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We use a variational Monte Carlo technique to study the ground state of the two-dimensional
Hubbard and t- J models on a square lattice. We use a trial wave function that allows a
continuous description of the paramagnetic, antiferromagnetic, and superconducting phases,
as well as the coexistence of these phases, with no a priori constraint on double occupancy.
The phase diagram of both models is given for intermediate coupling (U = 10t). 1Ve show
that the apparent discrepancies between the two models, that appeared in previous variational
Monte Carlo studies, are not present when this su%ciently good variational wave function
is used. The two models are in good qualitative agreement. We find that except at half
filling a pure antiferromagnetic phase does not exist but is always in coexistence with a d-wave
superconducting phase, and is followed by a pure d-wave superconducting phase at doping up
to b 0.3. The staggered. magnetization and the superconducting gap are measured, and a
comparison with other analytical or numerical results is made.

I. INTRODUCTION

The discovery of high-T, superconductivity, and
the observation by Anderson that the two-dimensional
Hubbard model can b e of some relevance to t hese
compounds has led to a renewal of interest in under-
standing the nature of the ground state of this model.
Another model that was also proposed was the so-called
t-J model, first introduced as the strong-coupling limit
of the Hubbard model, and that later proved also to be
able to describe the two-band structure of the high-T,
compounds. 4 5 One question of crucial interest is the in-
terplay of superconductivity and antiferromagnetism and
whether these two phenomena appear in these models
under their standard form or under more subtle arrange-
ments (spin liquids, flux phases, or others).

All the approaches of these strong-coupling problems
involve approximations, and it is sometimes dificult to
sort the artefacts due to the approximations from the true
features of the model. In this paper we try to ascertain
the conclusions obtained by various authors (Yokoyama
and Shiba, Gros, Lee, and Feng, and ourselves) within the
framework of a variational Monte Carlo (VMC). The
VMC method provides variational upper bounds for the
ground-state energy, which can be considered exact up to
the eventually residua, l bias due to finite-size efkcts. Be-
yond the conclusions on the energy of the ground-state,
other conclusions on the nature of this state (short- and
long-range correlations and order) are much more diffi-
cult to draw and can only be the result of a whole set of

presumptions.
Using the VMC method Gros, Yokoyama, and Shiba

studied the t-J model. Two types of ground states were
mainly studied: a commensurate antiferromagnetic wave
function with a wave vector Ii = (x, vr), and a d-

wave superconducting BCS-type wave function. The
former describes a state with a staggered magnetization
and no superconductivity, whereas the latter describes a
superconducting state with no long-range magnetic or-
der, although it exhibits some short-range antiferromag-
netic correlations. Using VMC, Grosis and Yokoyama
and Shiba have shown that, for the t-J model, close
to half filling the antiferromagnetic phase is higher in
energy than a d-wave superconducting phase. These
results are consistent with small repulsion renormaliza-
tion calculations (which have nevertheless recently been
questionedi ), which find a d-type pairing away from half
filling. But such results seem contradictory with
the VMC results on the Hubbard model in a related
range of parameters (on this model at half filling the en-

ergy per particle of an antiferromagnetic wave function is
F = —0.401t, whereas it is E=—0.244t for a d-wave wave
function and away from half filling at 6=0.11 one has
E = —0.6431 for antiferromagnetism and F = —0.6341
for superconductivity ).

This contradiction can be solved only in two ways: ei-
ther the Hubbard and t-J models describe, in this range
of parameters, very diferent physical systems, or the
variational subspaces that have been explored are too
small to describe the real ground state.
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It was guessed for the t-J model by mean-field theory,
that close to half filling the d-wave wave function was un-
stable towards antiferromagnetism, which was checked
numerically by projecting a variational superconducting
resonating valence bond (RVB) function to simulate the
presence of a staggered magnetic field. ~ This suggested
the possibility of a restricted region of coexistence of an-
tiferromagnetism and superconductivity close to half fill-

ing and that a pure superconducting or antiferromagnetic
wave function was too restricted a variational space. In
order to check if.a similar behavior could also occur in
the Hubbard model, we have introduced a variational
wave function that includes superconductivity and an-
tiferromagnetism in a unique variational space. It was
found that close to half filling there was indeed the coex-
istence of antiferromagnetism and superconductivity in
the Hubbard model. Later this wave function was stud-
ied at half filling for the t-J model and was shown to
provide a rather good description of the ground state of
the system. 2o

Here we will use this variational wave function, which

provides a su%ciently large variational space and gives

good energetic results for both the Hubbard and S-J
model, to try to make a more quant, itative comparison be-
tween the two models at intermediate U for a wide range
of dopings. In this framework we compute an estimate of
the magnetic and superconducting order parameters. Fi-
nally we compare this optimized wave function with other
proposals (incommensurate antiferromagnetism and flux
phases).

II. MODELS AND TRIAL WAVE FUNCTION

We use the two-dimensional Hubbard model on a
square lattice, with hopping restricted to nearest neigh-
bors,

IIhUb: —S c + cj (y + U nj ynj

IO) = Pleo), (4)

where P is a projector that modifies the weight of config-
urations with doubly occupied sites, and ~@o) is a model
wave function that ensures the fermionic antisymmetry,

For the Hubbard model, we will take a prefactor of the
form I = g ", where g is a variational parameter
and N~ is the number of doubly occupied sites. More
refined prefactors have been studied by Yokoyama for
the Hubbard model but will not be considered here for
simplicity (such an improvement can change slightly the
variational energy but not qualitatively the physical con-
tent of the wave function).

For the t-J model the constraint of no double occu-

pancy has to be enforced exactly. This can be achieved
wit, h the same kind of variational wave function but with
a projector P such that P = 0 if Nd g 0 (formally this
corresponds to the limit g ~ 0). In the following we

will therefore use the same ~go) for the Hubbard and t J-
models, with a Gutzwiller projector (g~' for the Hub-

bard madel) or a complete projector (enforcing Nd = 0 )
for the t-J model.

The nature of ~go) depends on the expected long-range
behavior. We will here use the wave function of Ref. 11,
which includes paramagnetism, antiferromagnetism, and
superconductivity in a unique variational space. Instead
of pairing two free electrons of opposite spin, we pair
together two quasiparticles describing the excitations of
the antiferromagnetic phase. We therefore have

I@o) = (»+»d', rd' k, t)10)

We compute, by the usual Mont, e Carlo integration
technique, the average value of H with a trial wave

function ~Q),

& = (&I&l@)/(@I@)

For strongly correlated fermions, ~Q) is usually taken to
be of the Jastrow-Gutzwiller type,

where r connects two nearest neighbors on the lattice,
and c;,ct respectively destroys (creates) an electron

with spin cr at site i and n; = c,. c; . U is the on-site
Hubbard repulsion (U ) 0), and t the hopping pararne-
ter. In the following we will take C = 1, which gives for
U = 0 a bandwidth of 8, and express all energies in unit, s
of t.

As is well known, in the large-U limit a canonical
transformation of the Hubbard model gives the t-J
model,

where the uk, vI, , are the usual BCS coefIicients. Up to
a nonimportant normalization factor we get

Vk/tlk —Ak/[Ek —P + g(Ek —P') + I+k I ]

Ak is the BCS variational parameter and is taken to be
Ak = E[cos(k ) —cos(k&)] for d-wave superconductivity.

p is the chemical potential. Note that such a form for
A~ is not mandatory, and any function can, in principle,
be taken into account.

The d~ are the operators diagonalizing the antiferro-
magnetic Hartree-Fock Hamiltonian

S; denotes the spin at site i: S, =
2 c, o, c, are

o = z, y, z, and cr are the Pauli matrices. (i, j) stands
for a pair of nearest neighbors. HqJ operates only in the
subspace where there are no doubly occupied sites. In
the large-U limit one has J = 4t /U

k k km /k k+Kcr'

dkqIC, ~ = ~~kck, ~ + ~ck+SC, ~
f

where K = (vr, x) is the commensurate perfect nesting
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vector, and k is limited to half of the Brillouin zone by
ct. ( 0. ni., and Pt are the usual Hartree-Fock antiferro-
magnet, ic coeFicients

ap = [(1 —ei/ e'„+ D')/2]'~'

The gap D is related to the antiferromagnetic staggered
magnetization, whereas the gap 4 is related to the su-
perconducting order parameter. It should be noted that
a nonzero D or A is not the signature of a magnetic or
superconducting order. The true order parameters will
have to be computed to allow for an answer (see below).
If D = 0 our function gives the d-wave-type wave func-
tion, whereas if 4 ~ 0 the usual antiferromagnetic phase
is recovered.

To be treated numerically, the function ~g) is projected
on a subspace with a fixed number of particles, and
K, D, p (and g for the Hubbard model), are taken as vari-
ational parameters and fixed by minimizing the energy
E. Since in (4) the projectors for the Hubbard and t J-
models differ, the optimal variational parameters have no
reason to be the same in the nonprojected wave functions.
Therefore we will have to perform different minimizations
for the Hubbard and t-J models.

III. SIMULATION AND RESULTS

A. Simulation

All the calculations were made on a square lattice,
with periodic-antiperiodic conditions on the wave func-

(@( +~ &) = @( &) @( &+~ ) = ~( &)]
in order to avoid degeneracy of the Fermi surface at
half filling. We have mainly studied 8 x 8 lattices for

I

U = 10.0. We have taken an intermediate U because
the intermediate coupling region is the region of physical
interest in application to high-T, superconductivity.
For such a value of the coupling, the t-J model is ex-
pected to give a correct approximation of the Hubbard
one, if one chooses J = 4t /U = 0.4.

In order to check the size dependence we have also
performed some simulations on 6 x 6 and 10 x 10 systems,
for selected values of the band filling, to be sure that the
following qualitative conclusions will not be invalidated
by size effects. But we have not systematically performed
an extrapolation to infinite size, which would have been
extremely time consuming.

The variational parameters were determined by gener-
ating a fixed set of configurations and then using them to
minimize the energy. ' This offers both the advantage
of good computing time performances and of using corre-
la/ed measurements, which allows us to compare energies
that differ by much less than the statistical error bars
on uncorrelated samples. Note that one could choose in-
stead to minimize the energy variance for which more
powerful minimization techniques can be used. This
method is efIicient for atomic systems where there are
well-separated excited states, which is not the case for
our many-body problem. We in fact found that, in gen-
eral, the minimum of the variance does not coincide with
the minimum of the energy. For sufIiciently badly be-
haved wave functions the minimum in energy can even be
a maximum of the variance as one can convince oneself by
looking at the function ~@) = ~@u) + (v + A )~gi), where

~go) and ~gi) are two eigenstates such that Eo ( Ei, v

is fixed, and A a variational parameter. It is easy to see
that the minimum of the energy is at A = 0, v, hereas it
corresponds, for v & 1 to a maximum of the variance.

For the optimal wave functions, we have then measured
the superconducting order parameter:

where I is the number of sites, 7 denotes the four nearest-
neighbor vectors, and the antiferromagnetic order param-
eter is

(10)

We have used at least five independent simulations,
each of 4 x 10 Monte Carlo steps (MCS's) to determine
the minimum energy and parameters and the error bars.
Other quantities such as the superconducting order pa-
rameter, the staggered magnetization, the kinetic energy,

TABLE I. Optimal parameters for an I. = 8 x 8 system at U = 10. N is the number of particles, b the deviation from half
filling (I —N)/I, D the antiferromagnetic parameter, D the superconducting one, p the chemical potential, g the Gutzwiller
prefactor, and Nd is the number of doubly occupied sites.

64
60
52
44
36

0.0
0.06
0.19
0.31
0.44

1.55(4)
0.80(5)
0.05(3)
o.oo(3)
0.00(3)

0.04(2)
0.11(2)
o.o5(2)
0.02(1)
o.oo(3)

—0.00(2)
—0.19(3)
—o.55(6)
—0.69(5)
—0.87(9)

0.45(1)
0.34(1)
O.25(3)
O.29(2)
O.34(2)

2.33(2)
2.39(4)
1.93(2)
1.3O(5)
1.00(5)
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5x10 TABLE III. Comparison of the average energy (2S, . S~)

and the average alternate magnetization (M) for the Heisen-
berg model in different recent works.

—1.0
IJJ

—2

8 x 8 lattices
Gross, Sanchez-Velasco, and Siggia

Trivedi and Ceperley
Our variational work

(2S, S, )

—0.6715
—0.6734
—0.6642

(M)

0.7
0.7

—1.5

II

—2.0
0.0 0.1

l

0.2 0.3 0.4
I I 0

0.5

oo xoo
Gross, Sanchez-Velasco, and Siggia

Trivedi and Ceperley
Carlson'

—0.6672
—0.6692(2)
—06692(1)

0.62

FIG. 1. Energies in units of t for the optimal parameters
given in Tables I and II for a Hubbard model at U = 10 (cir-
cles) and a, t Jmodel -for J = 0.4 (triangles). The difference
in energy bE between a superconducting and a nonsuper-
conducting phase for the Hubbard model is also indicated
(squares) .

Reference 28.
Reference 29.

'Reference 30.

Vari ati onaI energy

and the potential energy, were measured over indepen-
dent samples of 8 x 10s MCS's. The order of magnitude
of the time needed to get one minimum is between 1 and
2 h on a Cray-2 computer. The different physical quan-
tities are much easier to compute, and a set of measures
takes around 1 h of Cray-2 computer time.

B. Results

The optimal parameters for an 8 x 8 system at U = 10
as a function of the band filling are indicated in Table I
for the Hubbard model and Table II for the t-J model,
and the results for the optimal variational energies are
reported in Fig. 1. By looking at Tables I and II one can
see that, in both models, close to half filling, the super-
conducting variational parameter and the antiferromag-
netic one are both nonzero suggesting a coexistence of
superconductivity and antiferromagnetism. Such a phase
diagram, which would be in good qualitative agreement
with a mean-field analytical result on the t-J model,
will be criticallly discussed in the following, but first we

would like to make some comments on the significance of
the variational results.

At half filling a detailed comparison with a large body
of existing results is possible. Energies and alternate
magnetization for the Heisenberg model (which is the
limit of the t'- J model at half filling) are given in Table III.
Inspection of these results shows that our wave function
is within 10 2t, from the best results [obtained by diago-
nalization on small samples or by quantuin Monte Carlo
(QMC) calculations]. For the Hubbard model, our re-
sult of 0.4011 is the same as the antiferromagnetic one of
Yokoyama and Shibaiz (see Sec. III B 3). Comparisons
done in Ref. 12 show that such an antiferromagnetic wave
function is extremely close in energy to QMC (at V = 8

&vMc = 0.493 and EqMc = 0.48). At V = 10 our re-
sult compares favorably with the QMC value of Sorella
e$ al. i (F = —0.42). For comparison we recall that for
U = 105 the Gutzwiller approximation for the paramag-
netic state has an energy of —0.095, and the Gutzwiller
paramagnetic state has an energy of —0.13$.

Away from half filling the results are scarce. There are
no "exact" (QMC or diagonalization) results for the en-

ergy of these models with such a large on-site repulsion
but only variational ones. To give some idea of the differ-
ences in energy we are encountering, let us consider as an
example the case of the Hubbard model for a 6 x 6 lattice
with four holes (b = 0.11). The energy per particle ob-
tained for the different wave functions are the following:

TABLE II. Same as Table I but for the t- J model. Here g = 0 (no doubly occupied sites).

64
60
52
44
36

0.0
0.06
0.19
0.31
0.44

0.276(5)
0.18(l)
0.00(l)
0.00(1)
0.00(1)

0.55(2)
0.56(6)
0.84(3)
0.20(3)
0.00(2)

—0.00(1)
—0.38(4)
—0.54(4)
-0.69(5)
—0.87(9)
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—0.63414 for a pure d-wave superconducting wave func-
tion, —0.64281 for a pure commensurate antiferromag-
netic wave function, —0.64471 for a mixed wave function
containing both superconducting and antiferromagnetic
correlations.

These results as well as those of Table III are a good
illustration of how near in energy, states with really dif-
ferent long-range order could be. We nevertheless think
that our comparison is meaningful; due to the corre-
lated measurements described in the preceding section,
the statistical uncertainties are under control and our
simulations on 6 x 6 and 10 x 10 samples indicate that
size effects do not seem to affect the hierarchy of varia-
tional states. This does not predetermine what kind of
order will be preferred in the thermodynamical limit in
the true ground state. This important question is still
certainly open both in analytical and numerical work,
and the answer to this question is beyond the reach of
any variational method. With these points and restric-
tions in mind, we will now proceed to the study of the
order parameters measured in our wave function with
optimal values of the variational parameters.

2. Magnetism

I I I I
)

I & I I
i

I I I I
i

I I

0.8—

0.6

0.4

0.2

I I I I t, I I I I I Tl I I I

0.1 0.2 0.3 0.4

FIG. 2. Measured staggered magnetization for the Hub-
bard (circles) and t- 1 (triangles) models as a function of the
band filling for a 8 x 8 system at U = 10. The lines are simply
a guide to the eye.

The alternate magnetization measured in each model
is shown in Fig. 2. These results, combined with the
information on the energy, show that the ant ife rrol1lag-
netic instability is at T = 0—a very strong feature of the
Hubbard model.

For the t-J model the antiferromagnetism is also quite
strong close to half filling, and the two models are in that
sense in good qualitative agreement. The more rapid
disappearance of antiferromagnetism (for b —0.1) is per-

haps to be related to the absence in the t-J model of the
three-site term, which allows the jumping of holes onto
second-neighbor sites.

The critical doping for the disappearance of antiferro-
magnetism in the Hubbard model (6, = 0.2) is nearly
identical to the values found for the disappearance of a
pure antiferromagnetic phase. This indicates that, at
least for this kind of wave function, antiferromagnetism
is not drastically affected by the possibility of supercon-
ducting pairing in the Hubbard model.

A comparison of these results to t, hose of the mean-field
calculation of Inui et al. shows that the mean-field cal-
culation overestimates the magnetization and the range
of existence of antiferromagnetism. It has been pointed
out that a pure antiferromagnetic Gutzwiller wave
function still overestimates the alternate magnetization.
But the inclusion of the superconducting pairing in (5)
also has the effect of introducing more fluctuations.

The study of the t-J model at half filling is an in-
teresting benchmark (see also Ref. 20). The inclusion
of a "superconducting" gap decreases the energy from
E = —0.4568 per particle to E = —0.4656 (which
would correspond to (S,S&) = —0.3321) and decreases
the staggered magnetization from m 0.9 (Ref. 32) to
m 0.7. This is extremely close to the best QMC es-
timates for the same system size, E = —0.4694 and
rn 0.7, and to the variational results of Liang, Douqot,
and Andersons4 E = —0.4675 (m 0.6). So this wave
function appears to be variationally interesting to restore
spin fluctuations that were frozen in the pure classical
antiferromagnetic wave function.

Finally we want to compare our VMC results to the
QMC onesss s7 for the Hubbard model. At half filling
the QMC calculation predicts an antiferromagnetically
ordered ground state in agreement with the variational
calculation but with a smaller staggered magnetization
(for U = 10, QMC results give m 0.5 instead of

0.9 for VMC). i2 Such a quantitative discrepancy
is clearly due to the lack of fluctuations in the varia-
tional wave function. This can be cured, at least par-
tially, by improving the wave function in order to take
into account such fluctuations. Nevertheless the varia-
tional method gives the correct long-range order. Away
from half filling there is a large difference that remains
to be explained: the QMC results seem to predict the
absence of antiferromagnetic order in the thermo-
dynamical limit, although antiferromagnetic fluctuations
are found in the finite-size samples. A possible explana-
tion of the discrepancy with the QMC results could still
be a lack of fluctuations in the variational wave function
(5). But some facts appear to be at variance with that
conclusion: firstly the good agreement of the VMC with
the exact diagonalisation studies, secondly the correct
qualitative agreement with the t-J model, where anti-
ferromagnetism is much less favored and where the wave
function at half filling at least —is expected to be rather
good (see above), and finally the unphysical nature of the
phase diagram that QMC calculations would predict (an-
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tiferromagnetism at half filling and nothing away from
half filling). So we are inclined to believe that the dis-

crepancy between VMC and QMC results originates from
the fact that VMC results mainly give information on the
ground state of the system, whereas QMC results are in-
trinsically a T g 0 method: the problem of the criticality
of the phase transition being still largely open, as well as
the problem of size effects, the results obtained by QMC
calculation could be in too high a temperature region to
exhibit full long-range order on the finite systems stud-
ied here. Note that the study of the antiferromagnetic
order is made more complicated by the fact that away
from half filling the wave vector of the staggered magne-
tization becomes incommensurate.

8. Superconductivity

The values of the variational parameters (see Tables I
and II) indicate that, for a wide range of dopings, the in-
clusion of a superconducting variational parameter does
improve, in both models, the energy of the state.

The results obtained for the superconducting varia-
tional parameter 4 at half filling call for some comments.
Due to a local SU(2) symmetry the f Jmodel a-t half fill-

ing is not superconducting even with a nonzero L.
This is not the case for the Hubbard model, where a
nonzero A could imply superconductivity, since g g 0
allows double occupancy and charge fluctuations. The
results obtained for the 8 x 8 system at half filling should
thus be analyzed in more detail. To do so we have looked
at the finite-size effects by considering the size depen-
dence of the superconducting variational parameter at
half filling and around b 0.1 where A seems to be at
its maximum. The results are reported in Fig. 3. One

clearly sees in this figure the different behavior of the
b = 0 and 0.1 systems and the strong decrease of the 4
parameter at half filling with its probable extrapolation
towards a zero value. We can therefore expect, in the
thermodynamical limit, a pure antiferromagnetic phase
at half filling, which is in agreement with previous re-
sults» 5 and with the g-J model result. Since the
number of doubly occupied sites is quite small on the
smallest systems (Nd = 2.3 for an 8 x 8 system), the local
number of fIuctuations at half filling is severely restricted,
and both solutions (A g 0 and 4 = 0) are certainly very
close in energy, which explains the important size effect
for 6 = 0. However, the results for a doped sample do
not exhibit the same size effect. True extrapolation is
difFicult as the different samples do not have exactly the
same doping, but examination of Fig. 3 gives us a firm
indication, at T = 0, of the existence of d-wave super-
conductivity for 6 O.I. Figure 3 also indicates that,
except at half filling, the size effects are not drastic and
our 8 x 8 system is probably adequate.

The measured superconducting order parameter is
shown in Fig, 4 for both models. The above discussion
on magnetism accurately shows how subtle the problem
of superconductivity in these models is. In the t-J model
the superconducting d-wave component helps introduce
short-range spin fluctuations, and the present calculation
alone cannot decide definitively whether the supercon-
ducting long-range order is a necessary ingredient.

In that sense, the fact that the Hubbard model, where
the superconducting gap is zero at half filling and where a
pure superconducting wave function being unfavored also

0.07

015 i i i i i i i i i
I

i i i i & i i i i
I

( I

0.06—

Q.05—

0.10—
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0.02

0.05— 0.01

0.00
0.0 0.1 0.2 0.3

I )

0.4

QOO t s i i i & ( i t I I i i i i I i i i I i
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FIG. 3. Size dependency of the variational parameter D.
Squares correspond to half filling, whereas solid circles stand
for systems with 32 (6 x 6), 60 (8 x 8), or 44 (10 x 10) particles.
These three points correspond to slightly diB'erent 6' (b = 0.11,
b = 0.0625, and b' = 0.12, respectively), and therefore no
extrapolation to infinite size can be made directly.

FIG. 4. Our measured superconducting order parameter
for the Hubbard model (circles) and the Yokoyama and Shiba
measurement (Ref. 14) (triangles) for the t- J model as func-
tion of the band filling for a 8 x 8 system at U = 10. The
lines are simply a guide to the eye. Note that the measured
order parameter 4, .- always keeps a, finite value even in the
paramagnetic phase. This is an artefact of formula (9), which
gives only the oK-diagonal long-range order pa.rameter in the
limit L ~ oo.
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exhibits superconductivity upon doping, seems to pro-
vide confirmation that the presence of the d-wave pairing
is not an artefact of t, he variational wave function. The
difference in energy between the phase of coexistence and
the antiferromagnetic phase with no superconducting gap
could then, with more confidence, be attributed to the su-
perconducting pairing. We have indicated in Fig. 1 the
total energy per particle for both models and the differ-
ence in energy between the phase of coexistence and the
same phase but with no superconducting gap (E = 0)
for the Hubbard model. It is seen to be very weak, a few
hundredths of the magnetic energy.

Such a result calls for additional comments. It is nu-
merically significant for the finite-size sample that we
have studied. The use of correlated measurements al-
lows one to extract significant results from the numerical
noise. The error bars in Tables I and II come from statis-
tics on five different samples. The small size of the pairing
energy can explain why superconductivity has not been
seen up to now in quantum Monte Carlo calculations. 0

The QMC method is essentially a T g 0 method and it
will be necessary to go to lower temperatures and larger
size samples to see so tiny an effect.

The superconducting order parameter has been mea-
sured (see Fig. 4) and is at its maximum around 6 0.1

and of the order of 0.04$. It does not seem to extrapolate
to zero with the size of the sample. After the coexistence
phase (6 —0.2 for Hubbard 6 0.1 for t J) and u-p to

0.3 a pure d-wave superconducting phase is found,
as is clearly seen in Table I, Table II, and Fig. 4.

The values for the t-J model are extracted from the
work of Yokoyama and Shiba who used a method allow-

ing them to compute the order parameter directly with-
out bias due to finite-size effects. Again both models are
in good agreement. The upper limit for the existence of
superconductivity is similar in both models and a little
bigger than the one predicted by Shiba (6 = 0.2) with
a slightly different wave function.

Although clearly the theory is much too crude to be di-
rectly related to high-i, experiments, one can note that
the agreement in the ratio between the superconduct-
ing gap and the magnetic energy is weak though not
completely unreasonable in comparison to experimen-
tal values for high T, . To the best of our knowledge
no coexistence of long-range order has been observed so
far. Nevertheless, if, as in our wave function, the system
possesses an antiferromagnetic gap at points where the
superconducting gap vanishes (i.e. , k = k&), all the un-
usual aspects of d-wave superconductivity linked to the
presence of zeros of the gap on the Fermi surface would
not be observable, and the experimental distinction be-
tween 8- and d-wave superconductivity will become more
difficult. 4~

the superconductivity, quantitatively in agreement. The
energies per particle are in qualitative agreement over a
wide range of dopings. This seems to confirm that, at
the present level of accuracy, and in the range of param-
eters here studied, the two models (Hubbard and t J)-
essentially describe the same physics. But if the "ne-
glected terms" of the t-J model do not seem to change
the physics much, they nevertheless have an appreciable
importance. At half filling, due to double occupancy, the
energy in the Hubbard model is E = —0.4015 per parti-
cle, whereas it is E = —0.4656 for the t-J Hamiltonian.
On the other hand, the neglect in the t;J model of the
three-site term, which allows the hopping of holes to next
neighbor position, probably explains why the energy of
the Hubbard Hamiltonian becomes lower upon doping.

IV. COMPARISON WITH
OTHER WAVE FUNCTIONS

A. Incommensurate antiferromag;netism

The mixed antiferromagnetic and super conducting
wave function seems a reasonably good wave function
for strongly correlated systems when the Hubbard repul-
sion is of the order of the bandwidth. Nevertheless, the
increase of the variance of this wave function under dop-
ing is a sign that it is not the best one when holes are
introduced.

In fact, in qualitative agreement with Hartree-Fock
results it appears that an incommensurate antiferro-
magnetic phase is much more stable than the commen-
surate one.

The lowest phase presently exhibited in that kind of
finite-size study is one where holes align in diagonal walls.
The energy gain due to the incommensurate instability is

huge even for quite large dopings (of order t per hole).
For example, at 6 = 0.1 and U = 10 the coexistence
phase (commensurate antiferromagnetism and supercon-
ductivity) has an energy per particle F = —0.643, against
F = —0.695 for a phase with diagonal walls. But such
a phase is almost certainly an artefact of the Hubbard
model and will disappear if long-range Coulombic repul-
sion is included. One can then argue that only the ho-
mogeneous solutions of the Hubbard model can have a
physical meaning. Among these solutions the coexistence
phase of antiferromagnetism and superconductivity has,
to the best of our knowledge, the lowest energy.

Note that the question of coexistence of incommensu-
rate antiferromagnetism and superconductivity has been
addressed. As for the commensurate case, a small energy

( 10 t) is gained by a d-wave pairing.

B. Flux: phases

Comparison of the two models

Finally we would like to stress the following points: the
phase diagrams calculated here are qualitatively and, for

For the t-J model another important class of wave
functions studied are the so-called flux-phase wave
functions. " At half filling it can b e shown that
the best Aux phase s is equivalent under an SU(2)
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symmetry to various superconducting phases. The
most important are the 8+ id phase of Kotliar and I iu
and a special d-wave superconducting wave function with
a variational superconducting parameter A = 1.

Away from half filling two kinds of flux phase have been
considered: the staggered ones and the commensu-
rate one. In the staggered ones the flux changes sign
on alternate plaquettes. These phases have the advantage
of giving a good kinetic energy but have been shown by
using the Gutzwiller approximation to be higher in en-

ergy than a d-wave superconducting wave function, a
result confirmed by VMC calculations. 5~ Our wave func-
tion is therefore better than such a wave function.

The commensurate flux phase frustrates the kinetic en-

ergy and for a wide range of values of J is higher in energy
than a projected Fermi liquid phase. For example,
if one takes the values of Ref. 53, which are one of the
most favorable estimates, the flux phase is more stable
than a Fermi-liquid phase only for J ) 0.6 at 6 = 0.07.
For the values of J considered here the commensurate
flux phase is not stable away from half filling. At half
filling, since the most favorable Aux phase corresponds
by SU(2) symmetry to a d-wave superconducting phase
with A = 1 (Ref. 48) it, is also higher in energy than the
best estimate with the coexistence wave function (5).

A function similar to (5) but with a mixing of flux
phases and antiferromagnetism has been considered for
the half-filled case and gives a slightly higher energy.

V. CONCLUSION

In this paper we have presented a variational Monte
Carlo study of the coexistence of superconductivity
and antiferromagnetism in the Hubbard model and the
t-J model on a square lattice. We have used a varia-
tienal wave function introduced previously for the Hub-
bard model that allows a continuous description of the
paramagnetic, antiferromagnetic, and superconducting
phases, as well as a coexistence between antiferromag-

netism and superconductivity.
We have found that at intermediate coupling in bo/h

models a pure antiferromagnetic phase seems to exist
only at half filling. Between zero and a critical doping,
whose precise value depends on the model (b 0.2 for
Hubbard 6 0.1 for t-J), the most stable phase exhibits
both antiferromagnetism and superconductivity. The en-

ergy gained in the pairing compared to those of the pure
antiferromagnetic phase is very small for the Hubbard
model. For the 5-J model it is difFicult to define the en-

ergy really associated with superconducting pairing be-
cause of the lack of a good nonsuperconducting reference
state. In our opinion the fact that bo/h models give su-
perconductivity, although a pure superconducting phase
is unfavorable for the Hubbard model, can be a good in-
dication that the d-wave pairing is a real efIect in these
models. A definite answer to this question would require
a more powerful technique.

Above the threshold for antiferromagnetism the sys-
tem becomes purely superconducting. Here again the
two models have approximately the same order parame-
ter and phase diagrams. Finally above b 0.3 the most
stable phase is the paramagnetic one.

It could be added that, within the present study, the
optimized superconducting state appears to be a weak

coupling superconductor, which only involves the pair-

ing of a small fraction of the electrons around the Fermi
surface. Whether a true RVB state 3 describing a dis-
ordered spin liquid could be a better approximation for
the ground state of the Hubbard model remains to be
proved. Our preliminary attempts in this direction have
been so far without success.
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