™
100 K

10 cm, (5.9)

using cL —-0.15. For a highly anisotropic material such as
Bi-Sr-Ca-Cu-O, this maximum in TM(H) may occur a few
degrees below T, . Note that, up to a constant, Eq. (5.9) is
the same criterion as the crossover to the magnetic Auc-
tuation critical regime Eq. (4.9).

The expression (5.8) for the melting temperature is
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only valid for B «H~(TM). As shown by Brandt' and
Houghton et al. ,

' there is an extra factor of
(1 B—/H, z" ) on the right-hand side of Eq. (5.8) in the
Ginzburg-Laudau regime when B is not much smaller
than H, 2" due to the reduction of the local order parame-
ter and the strong overlap of the vortex cores. The con-
dition that melting occurs at B~(T)&&Hz is readily
seen, by comparing (5.8) to (4.1), to be equivalent to being
in the XY critical regime, implying that (5.8) as written
only applies in the XY critical regime. Indeed, putting
the relation between A,i and gi from Eqs. (4.4) —(4.6) into
(5.8), we obtain an upper melting field of

(5.10)

so that, in this regime, BM «Hz and the corrections due
to overlap between the vortex cores should be minor.

At lower temperatures, outside of the XY critical re-
gime, there are two possibilities. First, if the critical re-
gion is small, as for Y-Ba-Cu-O, the melting curve will
approach H, 2"(T) as the temperature is lowered. For
Bi-Sr-Ca-Cu-O, on the other hand, where the XY critical
region should be wider, the behavior at intermediate tem-
perature can be given by the quasi-2D result of Eq. (5.5).
We will not work out details of the crossover here. The
behaviors are illustrated schematically in Figs. 2 and 5.

Note that all the constants in this section, with the ex-
ception of those in Eqs. (5.2) —(5.5), are quite uncertain:
cI could be considerably less than the value of 0.15 we
have used, although cl -—0.15 is consistent with the 2D
limit if we use, instead, the equivalent nearest-neighbor
displacement. Indeed, any estimate of melting tempera-
ture using the Lindemann criterion is very rough—
essentially just amounting to a balance of thermal and
elastic free-energy scales. A proper theory of melting
must take into account the effects of dislocations which
may be rather different for such intrinsically anisotropic
systems than for the conventional solids for which the
Lindemann criterion empirically works rather well. In
addition, it is possible that, in a disorder-free system, an
intermediate 3D hexatic phase might occur between the
vortex lattice and the isotropic fluid phase as occurs in
some liquid crystals. We leave these problems for future
investigations.

VI. DISORDER AND PINNING

So far we have mostly considered perfectly clean super-
conductors. In such an idealized system the only phase
transitions which are readily observable in transport mea-
surements are those into the Meissner phase at H=O and
T =T„or at H„(T). As mentioned earlier, the vortex
melting transitions occurring for H )H„will not strong-
ly affect the resistive behavior (except, perhaps, for
currents parallel to B) since, in the absence of disorder,
there will be a linear response to an applied current deter-
mined by the vortex mobility which will not be strongly
affected by a melting transition. Thus, in the absence of
pinning, the system will not be a real superconductor for
H )H, &, instead having nonzero Ohmic resistivity.

Any real material is, of course, imperfect and the im-
perfections will tend to pin the vortices, particularly at
low temperatures below the clean system's lattice freezing
temperature. As stated at the beginning of the previous
section, we will restrict our detailed discussion to the
effects of microscopic inhomogeneities where much of the
physics should be independent of the details of the pin-
ning. Macroscopic inhomogeneities may, however, be
more important for obtaining large critical currents. In-
termediate scale disorder, particularly microscopic
( —100-A scale) twin boundaries, will play a role qualita-
tively similar to microscopic defects, as long as their
spacing is less than or of order the intervortex spacing.
We will not make quantitative estimates of their effects
here, although (see Sec. XI) they may well be important
in some experiments on cuprate superconductors.

A vortex line will feel a locally random potential V(r)
which arises from interaction with impurities or other lo-
cal defects (probably oxygen vacancies, interstitials, or
microscopic twin boundaries in the cuprate superconduc-
tors). This will act primarily on the vortex core and is
hence referred to as core pinning; larger-scale defects also
couple to the currents around the core. For a vortex line
running roughly in the z direction with transverse posi-
tion ri(z) at height z, the pinning free energy is

Fp= Jdz V(r, (z),z), (6.1)

where the random potential V(r) is due to all the impuri-
ties within of order a vortex core size gi from the vortex
center.

As argued by Larkin and Ovchinikov, the random
forces due to even a weak-pinning potential will cause
divergent distortions of the vortex lattice at large dis-
tances. This is a result of the competition of the energy
due to the random potential which, in an only slightly
distorted volume of L, grows as (I L )', and the elas-
tic energy -KL of the displacements of order a lat-
tice constant which are necessary to optimize the disor-
der. Here K is a characteristic elastic modulus and I is a
measure of the mean-square pinning potential. For any
D &4, the disorder will dominate for length scales larger
than a pinning length LI, which scales as
Lp-(K /I )' ' ' for weak disorder (small I ). On
length scales up to LI, the system will look like a lattice
while, on larger scales, the lattice positional correlations
will be lost. How drastic will this destruction of the lat-
tice order be? The conventional calculation includes
only the effects of elastic strains; however, on length
scales larger than LI„dislocations will also appear. This
can be seen by considering the elastic energy of a disloca-
tion loop (or equivalently a dislocation pair in 2D) of size
L. Up to logarithms, this energy is also of order KL
Because the dislocation loop will induce displacements of
order a lattice constant in a volume of size -L, the po-
tential gain in pinning energy is again (I L )'~ so that
dislocations will become energetically favorable on length
scales greater than LI. Thus, on scales larger than LI„
the vortex-lattice description breaks down completely
and one is faced with either a fluid or a new nonfluid
phase: the vortex-glass phase. Nevertheless, if the disor-
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der is weak, the lattice order will persist out to long-
length scales and the energetics of the lattice Auctuations
without disorder will set the overall scale of the thermal
fluctuations.

Before studying the crossover due to pinning further,
we make some rough estimates of the effects of the pin-
ning in various regimes of the phase diagram. If we as-
sume the defects are randomly distributed, the most im-
portant quantity is the correlation function of the devia-
tion of V from its mean value, which we take to be zero.
In Fourier space, we define

V(q)V(q')=(2~) 5(q+q')1 (q), (6.2)

where the overbar denotes an average over the random
potential. Surprisingly, in most of the strongly Auctuat-
ing regimes of interest, the vortex core size, which cuts
off I (q) for high q, will drop out and only
I 0—= I (q=O) will be important. For random impurities
with one site per unit cell of size a d and fractional con-
centration nr, we estimate from the Ginzburg-Laudau
theory that I o is roughly temperature independent and
given by

2 2 CI 0 = '~

y I( a d )nl4 T —T.

'2
~

4

4~A, ~

(6.3)

where

d inT, (nz)
'Vr = (6.4)

is a dimensionless coupling constant to the impurities and
we have estimated the numerical prefactor. Note that
the effects of averaging the potential over the core
volume ( -g d ) and the temperature dependence of the
order parameter yield the expression (6.3) for I o which
depends only on A, (within the Ginzburg-Landau theory),
since the singular part of the energy density which cou-
ples to the impurities,

-d(PO/A, g )/d(lnT),

is related to A, and g in such a way that I o is independent
of g.

In the presence of thermal fluctuations, the effects of a
weak-pinning potential can be strongly reduced due to
motional averaging over the area of the thermal vortex-
line Auctuations. This will give rise to a reduction of the
high-qj components of I (q) for wave vectors greater
than 8' ', where 8'is the mean-square displacement of
a vortex line due to short-wavelength thermal Auctua-
tions as calculated in Sec. V. Similar effects have been
discussed recently by Feigel'man and Vinokur and Inui
et al. '

Other types of randomly spaced defects with high
enough density will give rise to similar behavior but with
a different I o(T). If the spacing or size of the defect is
larger in-plane than the size of the thermal fluctuations of
a vortex line &W or larger than ya, in the z direction,
the behavior will change somewhat, giving rise to
different temperature and field dependences. Large-scale
defects such as weak-link grain boundaries will yield

qualitatively different behavior; we will not explore these
more macroscopic types of pinning in detail here.

A. Effects of pinning on the vortex lattice

The effects of the pinning can be estimated in a vortex-
lattice phase by calculating the relative displacements
due to the pinning of vortices a distance r apart. We
define a fractional mean-square displacement

AD(r) = [u(r) —u(O)]' .
B

(6.5)

Bd Io
T2

(6.7)

which will apply provided W ) g~ (or the scale of the de-
fect separations) and the disorder is weak (b.D ( 1). We
thus find that, at fixed temperature, high enough that8') g~, the effects of the disorder are weaker for small
fields provided the system is in the lattice phase. The lat-

A particularly useful measure of the strength of the disor-
der is the mean-square relative displacements of nearest-
neighbor (NN) vortex lines, bD =BD(r~=rNN, z=O) For
relatively weak disorder, we can estimate AD from linear-
ized elastic theory. The dominant Fourier components of
the random potential are those near reciprocal-lattice
vectors Gi. However, thermal Auctuations of the vortex
lines will smear out the random potential over length
scales —8" thus cutting off the high-G~ Fourier com-
ponents of V. The mean-square pinning force per unit
length on a single vortex line fp, which is what deter-
mines the displacements, is given by

(f,')- f g'r, (g).
But the thermal Auctuations cut off this integral at high
momenta Q~ & W '~ yielding (fI ) —I o/O' . For tem-
peratures high enough that IV ) g~, we then obtain

2
B Io

~D(r)= J Tr[A(q)] 2 (2—2cosq r),
o qEBZ 2mB'

(6.6)

where A(q) is the elastic tensor. Since this is proportion-
al to q for small q, b,D(r) diverges for large r in D(4.
However, due to the strongly wave-vector-dependent na-
ture of the vortex elasticity, the detailed distance depen-
dence of AD will be rather complicated. When the rela-
tive distortions become of order a lattice constant, linear
elasticity theory, and thus (6.6), is no longer valid; this
occurs at length I.p. (See, however, the discussion at the
end of Sec. VII.)

We now estimate b D in various regimes to gauge the
strength of the pinning. We will ignore numerical
coefFicients of order unity. This is simplest in the quasi-
two-dimensional intermediate field regime where the lay-
ers are weakly coupled and the vortices are logarithmical-
ly interacting within each layer. In this case, the only in-
teresting field and temperature dependences arise from
the motional averaging of the random potential over an
area of order IV from Eq. (5.3), ignoring the effects of the
long-wavelength contributions to 8. This gives rise to
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tice correlation length L~ —T /B in this quasi 2D-re
gime. For numbers appropriate to Bi-Sr-Ca-Cu-O,
y=0.02 and A,~(0) =1500 A, for B =10 G and T=30 K,
we obtain a rough estimate hD =0.2ylnI from impuri-NN 2

ties which indicates that the effects of disorder can be rel-
atively strong with reasonable impurity coupling.

In the 3D regime with H, 2))B ))H,
&

and the Joseph-
son coupling between the layers dominant, the thermal
smearing has a weaker effect yielding

1 ~i B I 0

10 A., Po T2

again provided W ) g~ and b,D ((1. In this regime, the
B dependence of Lp is complicated, but at fixed T the lat-
tice will have longer-range correlations for smaller B.

(6.g)

B. Pinning near the melting transition

It is useful to obtain a naive estimate of the effects of
the disorder near the melting temperature of the clean
system, assuming it is first order so that the reduction
near the transition of the elastic constants, etc., is not too
large.

(1) Intermediate fields. As mentioned earlier, the re-
gime where the upper melting line BM «Hz is restricted
to the XY critical region. Here we can estimate I 0 by
merely using the appropriate form Eq. (4.5) for A, (T) in
Eq. (6.3); it can be readily checked that this has the
correct temperature dependence. Doing this, one finds in
the XYcritical region that, for impurity coupling,

QNN(B B ) ~2& s
—1/2

~

E
~

3v —2Q

Ol

(6.9)

with the width of the critical region E, given by Eq. (4.8)
and E=—(T —T, )/T, . The coetficient in Eq. (6.9) is likely
to be quite small, but it will be enhanced by softening of
the lattice. Note that, in this regime, the thermal Quctua-
tions of a vortex line are still somewhat bigger than (al-
though of order) gj so that Eq. (6.6) still applies. As
should have been anticipated for v= —', , Az is indepen-
dent of the reduced temperature c.. This is just because
disorder is marginal at the zero-field transition for
v=2/d. The factor

—1/2
Ex

1'koi

1
C

koAo,

is just the critical amplitude of the inverse correlation
volume. Not surprisingly, hz is just proportional to the
ratio of the impurity volume to U, . For Y-Ba-Cu-O, with

go1 -—15 A, the expression in parentheses in Eq. (6.9) is of
order one, which suggests that the lattice correlations
may not extend to very long distances near melting, as we
discuss further below —although there are clearly large
uncertainties in this estimate and the actual behavior can
vary strongly from sample to sample, depending on the
type of density of defects.

If the field is scaled by Po/g then, in the XYcritical re-
gime, the effects of microscopic disorder are independent
(up to logarithmic corrections) of the reduced tempera-
ture. Thus, all manifestations of the disorder, in particu-
lar, the vortex-glass transition which we discuss in Sec.

IX, will scale in this same way. The effects of the disor-
der will only become logarithmically weaker as T, is ap-
proached due to the marginal irrelevance of disorder at
the 3D XY critical point. This will also obtain for other
types of defects provided the spacing between them is
smaller than the correlation lengths, g~ and g, in this re-
gime.

(2) High fields. At low temperatures for which BM is
near H, 2", the softening of the lattice due to vortex over-
lap needs to be taken into account. A simple estimate
yields b,D (T~)—1/TM in this regime; thus, the effects
of the disorder become larger as B increases and TM de-
creases.

In general, then, along the higher-field melting line, we
expect the effects of disorder to gradually grow as the
field is increased, perhaps most substantially as the melt-
ing field grows from its value given by (5.10) in the XY
critical region towards H, 2" as the temperature is
lowered.

(3) Small fields. In small enough fields such that the
vortices are far apart compared to k~, the effects of the
pinning can be analyzed in terms of pinning of individual
lines. This will tend to pin the Aux lines even in the Quid
regime, and a relatively small amount of disorder should
be sufhcient to turn the low-temperature part of the low-
field reentrant Quid phase that is illustrated in Figs. 4 and
6 into part of the vortex-glass phase. A simple guess is
that the effects of disorder on the melting transition will
be weakest in this low-field regime when TM is closest to
T, . We leave more detailed investigation of this regime
for future work. The effects of thermal averaging of the
pinning due to Auctuations of the individual vortex lines
will need to be taken into account. '

VII. CROSSOVER FROM VORTEX LATTICE
TO A PINNED PHASE

We now consider how the crossover from a vortex lat-
tice to a phase dominated by pinning will manifest itself
for weak disorder, both within the vortex-lattice phase
and near to the melting transition. At this point we will
not presume that the resulting phase which describes the
long-wavelength behavior is a vortex glass; it could in-
stead be a strongly correlated pinned vortex Quid. We
will return to this issue in the next section; here we con-
sider the effects of disorder on length scales where a lat-
tice description is still appropriate.

In the presence of an applied current J normal to the
vortex lines, a bulk force is exerted on all the flux lines.
In a volume Lp, motion of the vortices by one lattice
constant in a direction normal to the current will gain an
energy FJ-JLp from the current. When this is of order
the pinning energy in the correlation volume Fp -Lp
the Aux lines will start to Aow. This yields the Auctua-
tionless weak-pinning critical current: J, JF Lp
which will characterize the onset of strong nonlinearities
in the current-voltage characteristics. Of course, with
thermal Auctuations, the dissipation will be nonzero for
J & JF due to thermal creep of bundles of Aux, which we
will discuss in more detail below. As in the Meissner
phase, a measure of the strength of the Quctuations is ob-
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D —2
P8(LJ )-TM
L

(7.1)

Thus, for T less than but near TM, there will only be ac-
tivation barriers on scales larger than gL. On smaller
scales, and at all scales above TM, the system will be
Auidlike so that there will be no real barriers, and the dy-
namics will be primarily determined by conventional
power-law critical slowing down. Close enough to TM,
however, even for arbitrarily weak pinning, gL will even-
tually become comparable to I.P. This is a consequence
of the relevance at the melting critical point of random

tained by estimating the activation barrier for Aux creep
at a current density of order but less than the Auctuation-
less critical current density. The simplest guess is that
this barrier scales as the pinning energy FP in the volume

For weak disorder in three dimensions, I'P will be
much larger than T so any additional rounding of the I-V
curve due to thermal fluctuations will be small. (Note
that, if the barriers grow more rapidly than pinning ener-
gies, ' the rounding will be further reduced. )

If the behavior is quasi-two-dimensional, on the other
hand, FI, does not grow with Lp (except perhaps logarith-
mically) so that the barriers will be smaller near J~ and
thermal fIuctuations may affect the I- V curve significantly
at temperatures of order TM. This is no surprise, since
20 systems generally tend to exhibit Auctuation effects
much more strongly than their 30 counterparts.

We now consider the effects of weak pinning near to
the disorder-free Aux-lattice melting transition tempera-
ture. The behavior depends crucially on the nature of the
melting transition in a completely clean system, i.e., on
whether it is first or second order. If, as appears likely in
three dimensions, the melting transition is first order,
then we expect that, with weak enough pinning, it will
remain so. In this case, there should be no large barriers
above TM and the resistivity will not be thermally ac-
tivated. Immediately below TM, however, the I-V curve
will suddenly become strongly nonlinear at low currents
although at currents higher than several times the Auc-
tuationless critical current JF, it will change by very lit-
tle. Thus, there will not be a gradual decrease of the
linear. resistivity to very small values; The linear resistivi-
ty will drop discontinuously at TM by at least a factor of

I' M Me ~ ™
and probably —if the low-temperature

phase is indeed a vortex glass —all the way to zero. Mac-
roscopic inhomogeneities can, of course, round out this
behavior —they would result in a percolationlike super-
conducting transition which should be identifiable.

If the pure system's melting transition is continuous,
on the other hand, the behavior will be rather different.
In this case, the elastic moduli of the lattice will vanish
for T +TM as K ——TMg a, , where gL is the corre-
lation length for translational order of the lattice which
will diverge as TM is approached. (We are assuming that
there is a critical melting transition at TM at which iso-
tropic hyperscaling relations are satisfied. ) This implies
that, for L~ ))gL, the characteristic scale of the barriers
to move regions of size I.P is of order

pinning —which acts like a random field on the lattice or-
der parameter. Because of the reduction of the order pa-
rameter, with an exponent pL, the efFective pinning
strength I —( TM —T) . This yields, via

2P~

Lt, —(K /I )' ' ', a pinning length which grows less
rapidly than gL (or actually decreases) as TM is ap-
proached. The crossover to disorder-dominated behavior
will occur when gL -Lt, at a length scale

1/(2 —
g~ )

I.~ -a,
0

with nL the critical correlation function exponent of the
melting transition. Thus, for small disorder, the resistivi-
ty will only show a large decrease very close to TM once
gL -L~. In sum, for weak pinning, the resistive drop at
TM will hence be very sharp for both first- and second-
order pure system melting transitions. A gradual drop of
the resistivity (e.g. , approximately Arrhenius over a
significant range) is thus indicative of strong effects of
pinning.

It is not a priori clear whether increasing pinning
strength will raise or lower the transition temperature
TG. For very strong pinning, the individual vortex lines
will be pinned even in what was the pure system's
vortex-Auid phase. Thus, we expect very strong pinning
to move the vortex-glass transition up closer to the onset
of the vortex-fIuid regime at H, 2". We note, however,
that for both strong and weak pinning, the change in the
vortex-glass phase boundary will, in general, depend on
the type of pinning.

In the XY critical regime (as mentioned in Sec. VI
above), the eff'ects of disorder will be approximately in-
dependent (up to logarithmic factors) of the reduced tem-
perature if the magnetic field is scaled by Hz —Polg .
Thus, for fixed pinning strength, the normalized cross-
over lengths Lz/g and Lz/a, will only depend on the
scaled field Hg in this regime (at least for fields well
above H„. )

We have implicitly assumed in this section that the
correlation length of the vortex pinning potential is less
than or of order a vortex lattice constant a, . Because of
the thermal smearing effects, this will effectively be true
near to the melting temperature but may not be true for
T «TM. In this case there is an intermediate length-
scale regime where the relative displacements of the lat-
tice due to pinning are between the core size, gi, and a„.
In this regime, for lengths less than Lp, b,o(r) grows as a
nontrivial power of the length scale, barriers will appear,
but dislocations are not yet important. We will not dis-
cuss this regime further here. Some properties in this in-
termediate regime have been investigated by other au-
thors.

VIII. VORTEX-GLASS PHASE

We now turn to the behavior at large-length scales
( )LI ) and low temperatures in the presence of a
penetrating magnetic field. The fundamental issue here is
whether a system of vortex lines pinned by the disorder
is, at low temperatures, (i) a fiuid with Pnite linear
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conductivity —albeit one which is strongly impeded by
the pinning and thus glassy as in the Anderson-Kim
theory ' —or (ii) a true superconductor with infinite
linear dc conductivity. If it is a true superconductor, this
would be a new equilibrium phase which we call a vortex
glass by analogy with spin glasses (rather than "true"
glasses which may well be just nonequilibrium fluids). In
this section we discuss some properties of such a putative
vortex-glass phase, which we assume exists for tempera-
tures below a transition at To(B).

A vortex-glass phase will have off-diagonal long-range
order of a type analogous to spin glasses ' Neglecting
gauge fluctuations, the complex scalar pair field (P(r))
will be nonzero at each point in space (except at the vor-
tex locations, where (g(r) ) vanishes), but its phase will
vary from point to point. It is this phase coherence at
distances large compared to the range of vortex lattice
order Lp, that makes the vortex-glass phase fundamental-
ly different from that which implicitly appears in the
traditional "collective vortex pinning" theories. In
these theories, the possibility of phase coherence on such
long-length scales and its effects on vortex dynamics have
generally not been considered.

Let us fix the gauge so V. A=0. In this gauge, a corre-
lation function which measures the long-range phase
coherence and its onset as the vortex-glass (VG) phase is
entered upon cooling, is

GvG(r) =
~
(y*(r')it(r'+r) & ~', (8.1)

where the angular brackets denote a full thermal average
for a given sample and a given r' and the overbar denotes
a spatial average over points r'. We expect that, in the
vortex-glass phase, the correlation function Gvo(r) ap-
proaches a nonzero constant as r~oc, whereas, in the
fluid phase, Gvo(r) falls oIF exponentially with the glass
correlation length go.

The simplest scenario for the vortex-glass order is that,
by analogy with recent theories of spin glasses, ' ' there
is a unique equilibrium state up to gauge changes. The
possibility of many states unrelated by symmetry, as in
the replica symmetry-breaking solution of the
Sherrington-Kirkpatrick model, ' will not be considered
here. In any case, we believe that arguments similar to
those for Ising spin glasses' ' imply that this is unlikely.

Unfortunately, the off-diagonal correlations manifest in
(8.1) cannot be probed directly. Vortex-glass order can,
however, be revealed indirectly by the system's elec-
tromagnetic response, as detailed below. This can be
most readily described by focusing on the vortex lines
(zeroes of g), "integrating out" the smoothly varying
spin-wave (phase of g) background. As we shall see, it is
primarily the dynamic correlations of the vortex lines
which are sensitive to the transition into the vortex-glass
phase. Evidence for vortex-glass order is probably only
present in rather subtle properties of purely static
vortex-line correlations, in contrast to the vortex-lattice
phase in the pure case in which the static correlations
directly exhibit the broken translational symmetry.
Indeed, the global U(l) rotational symmetry of the phase
of the field g(r), which is broken in the vortex-glass state,

leaves the positions of the vortex lines unchanged. Of
course, when pinning is present, the thermally averaged
vortex density will be spatially inhomogeneous in both
the Quid and the vortex-glass phases.

A. Nonlinear current-voltage response

In the Anderson-Kim theory ' of Aux creep, each vor-
tex line {or bundle of lines) is eff'ectively modeled as a sin-
gle, approximately independent, zero-dimensional "parti-
cle" moving in a random pinning potential with some en-
ergy scale U which can depend on the applied current J
but remains finite for J—+0. Thermal activation over the
barriers leads to a Aux-creep resistivity p-e ~" which
is nonzero at any positive temperature, even in the limit
of zero current. In a bulk superconductor, though, vor-
tex lines are extended one-dimensional objects and it is
essential to consider possible length dependence of the en-
ergy (or, more precisely, free energy) scale U. Indeed, as
we shall see below, if the energy grows with length scale
L„no Aux-creep linear in the applied current will be pos-
sible and the system will be a true superconductor (p =0).
To illustrate this point we consider first a single, infinitely
long, vortex line in the presence of random pinning.

A single vortex line subject to quenched impurities is
formally equivalent to a "directed polymer in a random
medium" and has been studied extensively in the recent
past. For the physically relevant 3D case, the vortex
line is believed to be in a disorder-dominated pinned
phase for any temperature and pinning strength. (For
D & 3, an unpinned phase is also possible at high tempera-
tures. ) The long-length-scale fluctuations of the pinned
line are determined by the scaling at a zero-temperature
strong-disorder fixed point. It is found numerically that
the transverse displacements L~ of a vortex-line segment
of length L„scale as

(8.2)

with an exponent /=0. 6, a value larger than that with
thermal fluctuations but no pinning, gT= —,'. The charac-
teristic free-energy cost in moving a vortex-line segment
of length L, is found to grow as Li/L, -L, ~ ', scaling
as the elastic energy of the vortex line.

As shown by Feigel'man and Vinokur, " these scaling
forms can be used to deduce the response of a single vor-
tex line to an applied current. To this end, consider a set
of low-free-energy excitations which consist of displacing
a segment of line of length L, by an amount of L~( -LP )

transverse to both the magnetic field and an applied
current, as depicted schematically in Fig. 7. These exci-
tations can be described as oriented Uortex loops (see Fig.
7) when viewed with respect to the ground-state
configuration. A typical loop with given area
S=L,L, -L~ will have free energy which grows with
size as

(8.3)

with Y a stiff'ness coefficient and g =1+(1/g). (Note the
exponent a. in this section difFers from the ratio a =A, /g
used elsewhere in this paper. ) By analogy with the drop-
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FIG. 7. An excitation of a single pinned vortex line. The
dashed line represents the initial configuration, while the dotted
line is the final configuration. The excitation may be described
as the solid vortex loop, which has been added to the dashed ini-
tial configuration, canceling the initial vortex where it is on top
of and antiparallel to it, yielding the dotted final configuration.
The applied current is assumed to be normal to the paper.

let theory of spin glasses, ' we have introduced an ex-
ponent 0~ to describe the energy dependence as a func-
tion of Lj. For the special case of a single vortex-line ex-
citation considered here, 9~=2—(1/g) = —,'.

To obtain these loop excitations from the ground state
by continuous deformation, the vortex line will typically
have to pass over free-energy barriers BL which grow at
least as fast with area as the loop energies themselves:

with p =gj /(a 8—~) and JT —Y( b /T) ' ".
Equation (8.5) indicates that the dissipative motion of

even a single randomly pinned vortex line is nonperturba-
tive in the applied current provided it is infinitely long.
Thus, it provides no linear resistivity. This should be
contrasted with the conventional Aux-creep theory. '

The notion of a vortex-loop excitation can be general-
ized to the physically relevant case of many interacting
vortex lines in a vortex-glass phase. Consider the excita-
tion sketched schematically in Fig. 8, in which a group of
vortex lines are effectively translated perpendicular to
both H and an applied current by one intervortex spac-
ing. Such an excitation can also be described as a relative
Uortex loop as depicted by the solid line in Fig. 8. Indeed,
any local excitation of the vortex lines can be described in
terms of one or more vortex loops relative to the initial
state. In 3D, a vortex-loop excitation is equivalent to
moving a plane of vortex lines spanning the loop, each by
one vortex spacing (Fig. 8). For simplicity, we will re-
strict consideration to vortex-loop excitations of size
smaller than the "bare" penetration length A,, in the ab-
sence of vortex motion. On larger scales screening effects
may enter; we will not investigate this latter regime in
any detail.

Let us denote by S the projected area of a vortex-loop
excitation as "seen" by an observer looking along the
direction of an applied current, J=Jx. The product
PDSJ/c is then precisely the energy gained from the
"magnus force" of the applied current when the loop is
created. Of interest are those particular loop excitations
which, for given area S and in each given region of the
sample, have minimal excitation free energy I'L (when

J=O). For a given area S the parallel and transverse
scales of the loop should vary, as in (8.2), as L~ -L,~,with
S =L~L, -L z. An exponent (&1 allows for the possibil-
ity of anisotropic scaling in the vortex-glass phase. A

(8.4)

E (J)—exp [ —
(JT /J)" j, (8.5)

with an exponent g~) gz. In the presence of an external
current J, however, the barriers for motion of large sec-
tions of line will be reduced since they can be decom-
posed into motion of a series of smaller sections with
length of order L~J, with each such motion lowering the
total free energy. The size L~J is determined by balanc-
ing the energy gained from the current -JLz against
"fL~". Motion of the vortex line will proceed via thermal
nucleation of loops of size L~J at a rate proportional to—B /T
e ' This motion causes phase slips which, for a
model system of many noninteracting pinned vortex
lines, corresponds to a steady-state dissipative electric
field

I.
V.

I'

I.

l

I: V.

I
~

l.
I

t.

FIG. 8. Excitation of a multiple vortex-line array. As in Fig.
7, the dashed lines are the initial configuration, the dotted lines
are the final configuration, the solid line is the relative vortex
loop, and the current is normal to the paper.
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natural ansatz is that FL will scale with the linear size
]

Li as in (8.3), except with a different exponent Oi. We as-
sume stability of the vortex glass to thermal fluctuations,
which requires 0~~0, and an upper bound is 0~ ~/2,
which corresponds to a circular loop with nonzero line
tension and no relaxation of the other vortices, an excita-
tion that is always possible, as in the Meissner case.
Free-energy barriers to create vortex-loop excitations will
also presumably scale as in (8.4), with fi satisfying

0 ~ Oi ~ gi ~ a. /2 . (8.6)

J~J(t)=
[1+( T / U) ln(r /t, ) ]""

with

(8.7)

(8.8)

With JAO, nucleation of loops with linear size Lij
(9~

such that JL JJ "fL~J are likely to be the dominant
source of dissipation, causing a phase-slip-induced volt-
age depending exponentially on current, as in (8.5). Pro-
vided that 0~) 0, so that the vortex-glass phase is stable
at TAO, it will be a true superconductor with infinite dc
linear response conductivity. The upper bounds on Oz

and gi in (8.6) give an upper bound on p, namely p ~ 1.
This bound on p arises simply from the fact that one can
certainly make circular vortex-loop excitations with free
energy proportional to their circumference. Recall that
@=1 in the Meissner phase (3.2) where /=1 for the
loops.

At this point, it is not cl ar, however, that single
vortex-loop excitations, as described above, will always
be the dominant nonlinear dissipative process in the
vortex-glass phase for small J. It is plausible that, in-
stead, 3D bundles of vortex lines might tend to dominate
the phase-slip process. Such bundles could be described
as a superposition of many vortex loops and would have
energies and coupling to current scaling with different ex-
ponents Oz and ~. In any case, we expect the exponential
I Vrelationsh-ip (8.5) to hold at low enough currents,
with the properties of the dominant dissipative processes
determining p.

The exponential current-voltage characteristic in the
vortex-glass phase leads to an extremely slow relaxation
of a remanent (persistent) current (or, equivalently, a
remanent magnetization). To be concrete, consider the
decay of a persistent current set up by suddenly changing
the strength of an applied magnetic field. At extremely
short (microscopic) times (t 5 to —10 sec), the current
will decay via a nonactivated, deterministic phase slip,
until, at to, it reaches a current density of roughly JF.
Further decay of current then proceeds by thermally ac-
tivated vortex-loop excitations at a rate dJ/cit-E(J),
with E (J) given in (8.5). Integrating with respect to time
gives a long-time decay of the form

J (t) =JT [ln(t /to ) ]

valid for J« JF. A reasonable interpolation between the
short- (t —to) and long-time limits is

B. Frequency-dependent linear response

The low-frequency behavior of the linear ac response in
the vortex-glass phase is rather subtle. Two simple argu-
ments can be made which are apparently convicting.
Firstly, if the vortices are truly pinned and cannot move,
then the vortex glass wou1d be just like the Meissner
phase with conductivity

cr(co) = ps

LCD
(8.9)

with p, =p,o the superAuid density in the absence of vor-
tex motion. Thus, it would have a finite magnetic
penetration length

XG(co)—
1

i/co~o. (co)
~

(8.10)

in the co—+0 limit. We argue below that although p, will,
in general, be smaller than p„, the vortex-glass phase
does indeed have a finite penetration length as co~0. On
the other hand, if an additional stati'c field is applied, in
equilibrium, extra Aux will penetrate the whole of the
sample since (at co=0) the limit of M/6H as 6H~O is
not zero in the vortex-glass phase. Thus, we appear to
have rather different behavior of co=0 (static field) than is
obtained by taking the limit ~—+0, and thus a noncom-
muting of the 5II—+0 and ~~0 limits.

We first consider the limit where the Ginzburg-Landau

The form (8.7) should also apply to the decay of a per-
sistent current in the Meissner phase.

When U ))T, on laboratory time scales (8.7) can be re-
placed by

J(t)=JF[1—(T/pU)ln(t/to)],

which, up to constants, is the form predicted by
Anderson-Kim Aux-creep theory. ' As emphasized in
Secs. III and IV, an essential difference between conven-
tional low-T, superconductors and the high-T, oxides, is
that, in the latter, JT is not necessarily much larger than
JF even at temperatures well below T, . Moreover, in the
vortex-glass critical regime near TG (and in the XY criti-
cal regime near T„when H=O) the ratio Jr/J~ should
be a constant of order 1. Thus, in the high-T, supercon-
ductors, which are expected to have a wide critical re-
gime, it should be possible experimentaHy to get into the
long-time limit of (8.7), (T/U)ln(t/to) ~ 1, and check its
validity. An essential feature of (8.7) is that for a fixed
range of lnt, BJ(t)/8 Int is predicted to be a nonmonoton
ic function of temperature, in contrast to the Anderson-
Kim theory. Such a nonmonotonicity has indeed been
observed in Y-Ba-Cu-0 crystals, ' although it remains
unclear whether this is the correct explanation of those
experiments. For temperatures above the crossover tem-
perature, T„=U/ln(t/to), but below the vortex-glass
critical regime where U becomes temperature dependent,
BJ/8 Int should vary as T '~". To interpret experiments
on samples bigger than A, , an analysis taking into account
current inhomogeneities due to screening, is needed. In
the linear regime, some such effects are discussed below.
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penetration length ignoring vortex motion A,, is much
larger than the intervortex spacing and the crossover
length LI, from vortex-lattice to vortex-glass behavior.
In this limit, we may ignore magnetic fields generated by
the screening currents in estimating o.(ai) and then com-
pute the frequency-dependent penetration length from
Eq. (8.10).

At any nonzero temperature, the positions of the vor-
tex lines will fluctuate, dissipating an external ac current
J(ai) and reducing the stiffness of the system, i.e., the
macroscopic p, . At high frequencies many vortices can
move on small-length scales and, especially near the tran-
sition temperature TG, p, will be substantially decreased
in all of the samples. At low frequencies, however, the
behavior is somewhat difTerent. For simplicity let us as-
sume the excitations are indeed relative vortex loops as
discussed above, which, moreover, are isotropic, i.e., (= 1

and L j -L, -S' so we may drop the l and z subscripts.
Only vortex loops of size up to

(8.11)

will respond appreciably to a linear ac current with fre-
quency ~, since the barrier for larger loops will be too
high to be crossed at rate co.

Since, in a typical region, the vortex-loop excitations of
large size L will have free energy Fl -YL ))T, they will
mostly be only very weakly i~nearly polarized by an exter-
nal current and can be ignored. Note, however, that for
any axed nonzero current J, all large excitations will be
nonlinearly polarized since 0(2; this gives rise to the
nonlinear Aux creep discussed in the previous subsection,
which is expected to be relatively homogeneous in space.
The thermally active excitations of size L, on the other
hand, i.e., those with free energy I' ~ T, can be polarized
by an infinitesimal current. However, only a small frac-
tion of the system will be occupied by such large active
excitations, the simplest expectation being that a fraction
T/YL of the excitations of size I will be active, since
we expect a constant density of excitation energies for
I'L ((YL . (It is possible that a diff'erent exponent 8
could appear here, although there is no obvious reason
for the behavior of these excitations to differ in this
respect from Ising spin glasses. '

) Thus, the large excita-
tions that respond linearly are dilute so that low-
frequency linear response behavior is expected to be spa-
tially quite inhomogeneous. This has interesting conse-
quences, some of which we will now discuss.

At low frequencies, we can make a quasistatic approxi-
mation to obtain the effective long-wavelength stiffness

p, (aI). We simply ignore all excitations with barriers
larger than T~lmo~ (i.e., loops bigger than L ) and assume
the smaller excitations are polarized as they would be by
an infinitesimal dc current. An overestimate of the effects
of the active regions can then be made by replacing each
of them by an insulating hole which can carry no super-
current. But, since large active excitations do not per-
colate, all this will do is reduce the macroscopic stiffness
by an amount of order the volume fraction of the holes.
Thus, we conclude that, as co~0, the linear macroscopic

p, is nonzero in the vortex-glass phase. At low, but
nonzero, frequency there will be corrections of the form

Rep, (ai) =p, (aI=O) 1+ C
ln co

(8.12)

due to the contributions from loops of scale L . From
the Kramers-Kronig relations we then obtain

1

into
(8.13)

This is smaller than the real part for small co thus justify-
ing the quasistatic approximation. In addition to the 6
function at co=0, the low-frequency behavior of the real
part of the conductivity is

(8.14)

yielding more excess dissipation of a low-frequency ac
current than occurs even in a dirty Meissner phase (see
Sec. III).

If we can treat the vortex-glass system as being homo-
geneous on scales of order A,„then we can obtain the ac
penetration length from Eq. (8.10) yielding a finite A, G(ai)
as co~0. At temperatures of order half TG, A-G(co=0)
will be some not too large multiple of k, since the contri-
bution from small-scale vortex loops will reduce p, by an
amount of order unity. Near TG, A, z will diverge. We
discuss its behavior in Sec. IX.

More careful considerations show that, even if we take
into account inhomogeneities of the vortex glass on scales
of order k, and larger, the ac component of an
(infinitesimal) applied magnetic field at a typical point a—xyA, G(~)
distance x from the surface will fall off as e as in
a Meissner phase, with A, G(0) finite. Nevertheless, be-
cause of the inhomogeneities, the results of some experi-
mental measurements will, as for spin glasses, ' not
reAect this typical behavior.

Let us consider an ac field-penetration measurement
through a slab of superconductor of macroscopic trans-
verse dimensions and thickness D. The uniform dc back-
ground field and temperature are chosen to make the sys-
tem a vortex glass with typical penetration length A, G(0).
A very small low-frequency ac field B (co) is applied above
the slab and the resulting spatially averaged ac penetrat-
ing field

B~(ai) =B (ai)g~(aI, D)

is measured some distance below the slab.
The important feature here is the measuring of the spa-

tially aueraged penetrability g (e1,D) over a large region
(but, of course, not large enough to iriclude the effects of
fields which go around, rather than through, the slab).
We must thus consider the effects of the rare regions in
which the field can penetrate locally. We consider fre-
quencies low enough that L ) iLG(0). Since we are in-
terested in bulk properties we consider only the limit
D ))L„;in the opposite limit, a two-dimensional descrip-
tion is needed (see Sec. X). In the absence of a perturba-
tion, there will be inhomogeneous static and fluctuating
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fields near the surface of the slab due to vortices within
A,, of the bottom surface. Indirect polarization of those
vortices by interactions with vortices near the top surface,
which directly couple to the applied field, can give rise to
a locally penetrating ac field. This occurs where there is
an active excitation with characteristic relaxation time
r(1/co which runs from the top to the bottom surface.
A roughly circular loop of size D will typically have a
barrier much too large to respond at frequency co since
D ))L . The probability that the barrier of such a loop
will be anomalously small is probably of order e
These excitations will thus be so rare that we can neglect
them. Elongated loops which can be excited by a number
of roughly independent smaller loops, of size L„,will, on
the other hand, play an important role. An elongated
loop of length -D and width -L has a small probabili-
ty of being active, PD, but, if it is active, it has a barrier
for creation which is not too large. Such an excitation
can cause fields of order B(co) to penetrate locally. A
crude estimate of PD is as the product of D/L„roughly
independent parts of each section of length L„,each with
probability PI . Since PI will have a power-law depen-
dence on L„, Y, and T, but probably not D [i.e.,
PI —T/(YL )], the dominant dependence on D and L
is exponential:

PD -exp[ bD/(L /—lnL )], (8.15)

with b a constant. Thus, averaging over a large region of
the slab will give a penetrability which is dominated by
these elongated active loops:

yp(co, D ) —exp[ D /XG (co ) ]—, (8.16)

[with In(inca) factors ignored]. It thus appears, at least at
this level of approximation, that there will be two
different measurable penetration lengths: one divergent
one, A, G(co), measured from the penetration of the aver-
age magnetic field, and the other finite one that can be
obtained from the screening of a dc applied current
which will be dominated by a surface layer offinite thick-
ness A, G(co —+0). A more detailed analysis of these and re-
lated issues will be left for future research.

IX. VORTEX-FLUID —TO —VORTEX-GLASS
TRANSITION

A. Scaling behavior

Let us now consider the scaling behavior near the tran-
sition from the vortex-Auid phase to the vortex-glass
phase which, for dimensionality D=3, may occur at
nonzero temperature in the presence of a penetrating
magnetic field and random pinning. At least for strong
disorder, this transition is expected to be continuous
(second order), in contrast to the vortex-
lattice —to —vortex-Auid transition in the pure case which
may be first order. The width of the vortex-glass criti-
cal regime, however, should depend sensitively on the

with an effective penetration length for the average field
which diverges for co~0 as

(8.17)

strength of the disorder. As discussed in Sec. VII, the
critical regime will be very small (or nonexistent if the
transition is first order) in the weak-pinning limit, when
the vortex-lattice order persists out to long scales LI, . If
the transition is continuous, it should nevertheless obey
the same scaling laws as in the more accessible strong-
pinning case. It is possible, however, that for weak
enough pinning, a first-order glass-to-liquid transition
may occur due to first-order lattice melting in the pure
case. We will not analyze this latter possibility here.

As the vortex-glass critical temperature TG is ap-
proached, the vortex-glass correlation length gG, which
determines the long-distance behavior of the correlation
function (8.1), diverges. Since the system is intrinsically
anisotropic, one might expect that correlation lengths
parallel and perpendicular to the field would have
different critical exponents. However, the replica-matrix
field theory appropriate to the static critical phenomena
at the vortex-glass transition in high dimensions (D ) 6),
as derived by Lubensky and John, ' ' has anisotropies of
a sort which can be eliminated by a simple rescaling of
lengths. The asymptotic critical regime for D=3 thus
may well be isotropic.

We then expect a single exponent v describing the
divergence of the vortex-glass correlation length via
gG

—~T —
TG~

' and a characteristic relaxation time
rG, which exhibits critical slowing down with rG-gG.
(Anisotropic critical scaling with v, Wv~ would compli-
cate, but not fundamentally change, the following
analysis. ) Above the upper critical dimension of the glass
transition, D„=6, v= —,', and z=4 as for conventional
spin glasses. ' In 6—c dimensions, v and z both in-
crease. The exponent z, however, increases by less than
in an Ising spin glass' suggesting that in 3D it may be
less than the Ising value z&„.„g

——6+1. Thus, a value in the
range 4—7 appears most likely. Note that, if TG is close
to T„as occurs in a small applied magnetic field, the
temperature range of the vortex-glass critical regime will
be reduced (up to logarithmic factors) in proportion to
(T, —TG). Currents, lengths, and frequencies should all
be appropriately scaled since T, is really a multicritical
point; here we generally assume the applied field is large
enough that these considerations may be ignored.

(1) Nonlinear current-voltage response. We now con-
sider the general scaling of current density J and electric
field E in terms of the exponents v and z. We will consid-
er E and J along the x axis (for simplicity, ignoring the
possible Hall angle between E and J) with H= 8 along
the z axis.

Now since E=—BA/Bt and A enters as an inverse
length in (2.1), E presumably scales as 1/(length Xtime).
The appropriate scaling combination is thus Eg'G

+".
Similarly, we have J- df /B A and, assuming hyperscal-
ing, f scales as (length), suggesting that J scales as
(length)' . The appropriate scaling combination is then
JgG '. Thus, we obtain the scaling ansatz

~gZ+1 g (JgD —1)

for temperatures above (+) and below ( —) TG, where
6+(x) is an appropriate scaling function. This is
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equivalent to the scaling form (4.18) obtained for H=O,
except here z is different and the appropriate correlation
length is gG. For the vortex-glass transition, the scaling
functions have the same qualitative behaviors as for the
zero-field transition (4.18) for large and small arguments,
except from (8.5) we have @ (x)—e '~ for x ~0 with

p possibly less than unity.
At the vortex-glass transition temperature, a power-

law I- V curve is expected, as in (4.19), with

E J(z + i )j(,D —1) (9.2)

This can serve as a useful criterion to locate the transi-
tion; it has been so employed in Ref. 22. Notice that, at
the upper critical dimension D=6 where z=4, Eq. (9.2)
yields Ohmic behavior at TG. This is consistent with
mean-field theory for which we expect a linear conduc-
tivity that jumps discontinuously to infinity at TG, pre-
cisely as in the mean-field treatment of the pure H=O
normal-to-superconductor transition.

Implicit in this scaling analysis, both above and below,
is that measurements are performed in a regime where
the current Aows through the bulk of the sample, with J
essentially uniform, rather than being screened out of the
bulk and Bowing at the surfaces only. This requires that,
above the transition, the screening length

A, (co)-[co cr(co)~ ]

with u the frequency of measurement, be larger than the
sample's smallest dimension (e.g., film thickness). The
relevant criteria in the nonlinear regime below the transi-
tion are more subtle and we have not investigated them in
detail.

(2) Linear conductivity. The low-frequency linear con-
ductivity near the vortex-glass transition should scale as
in (4.11), with g replaced by gG. The complex scaling
functions 4+(x) entering in (4.11) behave essentially as
described there, except with ln~ corrections to the con-
ductivity in the vortex-glass phase as in (8.12)—(8.14).
Note that, at TG, both the real and imaginary parts of the
conductivity diverge as co

'+ ' ' as in Eq. (4.12),
which again correctly matches the mean-field result at
a=6, z=4. The low-frequency phase angle again should
scale as in (4.13) and (4.14) but with diff'erent exponents z
and v. For example, for z=5, as estimated by Koch
et al. , the critical phase angle ' should be P =2~/5.

In this section we have ignored the possible screening
effects of an applied current that were discussed in Sec.
VIII for the vortex-glass phase. In the vortex-Quid phase,
the dc conductivity is finite and the penetration length in
the limit of low frequencies is thus infinite so that a well-
defined uniform dc conductivity exists. However, as the
vortex-glass phase transition is approached, cr(co)
diverges for low frequencies. At the characteristic fre-
quency QG-gG', the ac penetration length, assuming a
uniform system, varies as

[~ (II )]
—i/2 g(D —2)/2 (9 3)

This becomes very large near TG, but grows less rapidly
than the correlation length gG in three dimensions.
When A, G(AG) becomes comparable to gG, which sets the
scale of the inhomogeneities in the local conductivity, it

is certainly no longer appropriate to treat the system as
uniform.

In this asymptotic regime, one must explicitly consider
the effects of inhomogeneity on the transport properties.
Whether this changes the scaling forms or the exponents
for measurable quantities, or even destabilizes the or-
dered phase, eliminating the transition, we leave as an
open question. The behavior in this regime is somewhat
related to the asymptotic zero-field critical regime in
which A, =g (see Sec. IV). In any case, if the field is high
enough and the disorder strong enough that both a, and
Lp are much smaller than A, (TG ), there will be a wide re-
gime in which these effects can be ignored. Below TG,
however, the efFect of finite current penetration on both
linear and nonlinear transport measurements must be
taken into account in large samples.

(3) Behavior as TG~T, . In the XY critical regime at
small fields and close to T„ the vortex-glass transition
field B& and the width of the vortex-glass critical region
will (up to logarithms) both scale with the zero-field
coherence length as BG —g as does the melting line in
the absence of disorder (5.10): thus,

[T,—TG(H)] —H (9.4)

w 1th v{) 3
the zero-fie 1d exponent

(4) Small fields. For fields much less than Hz, the dy-
namics of a 3D vortex glass (and a reentrant vortex-
glass —to —liquid transition, which is possible at very low
fields, H~H, i, if the disorder is weak enough) may both
be affected by whether or not vortex lines can cross and
recombine in the time scale probed by a measurement.
This relates to questions of vortex entanglement as stud-
ied by Nelson and Seung. ' When the vortex separation
a, ))g, there can be a large barrier for vortex recombina-
tion. If these processes are too slow to occur, the dynam-
ic universality class of both the vortex-glass phase and
the transition may well change. We leave these subtle
and interesting, but currently probably not experimental-
ly relevant, questions for future work.

B. Theoretical evidence for the transition

So far, we have not produced any evidence that a
vortex-glass phase actually occurs in the 3D systems of
interest. Indeed, since the broken symmetry is XY-like
and it appears' ' that a conventional XY spin-glass
phase does not exist for T&O with short-range interac-
tions in 3D, the natural guess would be that the vortex-
glass phase is also unstable to thermal fluctuations in 3D.

Nevertheless, although this is largely an open question,
we mention two suggestive pieces of evidence for the ex-
istence of a stable 3D vortex-glass phase at low tempera-
tures. The first (already discussed by one of us in Ref. 11)
is the existence of such a phase in two dimensions for a
system of vortex lines. Although this represents a
difFerent dimensional continuation than the traditional
one which preserves the XY symmetry but not the 1D
character of the vortex lines, it is nevertheless highly sug-
gestive. Indeed, even a single vortex line in a random po-
tential is in a "glassy" phase with nontrivial response as
discussed above in Sec. VIII. We also note that, if the
disorder does not depend on the z direction (direction of
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applied H), then the system is isomorphic to a 2D system
of interacting bosons ' in a random potential at T=O, a
system that has a (localized) glass phase in any dimen-
sion.

Another consideration is the nature of the symmetries
of various 3D systems: Ising spin glass, XY spin glass,
XY' gauge glass (which is a lattice Landau-Ginzburg mod-
el with a quenched statistically isotropic random gauge
field ), and the anisotropic vortex glass of interest with a
dynamic gauge field. At first glance, the Ising system is
radically difFerent from the others in having only a
discrete rather than a continuous symmetry. Neverthe-
less, as first pointed out by Villain, the continuous de-
grees of freedom in an XY spin glass can be integrated
out in favor of discrete vortex variables which interact
via long-range couplings. Thus, it must be some property
of the interactions among the discrete degrees of free-
dom, rather than the spin-wave fluctuations, which des-
troys the XY spin-glass phase in 3D (assuming that it is
indeed unstable at any T) 0). The gauge glass and the
vortex glass both have lower symmetries than the XY
spin glass since they lack the discrete f~P* symmetry
(improper rotation in spin space or time-reversal invari-
ance). Perhaps, these systems with lower order-
parameter symmetries have a stronger tendency to order
(see below). Here, again, the continuous degrees of free-
dom can be integrated out in favor of discrete vortex de-
grees of freedom' —in these cases with no obvious
remaining symmetries. In the case of a vortex glass with
a fluctuating gauge field, the resulting interactions be-
tween the vortices are short ranged. Whether or not this
appreciably distinguishes it from the extreme type-II case
with a static B field and infinite-ranged vortex interac-
tions remains unclear at this point. Note, however, that
both with and without a fluctuating gauge field the vortex
glass is anisotropic due to the external field, in contrast to
the other models. The observation above on the case
with z-independent disorder suggests that anisotropy may
tend to enhance ordering.

Numerical simulations ' of a 3D isotropic gauge glass
with quenched random magnetic field show, perhaps
surprisingly, that it is behaving more like the Ising than
the XY spin glass and thus may well order at a nonzero
TG. A more convincing theoretical resolution of this im-
portant question may have to wait for high-quality
Monte Carlo or high-temperature series work on simple
models of the vortex glass. In the mean time, as we dis-
cuss in the final section of this paper, the experimental
evidence in favor of a vortex-glass transition ' —at
least when the magnetic fluctuations can be ignored —is
starting to mount up.

If a vortex-glass transition does not occur in 3D at pos-
itive temperature, then we expect the low-temperature
behavior will be controlled by a zero-temperature
vortex-glass transition with a glass correlation length

gG
—1/T '. This will result in a characteristic time scale

and linear conductivity both diverging for T~O as

r-exp(kg&~/T)-exp(bT '),—1 —
QV3

with the barrier exponent P~ 1 and b a constant. The

current density where the crossover from Ohmic to non-
linear I-V behavior occurs should, in this event, vanish
for T~O as

in contrast to the Jx —T at low temperatures in the usual
flux-creep theory. ' In this case, much of the low-
temperature behavior will be qualitatively similar to that
discussed in the next Section.

X. 20 VORTEX-GLASS REGIMES

In the absence of Josephson coupling between the lay-
ers, a layered superconductor can still undergo a super-
conducting transition in zero field to a phase which is a
superconductor in the planes. This is true despite the
fact that a "single-layer" sample will, strictly speaking,
not have a positive-temperature superconducting phase
due to out-of-plane magnetic fields which screen out the
logarithmic interactions between vortices beyond a length
A.zD=21 /d, with d the layer thickness. (For thin-film
"superconductors, "

A,2D is often macroscopic, ' so, in
practice, one can have a good superconductor. ) This
out-of-plane screening eFect will not happen in a system
of stacked layers with no Josephson coupling; instead, the
vortices in one layer will interact logarithmically at all
distances.

For temperatures below the 2D Kosterlitz-Thouless
transition TK~, the linear resistivity of such a system will
vanish. However, as in the 3D Meissner phase, there will
be nonlinear dissipation due to vortex nucleation: in this
case vortex-antivortex pairs. Since the energy of a vortex
pair grows logarithmically with separation, this gives rise
to nucleation barriers which grow logarithmically with
the current density and thus to power-law I-V curves'

(10.1)

with 5( T) decreasing with increasing temperature and
taking on the value 3 at TK~ (it jumps to unity for
T ) Tzv). '

In a magnetic field above H, &, the field-induced vor-
tices will destroy the 2D Kosterlitz-Thouless behavior—
although 2D vortex lattices are possible in a clean sys-
tem. In the presence of disorder, a layered system can
behave, over some range of temperature, as a stack of al-
most independent 2D vortex glasses. In strictly 2D su-
perconductors, however, there is no positive-temperature
vortex-glass phase. Rather, there will be a glass correla-
tion length gG which diverges only at zero temperature as

v2
gG

—T '. The vortex-glass phase thus only truly exists
at T=O when the vortex positions are completely frozen.
(Note, we neglect the interesting issue of quantum fiuc-
tuations of the vortices. ) On scales smaller than g'G,

there will be barriers for vortex motion which may again
grow logarithmically (they can grow no faster than 1ngG )

giving rise to a range of nonuniversal power-law I-V
curves. For small currents, however, the scales probed
will be longer than gG and the system will act like a vor-
tex Quid with finite Ohmic conductivity. In 2D, the
characteristic length scale LJ, probed by a nonlinear
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current density J, is LJ-eT/(Jpod). Thus, the current
density where the crossover from Ohmic to nonlinear be-

(1+v2)
havior occurs should vanish as Jx -(T/gG )-T ' for
T~0, or, depending on subtleties about how the current
lowers the barriers, even more rapidly with temperature.
This contrasts to the usual collective flux-creep picture
where Jz —T. In practice, Jz can be taken as the
current density at which the ratio E(J)/J is, say, twice
the value of the linear (J-~0) resistivity. At low temper-
atures, there will also be a larger characteristic current
density scale JF (as in an ordered phase) at which the on-
set of nonactivated vortex flow occurs.

If the barriers do grow logarithmically with go, this
will give rise to a slightly faster than Arrhenius tempera-
ture dependence of the (linear) conductivity

( T) (b)lnT))/T

At low enough temperatures, however, the magnetic
interactions between vortices on different layers of a lay-
ered system or the residual Josephson coupling between
layers will yield a crossover to 3D vortex-glass behavior.
How this crossover occurs in various regimes we leave for
future investigations.

XI. KXPKRIMKNTS

In this section we discuss several pertinent experi-
ments. We consider first experiments on YBa2Cu307
(Y-Ba-Cu-0) —the best studied high-T, material with re-

gard to macroscopic electromagnetic properties.
A. Y-Ba-Cu-O

Before discussing transport and related measurements,
we comment on the relevant experimental parameters.
The zero-field transition temperature T, for Y-Ba-Cu-0
is typically near 90 K. A series of low-temperature
penetration length measurements by a variety of tech-
niques have found the in-plane penetration length at
low temperature to be A, i(T =0)= 1400 A. The tempera-
ture dependence of k~ up to = —,'T, is less than for con-
ventional superconductors suggesting that the amplitude
A, jo of the penetration length

' 1/2

XJ( T) AJQ T.
in the Ginzburg-Landau regime may be rather smaller
than, say, the conventional dirty limit result A, io -—0.6A, (0),
so that we expect A,~o~ 800 A. A penetration length an-
isotropy parameter y =Xi/k, =0.2 has been found at low
temperatures. Unfortunately, there is no good mea-
surement of the coherence length. Below T, in the pres-
ence of fluctuations it is, in fact, poorly defined. The ap-
propriate g from aboue T„which is conventionally used
in the Ginzburg-Landau theory and remains well defined
with fluctuations, cannot be directly measured. Thus,
there is considerable uncertainty in the Ginzburg-Landau
gio and hence also )(. Assuming a )(=100, the width of
the critical region as given by Eq. (4.8) is e.„=0.1, and
thus the conventional Ginzburg criterion [described just
below Eq. (4.8)] would yield E„=4X10 for specific-
heat experiments roughly consistent with the data. In
any case, much of the phase diagram of Y-Ba-Cu-O will

be in the Ginzburg-Landau regime and the anisotropy is
weak enough that two-dimensional effects will not play a
large role.

There are two natural sources of small-scale disorder in
Y-Ba-Cu-0; oxygen vacancies or interstitials, for which
the estimates in Sec. VI should apply, and semimicro-
scopic twin boundaries which might appear in epitaxially
grown films. Provided the spacing between twin
boundaries is less than the vortex lattice constant
a, =(Po/8)'/ and they are randomly located, the quali-
tative effects will be similar to those of vacancies, al-
though correlations between the locations of the defects
in successive planes may lead to some differences. We
first consider the apparent phase boundary for onset of
high conductivity as the temperature is lowered in a
strong magnetic field ))H„(H„=200G at low T).

Traditionally, dc magnetic susceptibility measurements
are used to infer H, z. However, in the presence of fluc-
tuations, the mean-field transition H, z ( T) is just a cross-
over line, near which the resistivity will begin to drop,
and a significant diamagnetism will develop. ac suscepti-
bility measurements ' on single-crystal Y-Ba-Cu-0 have
revealed significant structure at temperatures well below
this crossover line, at least for strong fields (H ~ 10 kG).
Specifically, the response to an additional small ac field at
frequency co, applied parallel to the dc field, was found to
exhibit a sharp diamagnetic signature in Rey((o) and a
corresponding peak in Imp((o) at a fairly well-defined "ir-
reversibility" temperature T;„(co). The resulting irrever-
sibility line plotted in the H-T plane lies well below the
conventionally estimated H, 2" line and shows significant
frequency dependence, particularly at high fields. '

These ac susceptibility measurements are essentially an
indirect measure of the resistivity of a sample. For
T & T;„.the vortex-line mobility, which is proportional to
the sample resistivity, is sufficiently large to allow addi-
tional vortex lines to diffuse fully into and out of the sam-
ple (or the region of the perturbing field) in a period of
the ac field. For T ~ T;„,Rey(co) become more diamag-
netic since additional vortex lines diffuse too slowly to ap-
preciably penetrate the sample and dissipate the screen-
ing currents. Detailed interpretation of these measure-
ments, though, depends on the experimental geometry.

The regime below the crossover H, 2" line, but above
the irreversibility lines, can be conveniently described as
a vortex liquid' (except perhaps at low fields for T ~ T,
in the XY critical regime). Conventional fiux-creep
theory ' would predict that, when probed at sufficiently
low frequencies, this vortex-liquid regime would persist
down to T=O, i.e., T;„((o)~0 in the co~0 limit. In con-
trast, if there is a low-temperature vortex-glass phase,
T;„(~)will approach the glass transition temperature TG
in the limit co~0. More specifically, scaling of the con-
ductivity as in Eq. (4.11) implies that

~ T ( ) T ]
1/[(z+2 —D)v)

irr ~ g

for small co. (Note that this scaling is not b, T-co' ' be-
cause of the geometry effects. )

So far, the only direct experimental probe of the vortex
correlations that has been used is imaging of the flux lines
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after Bitter decoration with magnetic particles. Initial
bitter decorations on field-cooled single-crystal Y-Ba-Cu-
0 samples showed only short-range (-2—3 lattice spac-
ings) order. As with all Bitter decorations, one is re-
stricted to low fields (in this case, 10—200 G) where the
vortex-line separation is larger than the penetration
length, so that the magnetic Aux tubes on adjacent vor-
tices do not overlap too much. Later experiments on
different crystals revealed longer-ranged order in twin-
free regions of the samples, suggesting twin boundaries
were responsible for the disorder in the earlier results.
In the latter crystals, the vortex-lattice was surprisingly
immobile at temperature T=4 K when the field strength
was varied or turned off. Dolan et al. attributed this,
very plausibly, to microscopic pinning defects such as ox-
ygen vacancies.

In a film geometry, as used by Dolan et al. , 8 =H
which is fixed while the sample is cooled. As can be seen
From Fig. 4, the disorder-free melting transition is reen-
trant at fixed small 8. As the system is cooled, it will try
to form a lattice at the high-field melting transition which
will be in the XY critical regime. Here, the effects of mi-
croscopic disorder can be weak, since large thermal Auc-
tuations of the vortex lines are effective at averaging it
out, and a relatively long lattice correlation length
-a, /AD as estimated by (6.8) for microscopic pinning
may occur. As the temperature is decreased, the effects
of the disorder increase as shown in (6.8). However, once
the lattice is formed, the vortex lines cannot easily rear-
range. Thus, if the sample is cooled at a reasonable rate,
the vortex lines will fall out of equilibrium, with the mi-
croscopic pinning effectively freezing in position the quite
long-range lattice order which was established near T, .
The apparent long-range-ordered lattice phase, as seen in
the Bitter decorations on untwinned samples, would then
be a metastable state. The true equilibrium low-
temperature phase, as originally argued by Larkin and
Ovchinikov, does not have long-ranged crystalline order
and may well be a vortex glass (see below).

For fields low enough that a reentrant Quid appears,
the eventual freezing transition will take place at lower
temperatures (see Fig. 4) where the effects of disorder will
be much larger, as shown in (6.8); the lattice correlations
will thus be of much shorter range. Preliminary evidence
for this has been seen by Dolan et al. at very low fields.

We now turn to much higher fields, H ~ 5 kG, where
most of the transport measurements have been carried
out. If the disorder were indeed unimportant near the
pure system's vortex-liquid to lattice freezing tempera-
ture and this transition were first order as expected, one
would not find significant precursor effects in properties
such as transport above this temperature. However, the
irreversibility lines measured by ac susceptibility (as de-
scribed above) can vary appreciably with frequency, par-
ticularly at high fields and frequencies [e.g. , at 50 kG,
T„,(co) drops by = 3 K when co is reduced from 3.0 to 0.1

MHz (Ref. 66)]. Disorder is thus apparently playing a far
more significant role here at high fields than in the low-
field Bitter decorations. This is entirely consistent with
the field dependence in (6.8), which shows the increasing
effect of microscopic disorder with increasing field near

the melting transition and outside of the XY critical re-
gime. In addition to the field dependence, the crystals
used in the susceptibility and most of the transport mea-
surements are believed to have a higher twinning density
than in the "best" decoration samples. Thus, pinning
from twins may further increase the importance of disor-
der in these samples.

Neither of the experiments described above shed
significant light on the fundamental question of whether
or not a true equilibrium superconducting phase is
present at low temperature for fields above H„; i.e., in
the presence of pinning is a zero-resistance vortex-glass
phase present or is there always a small, but nonzero,
linear resistance as in conventional Aux-creep theory?
Recent nonlinear current-voltage (I V) measu-rements on
0.4-pm-thick epitaxial films of Y-Ba-Cu-0 by Koch
et al. offer preliminary evidence of a vortex-glass phase.
As described in Secs. IV C and IX, the presence of a con-
tinuous normal-to-superconducting phase transition
should leave a distinctive signature in the nonlinear I-V
characteristics. At the transition temperature TG, a
power-law I-V is expected at low current densities, as in
(4.19) and (9.2). For T near TG, the I Vchar-acteristics
should approach this power law for currents bigger than
Jxi in (4.15), crossing over to Ohmic behavior at low
current for T & TG, and to an exponentially vanishing
voltage for T & TG. Precisely such behavior was found
by Koch et al. with a voltage appearing to vanish more
rapidly than a power of J for T & TG. The I-V data were
found to scale as predicted by (4.18) and (9.1) near TG,
and critical exponents z and v were extracted. The values
obtained for the higher-field data (H =20—40 kG), z =5
and v = 1.8, are consistent with expectations for the
vortex-liquid —to —glass transition (Sec. IX). Note that
the absence of any discontinuities in the low current data
appears to rule out all but a very weak first-order transi-
tion.

Very recent data on thin films, 250—500-A thick,
show that the signature of the transition in the I-V
characteristic is washed out, consistent with theoretical
expectations that a TAO vortex-glass phase can only ex-
ist in bulk (3d) samples.

It is instructive to examine the length scales probed in
the Koch et al. measurements. At current density J,
one is effectively probing the system on a length scale

Lq = (ck~ T/Jgo)'~

as seen from Eq. (4.18). (More correctly, because of the
intrinsic anisotropy and that due to the field, LJ is rough-
ly the geometric mean of two lengths, parallel and per-
pendicular to the field, whose ratio is likely to be of order
y. ) For H=40 kG, the range of current densities mea-
sured at TG corresponds to lengths from about 200 to

O

5000 A. (Thus, suggesting why the transition is washed
out for 250 —500-A thick films. ) Deviations from the
critical power law are not evident, even at the highest
current densities, indicating that the vortex-liquid to
glass critical regime is very wide, extending down to
length scales comparable to the inter vortex spacing
(-200 A at 40 kG). At H=5 kG, deviations from
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power-law behavior are seen at currents corresponding to
0

a length of about 600 A, roughly equal to the intervortex
separation. This feature of the data suggests that, in
these films, disorder is playing a strongly dominant role,
destroying the vortex-lattice translational order on a
scale of a few lattice spacings.

Very recent nonlinear I-V data on single crystals
show features which are not inconsistent with a vortex-
glass transition, but with a critical regime which is much
narrower than in the films studied by Koch et al. At
H=70 kCx, the I-V curve at the apparent transition tem-
perature shows only a narrow regime of low currents
which could be consistent with the expected power law.
This occurs only for currents corresponding to lengths LJ
greater than about a micron, or roughly 75 times the in-
tervortex spacing. This length may thus correspond to
the crossover length Lz from lattice to vortex-glass criti-
cal behavior as discussed in Sec. VII—although the data
may also be consistent with a weakly first-order transi-
tion. Further study of such very clean samples will be in-
structive.

It is possible that the differences between the I-V data
on films and crystals are due to very different twinning
densities. The crystals are believed to have twins on the
micron scale, whereas, due to the epitaxial growth, the
films might possibly have twins with spacing of order 100
A which would effectively act like microscopic pinning.
Clearly more work is needed here. (Note, a recent paper
by Marchetti and Nelson has interpreted the data in the
fluid phase of Ref. 60 in terms of widely spaced strong
pinning sites impeding the vortex ffow. )

Another important experiment which can, in principle,
distinguish between a vortex-glass phase and Anderson-
Kim "ffux creep" is the decay of a remanent (persistent)
current. In the vortex-glass phase a persistent current is
predicted to decay as

J(t) =J~[I+( T/U)ln(t /t, ) ]

from (8.7), with U roughly temperature independent for
T below =0.5 T&. This form implies that, for a fixed
range of lnt, —BJ/Bint is a non monotonic func-tion of
temperature, decreasing as T ' " above a crossover tem-
perature T„=U/ln(t/to). This is in contrast to the
Anderson-Kim theory which predicts an exponential de-
cay of J(t) for temperatures above T„. Magnetic relaxa-
tion data by Yeshurun et al. ' on Y-Ba-Cu-O crystals are
consistent with a logarithmic time decay over the range
from 200 to 4000 sec, measured for all temperatures
below 80 K in a 600-G field. Moreover, a striking non-
monotonicity is seen in —BJ/0 lnt with a peak at a cross-
over temperature -20 K. The data are consistent with
the form predicted in the vortex-glass phase, (8.7), with a
value of U in the range 200—300 K. Further relaxation
experiments on other materials and over a wider range in
time and sample size are clearly desirable, especially in
order to distinguish between this interpretation and the
more conventional one given by Yeshurun et al. '

An important measurement that has not yet been done
is to measure the frequency-dependent linear conductivi-
ty over a wide frequency range near the vortex-glass tran-

sition to compare to the scaling forms proposed in Sec.
IVB. Evidence for a divergent time scale in the linear
conductivity which diverges at the same temperature as
the nonlinear data indicates the phase transition would
provide extra evidence for a true vortex-glass transition.
In particular, it would help to rule out effects due to mac-
roscopic inhomogeneities which, similar to Sec. VIII,
affect the linear and nonlinear conductivity in rather
different ways.

The magnetic field scale of the vortex-glass transition
found by Koch et al. is roughly consistent with being a
small fraction of H~, i.e., B& =co/0/2vrgj with co of or-
der 10 if we use /~0=10 A. In the XI' critical region,
this is consistent with the glass transition occurring near
to where the lattice melting transition would be in the ab-
sence of disorder. In the region near to T, we expect that
(To —T, )-H' ', with v= —', due to critical ffuctuations.
Some curvature of the phase boundary is indeed seen in
the Koch et al. data consistent with this behavior. The
phase boundary (presumably separating vortex-glass and
liquid phases) found by Worthington et al. is also con-
sistent with a (To —T, )-H' ' dependence, as are ear-
lier experiments which measure various other crossover
lines.

It is important to note that the data so far, while
strongly suggestive of a vortex-glass transition, have not
probed the regime in which the magnetic fluctuations be-
come important, which occurs when A, o-go (Sec. IX).
Thus, a rounding of the liquid-to-glass transition and a
destruction of the vortex-glass phase itself by magnetic
fluctuations has not been ruled out, although there is no
particular reason to expect that this will occur.

B. Bi-Sr-Ca-Cu-0

We now turn to experiments on Bi,Sr,CaCu~O,
(Bi-Sr-Ca-Cu-0) which shows strikingly diff'erent resistive
behavior in magnetic fields. Indeed, in modest fields of a
few tens of kilogauss, Bi-Sr-Ca-Cu-0 does not become a
better conductor than good copper until the temperature
is below 30 K, a factor of 3 below the zero-field transi-
tion at T, =85 K.

We first estimate the relevant Ginzburg-Landau pa-
rameters. Bi-Sr-Ca-Cu-O is far more anisotropic than
Y-Ba-Cu-0 with an apparent anisotropy of
y=A, ~/A, , &

—,
' . We use y= —,

' in the estimates below.
Direct measurements of the in-plane penetration length
have not been performed, and preliminary indirect evi-
dence from muon-spin resonance, which measures the
root-mean-square variations in the local magnetic field
that are proportional to 1/A, for a weakly fluctuating
vortex lattice in which the muon does not significantly
perturb the vortex locations, would yield the surprising
conclusion that, at -20 K, X~-5000 A. We will see
below that an alternative interpretation of this data is
perhaps somewhat more plausible.

Another indirect measurement of A.~ near T, has been
made by Martin et al. ' who observe that the linear resis-
tivity just above T, in zero field fits well a two-
dimensional Kosterlitz-Thouless form for uncoupled lay-
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ers. This is eminently reasonable since the in-plane corre-
lations must grow to distances -g "(T,)/y before the
interplane Josephson coupling causes three-dimensional
order. From this data, ' and the universal relationship
between A, (T, ), the layer thickness d = 15 A, and T, in
two dimensions, one extracts A,(T, ) =4000 A. From a fit
to the Aslamasov-Larkin fIuctuation resistivity at higher
temperatures, Martin et al. ' find a 2-K suppression of
the true transition T, from the mean-field transition
TBcs, essentially the width of the resistive transition.
This suggests that the Ginzburg-Landau critical ampli-
tude is A,~O-600 A, not inconsistent with Y-Ba-Cu-O, but
hardly consistent with the naive interpretation of the
muon-spin resonance data mentioned above. Note that a

0
A, ~o of several thousand A would have given rise to an ex-
tremely broad resistive transition in zero field, so is quite
inconsistent with the resistivity data.

Although the zero-field resistive transition in
Bi-Sr-Ca-Cu-0 is rather sharp (comparable to Y-Ba-Cu-
0), the behavior in a field is quite different. Palstra
et al. have found that, in fields above a few kG, the
linear resistivity appears approximately Arrhenius over a
wide temperature range, down to below 20 K at 100 kG
with activation energies decreasing from —1000 K at 1

kG to -300 K at 100 kG.
Frequency-dependent susceptibility data reported by

Gammel yield the temperature dependence of a relaxa-
tional frequency of the vortices which is again close to
Arrhenius with similar field-dependent barriers to those
found in the resistive data although deviations from Ar-
rhenius law are seen. At the lowest frequency of 10 Hz,
the vortices do not respond below about 26 K in 10 kG
and 19 K in 50 kG, while at the highest frequency of 10
MHz, the temperatures are -70 and 50 K, respectively.
The distribution of relaxation frequencies inferred from
the ac susceptibility at a given field and temperature is
rather broad, as expected for glassy behavior, although
its dependence on the parameters has not yet been ana-
lyzed.

Given the weak Josephson coupling between the layers,
which will be particularly ineffective at high fields (see
Sec. V), a natural interpretation of these data is in terms
of approximately independent sets of point vortices in
each layer. These vortices will be strongly affected by
disorder at low temperatures and thus tend to form a
stack of weakly coupled 2D vortex glasses. As described
in Sec. X, each individual layer has a transition only at
zero temperature with a relaxational time diverging with
an Arrhenius law or perhaps slightly faster as

e+bl»&l&&. The field dependence of the barrier is rath-
er complicated. However, we expect that, as the field is
lowered, the enhanced magnetic coupling between the
layers and the increased local order parameter g will tend
to make the barriers grow, consistent with the experi-
ments. ' ' We leave a detailed analysis for future work.

Evidence for a somewhat-faster-than-Arrhenius behav-
ior for the characteristic time is found in the ac suscepti-
bility data: Gammel fits r —exp(1/T' ) [which could
correspond to a 3D zero-temperature vortex-glass transi-
tion with gv3= —,

' as in (9.5)], but the data also fits to a
power-law divergent time at a positive-temperature 3D

glass transition with TG =14 K at 50 kG increasing to
-24 K at 5 kG. This latter behavior is what one would
expect when the three-dimensional coupling between the
layers comes into play, which it will do at higher temper-
atures in smaller fields. The crossover between two- and
three-dimensional regimes at a fixed -3 kG as suggested
by Eqs. (5.5) and (5.8) is consistent with the data.

A natural scale for the characteristic temperature in
high fields (but ((H,2") is given by estimating the 2D
vortex-lattice melting temperature in the absence of dis-
order. For TM = 15 K, Eq. (5.5) yields A,i( TM )

=1500—2000 A, consistent with Y-Ba-Cu-0 and the data
of Martin et al. ' near T, if we assume a rather fIat tem-
perature dependence of A, (T) at low temperatures. Note
that the relatively large activation barriers indicated by
the transparent data are evidence for quite strong correla-
tions within each layer, since the core pinning energy of a
single one-layer vortex is at most only of order 200 K,
even if a hole is punched in the film. Thus, we expect the
characteristic temperatures to be determined by the
correlation yielding TG ~ TM.

Further evidence for the role of vortex correlations
could be obtained from nonlinear I-V curves. As dis-
cussed in Sec. X, appreciable nonlinearities will be ex-
pected due to suppression of barriers when the length
scale probed by the current density LJ —(ck&T)/Jgod in
two dimensions (with J the 3D current density) becomes
of order the (2D) glass correlation length gG. Thus, at
low temperatures, the characteristic current for non-

1+v~ .
linearities J~ scales as T/gG which vanishes as T in
the 2D regime. By contrast, traditional Aux-creep mod-
els assume a temperature-independent .characteristic
length for vortex creep yielding J~ —T. Operationally,
Jz can be taken as the current density at which the ratio
E/J is, say, twice the value of the linear, Ohmic (J~O)
resistivity. Note that, at low temperatures, as in an or-
dered vortex-glass phase, there is another large charac-
teristic current scale J~ for onset of strong vortex How.
This will act as an approximately temperature-
independent apparent critical current at low tempera-
tures.

At smaller fields, the interlayer couplings will play a
more dominant role, increasing TG, and causing a cross-
over to 3D behavior.

In very small fields B—50 G, Bitter decoration shows a
well-correlated Aux lattice in carefully prepared sam-
ples, as for Y-Ba-Cu-O. In such small fields the mag-
netic interlayer coupling is dominant, so that the behav-
ior is three dimensional and the differences between
Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-0 should be much less pro-
nounced.

This leaves us with the puzzle of understanding the
muon-spin resonance (pSR) data on Bi-Sr-Ca-Cu-O. 7O

What is effectively measured here is the inhomogeneity in
the local fields (in a fixed applied field ~4 kG) averaged
over the lifetime ~„=2X10 sec of the muons. Several
effects can decrease the measured inhomogeneity AB.
Disorder, which causes the vortices in each layer to be
pinned independently of those in other layers, gives rise
to some suppressions [by a factor -(d/a, )'~ ] as does
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motional averaging due to vortex motion on time scales
However, thermal vibrations of vortex lines by

-a, about quasiequilibrium positions will only suppress
AB by relatively small amounts. Thus, neither of these
effects appear to be sufficient to reduce EB by the factor
~20 found in the experiments at temperatures ~ 15 K.
Another effect, which certainly appears to occur, is lo-
cal distortions of the vortex positions around the charged
muon. Because of its quasi-two-dimensionality, these dis-
tortions are expected to be much larger in
Bi-Sr-Ca-Cu-0 than Y-Bi-Cu-0 and complicate the
analysis of the pSR data for Bi-Sr-Ca-Cu-Q. Thus, we
leave as a puzzle the apparent discrepancies between the
estimates of A, , which may well be due to large differences
between the types of samples used.

XII. CONCLUSION

We have seen that much of the data on Y-Ba-Cu-0 and
Bi-Sr-Ca-Cu-0 can be qualitatively and sometimes semi-
quantitatively explained in terms of the theoretical frame-
work established here and in earlier papers. More experi-
ments, in a variety of regimes of temperature, field, and
anisotropy are clearly needed. It is especially important

to make nonlinear transport and frequency-dependent
linear susceptibility or conductivity measurements on the
same sample since differences between samples appear to
be potentially quite large. In addition, modifying the pin-
ning in a controlled way would be especially instructive.

Finally, we note that many of the fluctuations effects
which arise in high-T, superconductors also arise in oth-
er "weak" superconductors, such as films, granular su-
perconductors, and artificially layered materials. Further
investigations of these other types of materials, where pa-
rameters are better known and may be more easily con-
trolled, are clearly called for.
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