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Density of states in LazCuo4+~

A. Gold
Physik Department, Technische Universitat Mu'nchen, 8046 Garching, Germany

A. Ghazali
Groupe de Physique des Solides, Universite de Paris VI dk VII, 75251 Paris, France

{Received 1 November 1990)

We describe the excess holes in the Cuo2 sheets of La2Cu04+y as a two-dimensional hole gas in a
quantum well in the presence of negatively charged impurities. We calculate the density of states
with a multiple-scattering approach. We discuss the broadening of the impurity band with increas-
ing y, which corresponds to an increasing hole concentration. The spectral density, which describes
for vanishing hole concentration the Fourier transform of the squared wave function, is evaluated.
We compare our results with recent measurements of La&Cu04+~ with y & 0.007.

I. INTRODUCTION

The electronic properties of superconducting
La2 Sr Cu04 and LazCu04+y are theoretically not well
understood. ' However, it is widely believed that the
transport properties are determined by two-dimensional
Cu02 sheets. LazCu04 (x =0) is an antiferromagnetic
insulator in which the magnetic order is destroyed by a
few percentage of holes. For a review, see Ref. 2.

Holes are created in La2Cu04 by doping with Sr
(La2 „Sr„Cu04) or by annealing in Oz (LazCuO&+z). Su-
perconductivity is only present if the hole density is
larger than a critical hole density N3, . For the phase dia-
gram of La2 „Sr„Cu04, see Ref. 3. %'ith increasing hole
concentration, an insulator-metal transition takes place
at a certain hole concentration. In the insulating phase
the resistivity is strongly temperature dependent. ' Re-
cent experiments on the temperature-dependent conduc-
tivity and the frequency-dependent dielectric constant
of La2Cu04+ with 0.001(y (0.007 have been inter-
preted as an insulator-metal transition in a two-
dimensional semiconductor. At the three-dimensional
hole concentration N3 =7 X 10' cm (y-0.007) the
static in-plane dielectric constant was increased by a fac-
tor 4 compared to the static (extrapolated) dielectric con-
stant at zero doping: e —30. The static out-plane dielec-
tric constant was nearly independent on the doping con-
centration and gave evidence for the two-dimensional
character of the transport. The critical three™
dimensional hole concentration N3, was estimated as
N3 )7 X 10' cm . Previous measurements of the
frequency-dependent dielectric constant of lightly doped
La2Cu04 have been discussed in Ref. 6 and the interpre-
tation given in Ref. 7 has been criticized. For
N„(N, (N3g La2Cu04+y is expected to exhibit metal-
lic properties. Superconductivity is only found for
N3 )N3, ~ However, for y )0.01, the samples become in-
homogeneous in oxygen content and one has to use
La2 Sr„Cu04 to study the large doping regime. ' '

Therefore, experimental data for N3, are not available for

La2Cu04+ . The experimental results ' found for
La2 Sr Cu04 indicate N3, -N3, with N3, —5 X 10
cm (x -0.05). The possibility of a transition from an
insulator to a superconductor for zero temperature was
discussed in Ref. 9 for thin films made of DyBa2Cu307.
More experimental work is needed to determine N3, and

For small doping densities the transport properties of
semiconductors are determined by shallow impurities.
The experimental results ' on LazCu04+ are in a dop-
ing regime (X3 (X3, ) where overlapping effects between
shallow impurity states could be important. Impurity
states for La2 Sr Cu04 have also been discussed within
the t —Jmodel. '

Impurity bands for low doping have been proposed
from an analysis of photoemission studies of the high-T,
material Bi2Sr2CaCu208, see Fig. 9 of Ref. 11. For large
doping, a band-tail description is more adequate. High-
energy electron-energy-loss spectroscopy' and photo-
emission spectroscopy' of La2 „Sr„Cu04 and other
high-T, material" ' suggest such a behavior. However,
the Fermi-liquid picture, which is behind the concept of
shallow impurity states (where the binding energies scale
with the effective rydberg), which we use in our calcula-
tions, has been criticized by Anderson. ' For the high-T,
materials, the concept of impurity bands in the frame-
work of a spin-polaron theory was recently discussed by
Mott. ' However, he did not specify the dimensionality
of the impurity band. A polaron picture for La2Cu04+4+y
was discussed in Refs. 7 and 17.

A direct proof of the two-dimensional transport in the
normal state (T) T, =90 K) of superconducting copper-
oxide films (GaBazCu307) came from magnetoresistance
measurements. ' It was found that only the magnetic
field perpendicular to the Cu02 planes contributed to the
magnetoresistance. From the experimental results in the
insulating phase and the normal phase, ' we conclude
that a model with confinement in one dimension must be
used to describe the electronic properties of the copper
oxides.
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We have studie)d the electronic density of states and
impurity bands in two-dimensional semiconductors. '

The experimental results ' ' motivated us to apply our
theoretical results to LazCu04+ . The paper is organized
as follows. In Sec. II we describe the model. The results
are presented and discussed in Sec. III. The conclusion is
in Sec. IV.

II. MODEL AND THEORY

The excess oxygen in LazCu04+y gives rise to holes
and negatively charged impurities. We assume that the
charged acceptor occupies lattice sites in planes which
are between the CuOz planes. The distance between

0 0

CuOz planes is dc„a =6 A. An upper bound of 3 A for
2

the charge distribution (half-width) of the holes perpen-
dicular to the Cu02 sheets was determined in experi-
ment. From this experimental information we propose
the following model: The holes are confined in a quan-
tum well of width I. and the impurities are located at the
edge of the quantum well, see Fig. 1. The model is de-
scribed as a two-dimensional hole gas in the presence of
negatively charged impurities. For low-impurity concen-
trations, the charged impurities give rise to bound states
and if the impurity concentration increases, the overlap-
ping effects between bound states become important and
result in an impurity band and eventually in a merging of
the impurity band with the valence band.

We calculate the density of states (DOS) of the disor-
dered two-dimensional hole gas by using the fifth
Klauder approximation. Exchange and correlation are
neglected and the valence-band edge of the free-hole gas
is at energy E =0. The DOS is given as the sum over the
wave vectors of the imaginary part of the Green function
(the spectral density). In this paper we use h/2m. =l.
The results are presented in units of the effective Rydberg
(1 Ry*=me /2@1 ). m is the hole mass and eL is the
dielectric constant of the host material and they define
the efFective Bohr radius in the system a =el /me . Our
numerical results are for La2Cu04+~ with m =2m, and
eL =31.0 (a*=8.2 A, 1 Ry*=28. 3 meV). m, is the

electron mass in vacuum.
For the calculation we need, as an input, the Fourier

transforms of the hole-impurity interaction potential
V„(q,z, ). q is a two-dimensional wave vector. z,. is the
distance of the impurity plane from the quantum-well
edge. For the two-dimensional system, V„(q,z;) is writ-
tenas '

V„.(q, z;)= — Fl(q, z;) .
2me

EL Cf

The form factor Fl(q, z, )for a q. uantum well with infinite
barriers describes the finite confinement effects and was
calculated in Ref. 22. For Eq. (1) we assumed that the
charged acceptors can be described as point charges.

The two-dimensional impurity density X;, which is ac-
tive in scattering, is related to the two-dimensional hole
density N in our model by

N;=2N . (2a)

N3 =N /dc„o (2b)

We use the notation of Ref. 6 and refer in our numerical
results to N3. In terms of the quantum-well parameters,
we study a system with L =dc„o and L a/*= .017. Im-"2
purities (density N;) are located at the edges of the quan-
tum well (z, =0 and L) to simulate interstitial impuri-
ties. This corresponds to a quantum well with impuri-
ties at z; =L, and an impurity density 2N, , see Fig. 1.

The factor 2 comes from the fact that impurities are lo-
cated on both sides of the Cu02 planes, see Fig. 1. In
principle, one also has to sum over the impurity layers
which are further away from the considered CuOz plane.
However, because of the larger separation, the bound
states due to these remote impurity layers are weakly
bound and would slightly modify the valence-band edge.
We emphasize that, in a bulk sample, the condition of
charge neutrality is fulfilled with Eq. (2a) due to the su-
perlat tice str ucture.

The three-dimensional hole concentration 1V3 is defined

by

high - Tc quantum well

III. RESULTS

A. Density of states

Cu02

N

Cu02 '„Cu02

N N. N

~dcuo2~
= z. 2N.

In Fig. 2 we show the DOS versus energy (E) for five
different doping concentrations. Also indicated is the
Fermi energy eF at temperature zero, assuming that the
spin degeneracy is lifted. We conclude from Fig. 2 that,
in the experimental available doping range (8 X 10'
cm & N3 & 7 X 10' cm ), the impurity band in

La2Cu04+~ is very broad. For the width I of the impur-
ity band, we find

I =(1.8 Ry*)[N3/10' cm ]'

FIG. 1. We show schematically the model for the high-T, su-

perconductor (Cu02 planes and acceptors) together with the
quantum-well model.

For N3=3X10' cm the impurity band has already
merged with the valence band. The critical density N3„
where the impurity band merges with the conduction
band, is about N3, -2 X 10' cm
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FIG. 2. Density of states (DOS) vs energy E for various hole
concentrations and impurities located at the edge of the quan-
tum we11. The Fermi energies cF are indicated by arrows.

It is a characteristic feature of our model with N, =2N
that the Fermi energy is located near the center of the
impurity band. Mott' argued that the Fermi energy is
lying in the lower Hubbard band due to a finite compen-
sation Ko. Our argument is based on the superlattice
structure of the high-T, material.

If we take our value for N3, -2X10 ' cm as the
actual one and if we compare this value with the experi-
mental result '"' N3, )7X10' cm, we conclude that
the mobility edge is located in the valence band and that
the Fermi energy crosses the mobility edge in the band-
tail regime. We mention that X, (or X3, ) defines a Mott
criterion: X,', a =0. 13.' However, the und:rlying
physics is quite different from the one in the original ar-
gument of Mott. In two dimensions a Coulomb impuri-
ty always has a Anite binding energy even in the screened
case ' and N, is determined by the vanishing of the gap
between the impurity band and the valence band. In con-
trast, the derivation of Mott for the critical concentra-
tion uses the vanishing of the binding energy due to
screening when the electron density increases.

A weakly screened electron-impurity interaction poten-
tial is used in our calculations. This is justified by the in-
sulating behavior of the samples found in the experi-
ments. We use a fixed hole density N=1.0X10 cm
(which corresponds to N3 = 1.7 X 10' cm ) for the
screening function in order to reduce screening effects. '

The binding energy E~ of a single impurity at the edge
of the quantum well is about 1.5 Ry*, see Fig. 2. We then
conclude that confining effects are important for a quanti-
tative understanding of bound states in La2CuO4+y.
With the efFective Rydberg in LazCu04+, we get for the
binding energy of a single impurity E~ =42 meV, which
is in good agreement with experimental results. '

The total number of states per unit area in the impurity
band for spin degeneracy equal to 1 is given by the im-
purity density N, =2N. The three-dimensional DOS is
written as p3(EF)=p(s~)/dc„o . We estimate the width

2

of the impurity band (as half-ellipse) via X; —vrp(EF )I"/4.
The small DOS p3(E~) —10 '/eV cm at the Fermi energy
for N3=1.5X10' cm found in experiment indicates

that the impurity band must be very broad: I =38 meV
—1.4 Ry*.

B. Spectral density

with e =a */2. In this case the binding energy is Ez =4
Ry* and the expectation values (r") are given by
(r) =a*/2 and (r ) =a* /4. For %3=5 X 10' cm
the spectral density found numerically and shown in Fig.
3 can be fitted by

~%'(k)~ 1/(1+k a )

1.0
LL

4J
CO

II

0.5

(o) N3= 5x 10 cm

(b) N3= 3x l0 cm
(c) N3= 1 x10 cm

17 3

1

ko

FIG. 3. Spectral density A(k, E=E~)/P(k =O, E =cF) vs
wave number k for various hole concentrations. The dotted line
represents 1/(1+ k a ) with o.= 1.0a, see text.

Recently, we have studied the spectral density A (k, E)
versus the impurity density for impurities located in the
center of the quantum well and versus z, for Axed im-

purity density. We have shown that, for vanishing im-
purity density, the spectral density is given by the Fourier
transform of the squared wave function of the bound
state. The studies of the spectral density versus impurity
concentration provide information about overlapping
effects.

In Fig. 3 we show A (k,E =8~) versus wave number
for four different doping concentrations. The normalized
spectral density depends on the doping concentration.
The increasing width at half maximum of the normalized
spectral density with increasing hole density as shown in
Fig. 3 indicates the importance of overlapping effects.

For vanishing impurity density the spectral density de-
scribes the wave function V(k) in the k space:
A (k, E) ~%(k)~ . In the limit of isolated impurities, the
1s bound state in an ideally (I. =0) two-dimensional sys-
tem (z, =1./2=0) is described by 0'(r) ~ exp( r/a) and—

~e(k)~ ~1/(1+k a )
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FICx. 4. Spectral density 2 ( k, E = —0.4 Ry*) /

3 (k =k*,E = —0.4 Ry*) vs wave number k for various hole
concentrations. k* is the wave number where A(k, E = —0.4
Ry* ) has a maximum. The dotted line represents
42(ka*) /(1+k'P')' with @=1.85a*, see text.

with +=1.0a', see the dotted line in Fig. 3. We con-
clude that (r ) =a —8.2 A. This is in agreement with es-
timates for the orbit ao in the Cu02 plane from experi-
ment: a0=8+2 A. The larger value of (r) =a* com-
pared with (r ) =a "/2 for the ideal two-dimensional sys-
tem is due to the larger binding energy for the ideal two-
dimensional system.

In order to get a better understanding of how overlap-
ping effects change the spectral density, we study A (k, E)
for E———', Ry*, the energy of the 2p+ bound state. The
spectral density versus wave number for E = —0.4 Ry* is
shown in Fig. 4. With increasing impurity density the
spectral density changes dramatically due to overlapping
effects. The 2p+ bound state for the ideal two-
dimensional system is written as

~q/(k)~ cc(ka") /(1+k p )

with P=3a*/2, (r) =3a*, (r ) =81a* /8, and the
binding energy is Ez =(4 Ry" )/9. The dotted line in Fig.
4 represents

~1((k)i 42(ka*) /(1+k p )

where p=1.85a'. We conclude that, for N3=5X10'
cm, the spectral density for E = —0.4 Ry* can be in-
terpreted as a 2p+ state.

The larger spectral density at small wave numbers

( ka *(0.2) in the numerical result for N3 = 5 X 10' cm
is presumably due to hybridization effects with the 2s
state with E&-0.35 Ry*. The spectral density of the 2s
bound state for an ideal two-dimensional system is finite
for vanishing wave number, see Table I in Ref. 26. For
N3 ) 1 X 10' cm, hybridization effects (overlapping
effects) of the 2p+ with the 2s state and the ls state have
dramatically changed the spectral density. With increas-
ing impurity density, strong hybridization of all the states
( 1s, 2s, 2p+, . . . ) occur and for N3 = 5 X 10' cm the
spectral density for E=EF = —1.2 Ry* (Fig. 3) and
E = —0.4 Ry (Fig. 4) are very similar.

C. Discussion

In our model for the impurities, we assume that the ac-
ceptors can be described as positively charged point
charges. The exact nature of the acceptor is not yet es-
tablished. For the calculations we used a very simple
model (a quantum-well model with infinite barriers) with
one band (the valence band) and with parabolic disper-
sion. Therefore, our model cannot compete with more
refined band-structure calculations where, however, dis-
order effects have been neglected. It is well known that a
better model should include a second 3d copper band, for
a review see Ref. 11. The charge-transfer gap between
the 2p O band and the 3d Cu band is about 2 eV-71
Ry, see Ref. 29. We do not expect that the 3d Cu band
seriously inAuences the impurity band near the 2p 0 band
edge.

The high-T, materials are naturally layered systems
and should be described as superlattices. Superlattice
effects are neglected in our model. We believe that these
effects could change the binding energies of the bound
state but the qualitative features of our model are prob-
ably correct.

It is shown in Fig. 2 that the Fermi energy moves
slightly to higher energies with increasing hole densities.
In the photoemission experiments"' it was found that
the Fermi energy is in the gap, in agreement with our cal-
culation, and moves only slightly with doping. Exchange
and correlation [X,(kF, EF )] have been neglected in our
calculation, but it is well known ' that these effects shift
the valence-band edge to negative energies. This shift in-
creases with doping. The numerical calculation done for
silicon metal-oxide-semiconductor structures can be
written as

X„,( k, FE)F=E, +E,
withE: (0 ~ 71 Ry+ )(Na +2)0 428

and E, = —0. 12 Ry*.' For N3=5X10' cm we get

X,(k~, eF ) = —0.26 Ry* .

The real Fermi energy for N3 =5 X 10' cm would be
located at

c.~= —1.2 Ry* —0.26 Ry*= —1.46 Ry* .

The small increase of the Fermi energy as seen in Fig. 2 is
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compensated by exchange and correlation and we expect
that, the Fermi energy does not change very much with
doping. We would like to mention that the calculation in
Ref. 30 was done for free electrons. We expect that, for
localized holes the effects of exchange and correlation are
smaller than for free holes.

We have studied the spectral density. Due to the in-
creasing hybridization of the 1s state when the doping
density increases (see Fig. 3), we expect that ( r ) for the
1s state increases with increasing doping. This is because
the excited bound states (2s, 2s, 2p+) have larger (r )
than the 1s state. Therefore, we expect that the polariza-
bility also increases with increasing doping as found in ex-
periment.

For a more detailed analysis of the polarizability, one
needs to calculate the dielectric function which is more
involved. Our conclusion is based on the spectral density
and the density of states and a direct comparison with the
measurements ' cannot be made. In the photoemission
experiments the DOS is directly determined. The sensi-
tivity of this method is not yet sufhcient to get very de-
tailed information on the DOS in the low-doping regime.
However, we would like to mention that the density of
states at the Fermi level is an important parameter for
high-T, materials. A discussion on the importance of the
density of states and the spectral density for theories of
the high-T, materials can be found in Ref. 31.

For N3 ( 1 X 10' cm, the normalized spectral densi-
ty is nearly independent of the doping concentration.
This result indicates that the width of the impurity band
(see Fig. 2) is determined by Coulomb potentials with lo-
cally different strengths and these give rise to locally
different binding energies. Overlapping effects of wave
functions are expected to change the spectral density.
Therefore, we believe that overlapping effects are not yet
very important for densities X3 ( 1 X 10' cm . We con-
clude that the width of the impurity band for
N3) 1X10' cm is determined by overlapping effects
and Coulomb potentials with locally different strengths.

The DOS of the free- (0) hole gas in two dimensions forI =2ple 1s

po(EF)=8.4X10' /eVcm

We find

p3(EF ) =1.4X 10 /eV cm

From Fig. 2 we estimate p(EF)-p (Ez)/20 for
X3 1 5 X 10' cm and we get

p3(E~)-0.7X 10 '/eV cm

which is in reasonable agreement with the estimate from
experiment [Ref. 6(b)]:

p3(eF ) —10 '/eV cm

This agreement between theory and experiment for the
DOS at the Fermi energy for %3=1.5X10' cm sup-
ports our argument that the impurity band is very broad
for X3 = 1.5 X 10' cm

From the magnetic-field dependence of the binding en-
ergy, one gets information about the extension of the
wave functions of bound states. The analysis performed
in Ref. 6(b) with theoretical expressions from Ref. 32
gave localization lengths which are about 10 times larger
than estimated from the polarizability at zero field. This
discrepancy might be due to the large width of the impur-
ity band, see Fig. 2, and the application of the isolated
impurity limit might be inadequate.

IV. CONCLUSION

We conclude from our calculations that, in high-T,
materials, impurity bands (with large band width) are
present for small hole densities. At large hole densities
the impurity band has merged with the valence band. We
believe that our work indicates that, in high-T, materials
with small doping densities, disorder is an important
quantity for a correct description of the density of states
at the Fermi energy: The Fermi energy is located in the
gap due to the renormalization of the valence band be-
cause of disorder.

Our theoretical results (the existence of an impurity
band for small doping density, the density of states at the
Fermi energy, the weak dependence of the Fermi energy
on the doping density, and the location of the Fermi ener-
gy in the gap) are consistent with experimental results on
high-T, material for the temperature-dependent conduc-
tivity, the frequency-dependent dielectric constant, the
photoemission spectroscopy, " and the high-electron
electron-energy-loss spectroscopy. '
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